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Abstract: This paper deals with the multi-pulse chaotic dynamics of a sandwich plate with truss core
under transverse and in-plane excitations. In order to analyze the complicated nonlinear behaviors of
the sandwich plate model by means of the improved extended Melnikov technique, the two-degrees
non-autonomous system is transformed into an appropriate form. Through theoretical analysis,
the sufficient conditions for the existence of multi-pulse homoclinic orbits and the criterion for
the occurrence of chaotic motion are obtained. The damping coefficients and transverse excitation
parameters are considered as the control parameters to discuss chaotic behaviors of the sandwich
plate system. Numerical results and the maximal Lyapunov exponents are performed to further test
the existence of the multi-pulse jumping orbits. The theoretical predictions and numerical results
demonstrate that the chaos phenomena may exist in the parametrical excited sandwich plate.

Keywords: chaos; multi-pulse orbit; extended Melnikov method; Lyapunov exponent
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1. Introduction

The truss core sandwich materials belong to a new type of lightweight structure and
are widely used in mechanical engineering and other various areas. Different types of
sandwich structures have attracted the attention of many researchers. Analytical and
numerical techniques can be applied to investigate the resonant response, bifurcation and
chaotic dynamics for these sandwich materials.

For instance, Chen et al. [1,2] discussed the stability and nonlinear response of the
harmonic-excited plate with tetrahedral core under influence of thermal loads. Boorle and
Mallick [3] studied the global response of composite sandwich plates to the effect of some
geometric parameters. In 2014, Zhang et al. [4] studied the periodic and chaotic motions
of the sandwich plate with truss core. The influence of different excitation parameters on
nonlinear dynamic behaviors were investigated by numerical methods. By introducing
the nonlinear wave equation, Zhang et al. [5] applied the Menikov method to confirm
the chaotic motions for this sandwich plate. Furthermore, based on the model given
in [4], Chen et al. [6] discussed the local bifurcations and slow-fast motions for this four-
dimensional nonlinear system under slow parametric and fast external excitation. However,
the multi-pulse chaotic dynamics of this system have not been studied analytically. Based on
the dimensionless governing equation, we conduct further research to obtain the conditions
for the occurrence of chaotic motion by theoretical methods.

The bifurcation problems [7,8], single-pulse orbits and multi-pulse orbits [9] have been
the top issue in dynamic research. Many researchers have developed analytical methods to
study chaotic motions for the high-dimensional nonlinear systems. The Melnikov method
is a classical approach to detect chaotic dynamics which was developed by Wiggins,
Kovacic and Yagasaki. In 1998, Camassa et al. [10] proposed an extended Melnikov
method which may be employed to deal with the multi-pulse jumping orbits for a class
of Hamiltonian systems with perturbation. Subsequently, Yagasaki [11,12] developed the
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Melnikov method to investigate the chaotic dynamics of high-dimensional non-autonomous
systems. The paper [13] demonstrates how to employ the extended Melnikov method
to analyze the multi-pulse chaotic dynamics for the parametrically excited viscoelastic
moving belt. Afterwards, Zhang et al. [14] investigated the chaotic dynamics of the rotating
ring truss antenna. The double parameter homoclinic orbits were detected by means
of the extended Melnikov function. In [15], Zhang and Chen proved the existence of
single-pulse jumping homoclinic orbits of the sandwich plate with truss core on a certain
parameter range. Ahmadi et al. [16] investigated a new five-dimensional chaotic system.
The phenomenon of extreme multi-stability are considered for the variety of conditions.
In [17], many complex dynamic behaviors of another 5D chaotic system with equilibrium
were discovered.

These analytical techniques can deal with autonomous systems. In most instances, we
need to discuss the dynamical problems of non-autonomous systems. The literature [18]
used the improved Melnikov method to detect the chaotic behaviors of the buckled thin
plate model. In 2012, Zhang et al. [19] studied the chaotic dynamics of another type of sand-
wich plate. Based on the non-autonomous nonlinear governing equations, Wu et al. [20]
investigated the global bifurcations for the circular mesh antenna model. It is worth men-
tioning that the Melnikov method is improved to handle six-dimensional nonlinear systems
by Zhang and Hao in papers [21].

The paper handles the global bifurcation and chaotic motion of a simply supported
sandwich plate with truss core subjected to parametrical excitations. From the explicit
formulas of normal form, the improved extended Melnikov method [10,18] is used to
study the chaotic dynamics for this non-autonomous system. The damping coefficients
and transverse excitation parameters are chosen as the control parameters to discuss the
influence on the dynamic behaviors of the sandwich plate system with truss core. The
numerical results also show that the chaotic motions may occur for the sandwich plate
with truss core subject to parametrical excitations which demonstrates the validation of the
theoretical prediction.

The paper is outlined as follows. In Section 2, the main theory of the extended
Melnikov method for the non-autonomous system is exhibited. In Section 3, the dynamical
model is described for the sandwich plate with truss core under transverse and in-plane
excitations. The chaotic motions of the four dimensional non-autonomous systems are
analyzed based on the improved extended Melnikov method. In Section 4, based on the
phase portraits, waveforms and Lyapunov exponents, numerical simulations are utilized
to study the dynamic behaviors of the sandwich plate. Finally, we give the conclusions in
Section 5.

2. Formulation

The main theory of the improved Melnikov method [10,18] for the non-automonous
nonlinear system will be listed in this section. Consider a general Hamilton system:

ẋ = JDx H(x, v1) + εgx(x, v, φ, µ, ε),

v̇1 = εgv1(x, v, φ, µ, ε),

v̇2 = Ω(x, v1) + εgv2(x, v, φ, µ, ε),

φ̇ = ω,

(1)

where x = (x1, x2) ∈ R2, 0 < ε << 1, µ ∈ Rp represents the parameters in the perturbed
system. Dx indicates the partial derivatives about x, g = (gx, gv1 , gv2) denotes a periodic
function of t. When ε = 0, the unperturbed system can be given by

ẋ = JDx H(x, v1),

v̇1 = 0,

v̇2 = Ω(x, v1),

(2)
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which is an uncoupled nonlinear dynamical system. The following two assumptions are
required according to the results of [10].

Assumption 1. For every v1 ∈ [R1, R2], there exist a hyperbolic equilibrium x = x0(v1) and a
homoclinic orbit xh(t, v1) connected to x0(v1).

Assumption 2. For some v1 = v10 ∈ [R1, R2], the function Ω satisfies the following conditions

Ω(x0(v10), v10) = 0,
dΩ(x0(v1), v1)

dv1
(v10) 6= 0.

From Assumption 2, we may find simple zeros about v1 which can be called the
resonance bands. A partial manifold is defined as

M = {(x, v)|x = x0(v1), R1 ≤ v1 ≤ R2,−L < v2 < L},

which is normally hyperbolic and possesses three-dimensional stable manifolds Ws(M) and
unstable manifolds Wu(M). The existence of the homoclinic orbit of system (2) indicates
that the stable manifolds Ws(M) and unstable manifolds Wu(M) intersect non-transversally
along Γ, which can be given

Γ = {(x, v)|x = xh
±(t, v1), R1 ≤ v1 ≤ R2, v2 =

∫ t

−∞
Dv1 H(xh, v1)ds + v20}.

The perturbed system (1) is a five-dimensional system. In order to investigate the
dynamics of non-autonomous systems, a cross-section is introduced in the phase space.
The expression of cross section is defined as

Σφ0 = {(x, v1, v2, φ)|φ = φ0}. (3)

The variable φ is first fixed on Σφ0 and then vary throughout the circle S1. In the full
five-dimensional phase space R4 × S1, the invariant manifold M(t) can be written by

M(t) = {(x, v, φ)|x = x0(v1), R1 ≤ v1 ≤ R2,−L < v2 < L, φ = ωt + φ0}. (4)

Based on the analysis in [10], it can be known that M(t) is a three-dimensional normally
hyperbolic invariant manifold and the expression of the manifold Mε(t) is written as

Mε(t) = {(x, v, φ)|x = x0(v1) + O(ε), R1 ≤ v1 ≤ R2,−L < v2 < L, φ = ωt + φ0}. (5)

The manifolds Mε(t), Ws
ε(M(t)) and Wu

ε (M(t)) are Cr ε-close to the manifolds M(t),
Ws(M(t)) and Wu(M(t)), respectively. The 1-pulse Melnikov function and k-pulse Mel-
nikov function [10] in the Cartesian coordinate are shown by

M(v0, φ0, µ) =
∫ +∞

−∞
〈n(ph(t)), g(ph(t), ωt + φ0, µ, 0)〉dt,

Mk(v0, φ0, µ) =
k−1

∑
j=0

M(v10, v20 + j∆v2(v10), φ0, µ),
(6)

where symbol〈, 〉 denotes the Euclidean inner product of two functions,

n = (Dx H(x, v1), (Dv1 H(x, v1)− (Dv1 H(x(v10), v1), 0),

g = (gx(x, v, ωt, µ, 0), gv1(x, v, ωt, µ, 0), gv2(x, v, ωt, µ, 0)),

ph(t) = (xh(t, v1), v1, vh
2(t, v1) + v20).

(7)
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and
∆v2(v10) =

∫ +∞

−∞
Ω(xh(τ, v1), v10)dτ. (8)

The term ∆v2 denotes the distance between two equilibrium points. From Assumption 2,
we may find that the vector x is located on a fast manifold. No manifold is on the manifold
M. This means the nonfolding condition in [10] is satisfied naturally. Thus, there exist some
integer k, v20 = v̄20, φ = φ̄0, and µ = µ̄, so that the k-pulse Melnikov function Mk(v0, φ0, µ)
has a simple zero point, namely

Mk(v10, v̄20, φ̄0, µ̄) = 0, Dv2 Mk(v10, v̄20, φ̄0, µ̄) 6= 0. (9)

The stable manifold Ws(Mφ0
ε ) and unstable manifold Wu(Mφ0

ε ) intersect transversely
along surface Σ(v̄20). This means that the perturbed system has multi-pulse homoclinic orbits.

3. Chaotic Analysis of Perturbed System

The model of the sandwich plate with truss core considered in this paper is exhibited
in Figure 1 [4]. A Cartesian coordinate oxy system is established in the middle surface of
the sandwich plate. It can be supposed that the displacements of a point in the middle
surface are represented by u, v and w in the x, y and z directions, respectively. Moreover,
a, b and h denote the length, width and thickness of the sandwich plate, respectively.
The transverse excitation of the sandwich plate is denoted by f = F(x, y) cos Ω1t and the
in-plane excitation is represented by p = p0 − p1 cos Ω2t.

According to [4], the nonlinear partial differential equations of the sandwich plate are
given as follows

∂2u0

∂x2 + a1
∂w0

∂x
∂2w0

∂x2 + a2
∂w0

∂y
∂2w0

∂x∂y
+ a3

∂2v0

∂x∂y
+ a4

∂2w0

∂y2 + a5
∂w0

∂x
∂2w0

∂y2

= a6ü0 + a7 ϕ̈x + a8
∂ẅ0

∂x
,

∂2v0

∂y2 + b1
∂w0

∂x
∂2w0

∂x2 + b2
∂w0

∂x
∂2w0

∂x∂y
+ b3

∂2u0

∂x∂y
+ b4

∂2v0

∂y2 + a5
∂w0

∂x
∂2w0

∂x2

= b6v̈0 + b7 ϕ̈y + b8
∂ẅ0

∂y
,

∂2w0

∂x2 + c1
∂w0

∂x
∂2u0

∂x2 + c2(
∂w0

∂x
)2 ∂2w0

∂x2 + c3
∂w0

∂x
∂2v0

∂x∂y
+ c4

∂w0

∂x
∂w0

∂y
∂2w0

∂x∂y

+ c5
∂u0

∂x
∂2w0

∂x2 + c6
∂v0

∂y
∂2w0

∂x2 + c7(
∂w0

∂x
)2 ∂2w0

∂y2 + c8(
∂w0

∂y
)2 ∂2w0

∂x2

+ c9
∂w0

∂y
∂2v0

∂y2 + c10(
∂w0

∂y
)2 ∂2w0

∂y2 + c11
∂w0

∂y
∂2u0

∂x∂y
+ c12

∂u0

∂y
∂2w0

∂y2 + c13
∂w0

∂x
∂2u0

∂y2

+ c14
∂u0

∂y
∂2w0

∂x∂y
+ c15

∂u0

∂x
∂2w0

∂y2 + c16
∂v0

∂x
∂2w0

∂x∂y
+ c17

∂w0

∂y
∂2v0

∂x2 + c18
∂3 ϕx

∂x3

+ c19
∂3 ϕy

∂x2∂y
+ c20

∂4w0

∂x4 + c21
∂4w0

∂y4 + c22
∂3 ϕx

∂x∂y2 + c23
∂4 ϕx

∂x2∂y2 + c24
∂3 ϕy

∂y3 + c25
∂ϕy

∂y

+ c26
∂2w0

∂y2 + c27
∂ϕx

∂x
+ c28F cos(Ω1t) + c29γẇ0 + c30(p0 − p1 cos(Ω2t))

∂2w0

∂x2

= c31ẅ0 + c32
∂w0

∂x2 + c33
∂w0

∂92 + c34(
∂ü0

∂x
+

∂v̈0

∂y
) + c35(

∂ϕ̈x

∂x
+

∂ϕ̈y

∂y
),

∂2 ϕx

∂x2 + d1
∂2 ϕy

∂x∂y
+ d2

∂3w0

∂x3 + d3
∂3w0

∂x∂y2 + d4
∂2 ϕx

∂y2 + d5 ϕx + d6
∂w0

∂x

= d7ü0 + d8 ϕ̈x + d9
∂ẅ0

∂x
,

∂2 ϕy

∂y2 + e1
∂2 ϕx

∂x∂y
+ e2

∂3w0

∂y3 + e3
∂3w0

∂y∂x2 + e4
∂2 ϕy

∂x2 + e5 ϕy + e6
∂w0

∂y

= e7v̈0 + e8 ϕ̈y + e9
∂ẅ0

∂y
,

(10)
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where
u = u0 + zφx − z3 4

3h2 (φx +
∂w0

∂x
),

v = v0 + zφy − z3 4
3h2 (φy +

∂w0

∂y
),

w = w0.

(11)

�

(a) (b)

Figure 1. The model of the sandwich plate with truss core: (a) schematic with the coordinate system;
(b) the 3D-Kagome truss core sandwich structure.

Here, we mainly consider the first two modes of the sandwich plate. Applying the
Galerkin technique, the two-degrees of freedom nonlinear equations of the sandwich plate
with truss core were given as [4]

ẅ1 + µ1ẇ1 + β11w1 + β16(p0 − p1 cos(Ω2t))w1 + β12w1w2
2 + β13w2w2

1 + β14w3
1

+ β15w3
2 = β17F1 cos Ω1t,

ẅ2 + µ2ẇ2 + β21w2 + β26(p0 − p1 cos(Ω2t))w2 + β22w2w2
1 + β23w1w2

2 + β24w3
2

+ β25w3
1 = β27F2 cos Ω1t,

(12)

where all the coefficients in (12) can be found in [4], w1 and w2 are the amplitudes of two
modes, and Ω1 and Ω2 denote the frequencies of the transverse and in-plane excitations.
Further, F1 and F2 represent the amplitudes of the transverse excitation corresponding to
w1 and w2, respectively, and µ1 and µ2 are the damping coefficients.

Introducing the following transformations for Equation (12)

x1 = w1, x2 = ẇ1, x3 = w2, x4 = ẇ2,

this system can be given by

ẋ1 =x2,

ẋ2 =− β11x1 − β12x1x2
3 − β13x3x2

1 − β14x3
1 − β15x3

3 − µ1x2 + F1 cos Ω1t

− f1x1 cos Ω2t,

ẋ3 =x4,

ẋ4 =− β21x3 − β22x2
1x3 − β23x1x2

3 − β24x3
3 − β25x3

1 − µ2x4 + F2 cos Ω1t

− f2x3 cos Ω2t,

(13)
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where β11 → β11 + β16 p0, β12 → β21 + β26 p0, F1 → β17F1, F2 → β27F2, f1 → β16 p1,
f2 → β26 p1. If µ, f1, f2, F1 and F2 are considered as perturbation parameters, the system (13)
can rewritten as

ẋ1 = x2,

ẋ2 = −β11x1 − β12x1x2
3 − β13x3x2

1 − β14x3
1 − β15x3

3,

ẋ3 = x4,

ẋ4 = −β21x3 − β22x2
1x3 − β23x1x2

3 − β24x3
3 − β25x3

1.

(14)

The Maple program is applied to obtain the normal form without the perturbation
parameters up to 3-order, namely

ẋ1 = x2,

ẋ2 = −1
2

β12x1(x2
3 + x2

4)− β14x3
1,

ẋ3 = x4 +
1
2

β22x2
1x4 + β24(x2

3 + x2
4),

ẋ4 = −β21x3 − β24(x2
3 + x2

4)−
1
2

β22x2
1x3.

(15)

It can be seen that the four terms β13x2
1x3, β15x3

3, β23x2
3x1, β25x3

1 in (14) can only have
influence on higher order terms. Thus, the damping coefficients, the forces coefficients and
the aforementioned four terms are considered as perturbation terms which can be added
small positive parameter ε. Then, we have

ẋ1 =x2,

ẋ2 =− β11x1 − β12x1x2
3 − β14x3

1 − εβ15x3
3 − εβ13x3x2

1 − εµ1x2 + εF1 cos Ω1t

− ε f1x1 cos Ω2t,

ẋ3 =x4,

ẋ4 =− β21x3 − β22x2
1x3 − β24x3

3 − εβ23x1x2
3 − εβ25x3

1 − εµ2x4 + εF2 cos Ω1t

− ε f2x3 cos Ω2t.

(16)

The frequencies Ω1 and Ω2 satisfy the relations Z1φ = Ω1t, Z2φ = Ω2t, where Z1 and
Z2 are non-negative integers. The transformations are introduced for Equation (16)

x1 =

√
β12

β̄22
u1, x2 =

√
β12

β̄22
u2, x3 = v1, x4 = µ2v2

We may obtain the Hamilton form with the perturbation

u̇1 =u2,

u̇2 =− β11u1 − β12u1v2
1 − β̄14u3

1 − εµ1u2 − εβ̄13u2
1v1 − εβ̄15v3

1 + εF̄1 cos Z1φ

− ε f1u1 cos Z2φ,

v̇1 =− εµ2v2,

v̇2 =− β̄21v1 − β12u2
1v1 − β̄24v3

1 − εµ2v2 − εβ̄23u2
1v1 − εβ̄25v3

1 + εF̄2 cos Z1φ

− ε f̄2v1 cos Z2φ,

φ̇ =1,

(17)

where β̄14 = β14
β12
β̄22

, β̄13 = β13

√
β12
β̄22

, β̄15 = β15

√
β12
β̄22

, β̄21 = β21
µ2

, β̄22 = β22
µ2

, β̄23 = β13
µ2

√
β12
β̄22

,

β̄24 = β24
µ2

, F̄1 = F1

√
β̄22
β12

, f̄2 = f2
µ2

, F̄2 = F2
µ2

.
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According to the previous theoretical results, a cross-section Σφ0 is introduced in the
full five-dimensional phase space. When ε = 0, the expression of the unperturbed system is

u̇1 = u2,

u̇2 = −β11u1 − β12u1v2
1 − β̄14u3

1,

v̇1 = 0,

v̇2 = −β̄21v1 − β12u2
1v1 − β̄24v3

1.

(18)

The Hamiltonian of (18) can be given as

H =
1
2

u2
2 +

1
2

β11u2
1 +

1
4

β12u2
1v2

1 +
1
4

β̄14u4
1 +

1
4

β̄24v4
1 +

1
2
− β̄21v2

1

It can be seen that the system (18) is an uncoupled system. Considering the first two
equations of (18)

u̇1 = u2,

u̇2 = −β11u1 − β12u1v2
1 − β̄14u3

1.
(19)

The Hamiltonian is given as

H0(u1, u2) =
1
2

u2
2 +

1
2

Ru2
1 +

1
4

β̄14u4
1, (20)

where R = β11 + β12v2
1.

Here, we consider the stability of the equilibrium solution within a certain range of
parameters, that is β12 < 0, β̄14 > 0, R = β11 + β12v2

1 < 0. Let R̄ = −R. According to the

condition β11 + β12v2
1 < 0, the domain of v1 is that v1 >

√
2β11
−β12

.
The system (19) has three trivial solutions. The singular point (u1, u2) = (0, 0) is

a saddle point. The singular points (u1, u2) = (±
√

R̄
β̄14

, 0) are two centers. In this case,
system (19) can exhibit the homoclinic bifurcations. We may obtain the expression of the
homoclinic orbits

u1(t) = ±

√
2R̄
β̄14

sech
√

R̄t,

u2(t) = ±R̄

√
2

β̄14
sech

√
R̄t tanh

√
R̄t.

(21)

According to system (18), the resonant value can be obtained as v10 =

√
β̄21
−β̄24

. At

the same time, the condition
√

β̄21
−β̄24

>
√

2β11
−β12

, namely β̄21β12 < 2β̄24β11 need to be

satisfied. Thus, the correlation coefficients of system (18) also need to satisfy β̄24 < 0,
β12 β̄21 < 2β11 β̄24. Then the phase shift can be calculated as

∆v2 =
∫ +∞

−∞
(−β̄21v1 − β12u2

1v1 − β̄24v3
1)dt = −4β12

β̄14

√
β̄21

β̄24
R̄. (22)

In light of Equation (18), the 1-pulse Melnikov function can be calculated as
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M =
∫ +∞

−∞
µ2[β̄13u2

1v1 + β̄15v3
1 − µ1u2 + F1 cos(Ω1t + Z1φ0)− µ1 f1 cos(Ω2t + Z2φ0)]dt

−
∫ +∞

−∞
µ2v2[−β̄21v1 − β12u2

1v1 − β̄24v3
1]dt

=− 4µ1R̄
3
2

3β̄14
−

π f2Ω2
2

β̄14
sin(Z2φ0) csch

πω

2
√

R̄
− πΩ1F1

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− µ2∆v2v20.

(23)

Further, we can calculate the k-pulse Melnikov function

Mk =−
4µ1R̄

3
2

3β̄14
k− k

π f2Ω2
2

β̄14
sin(Z2φ0) csch

πω

2
√

R̄

− kπΩ1F1

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− µ2∆v2v20k− k(k− 1)

2
µ2∆v2

2.

(24)

For the k-pulse Melnikov function Mk has simple zeros, the relevant parameters
should satisfy

− 4µ1R̄
3
2

3β̄14
−

π f2Ω2
2

β̄14
sin(Z2φ0) csch

πω

2
√

R̄
− πΩ1F1

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄

− µ2∆v2v20 −
(k− 1)

2
µ2∆v2

2 = 0.

(25)

Equation (25) can be reformulated as

k =− 8µ1R̄
3
2

3β̄14µ2∆v2
2
−

2π f2Ω2
2

β̄14µ2∆v2
2

sin(Z2φ0) csch
πω

2
√

R̄

− 2πΩ1F1

µ2∆v2
2

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− 2v20

∆v2
2
+ 1.

(26)

Then, the suitable parameters are chosen to satisfy the following condition

Dv20 Mk = −µ2∆v2k =
4β12µ2k

β̄14

√
β̄21

β̄24
R̄ 6= 0. (27)

At the same time, the following expression should be a non-negative integer by
selecting suitable parameters in Equation (26).

N =− 8µ1R̄
3
2

3β̄14µ2∆v2
2
−

2π f2Ω2
2

β̄14µ2∆v2
2

sin(Z2φ0) csch
πω

2
√

R̄

− 2πΩ1F1

µ2∆v2
2

√
2

β̄14
sin(Z1φ0) sech

πΩ1

2
√

R̄
− 2v20

∆v2
2

.

(28)

If the stable manifold Ws(Mφ0
ε ) and unstable manifold Wu(Mφ0

ε ) of system (17) inter-
sect transversely, there exist chaotic motions for the sandwich plate with truss core under
parametricaly excitations.
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4. Numerical Simulations

In order to test the analytical predictions, we choose the original system (12) to perform
numerical simulations. The Runge–Kutta algorithm through the software Matlab is utilized
to explore the existence of chaotic motions in the sandwich plate. This part mainly discusses
the influence of the damping coefficient and in-plane excitation on chaotic motions of the
sandwich plate model. So µ1 and f are selected as the controlling parameters to discover
the law for the complicated behaviors.

Considering the conditions β12 < 0, β14 > 0, β21 < 0 and β24 > 0, the parameters of
system (12) are chosen as follows: µ1 = µ2 = µ = 0.4, β11 = 27.8, β16 p0 = 0.05, β12 = −0.1,
β16 p1 = 0.05, β13 = −1.5, β14 = 32, β15 = −0.51, β17F1 = 85.8, β21 = −1.08, β26 p0 = 0.057,
β25 = −5, β22 = −23.2, β26 p1 = 0.057, β23 = −15.1, β24 = 31.6, f = β27F2 = 13.3.
Initial conditions are selected as (w1, ẇ1, w2, ẇ2) = (0.02, 0.01, 0.04, 0.01). Figure 2 exhibits
the phase portraits and waveforms in plane or space. Moreover, the maximal Lyapunov
exponent of system (12) is 0.585523 > 0. It can be shown that there exist chaotic motions for
the nonlinear system. It is demonstrated again the existence of Shilnikov-type multi-pulse
orbits in the sense of Smale horseshoes of the truss core sandwich plate.
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Figure 2. The phase portraits and waveforms of the sandwich plate with truss core when µ = 0.4
and f = 13.3: (a) the phase portrait on plane (w1, dw1

dt ); (b) the waveform on plane (t, w1); (c) the
phase portrait on plane (w2, dw2

dt ); (d) the waveform on plane (t, w2); (e) the phase portraits in
the three-dimensional space (w1, dw1

dt , w2); (f) the phase portraits in the three-dimensional space
( dw1

dt , w2, dw2
dt ).
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According to the aforementioned analysis, the excitation coefficient and damping
coefficient parameters play an important role on chaos of the sandwich plate with truss
core. So we select the excitation coefficients f and damping coefficients µ as the controlling
parameters to detect the chaotic dynamics for the sandwich plate. Figure 3 demonstrates the
existence of the multi-pulse jumping chaotic motion when µ = 0.1, f = 50. Do not change
other parameters and initial conditions. The maximal Lyapunov exponent of system (12) is
also calculated as 0.427282. It is easy to find that parameter conditions are also satisfied,
which demonstrates the existence of the multi-pulse chaotic motion in Figure 3. Figure 4
represents the existence of the multi-pulse jumping chaotic motions when µ = 0.06, f = 100.
The maximal Lyapunov exponent of system (12) in this case is 0.450072. It is found that
from Figure 4 that the phase portraits and waveforms are different from those given in
Figures 2 and 3.This indicates that different µ and f have important impact on the chaotic
motions of the sandwich plate with truss core. Finally, the Lyapunov exponent spectrum of
system (12) for f = 13.3 and f = 50 are also given in Figure 5.
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Figure 3. The phase portraits and waveforms of the sandwich plate with truss core when µ = 0.1
and f = 50: (a) the phase portrait on plane (w1, dw1

dt ); (b) the waveform on plane (t, w1); (c) the
phase portrait on plane (w2, dw2

dt ); (d) the waveform on plane (t, w2); (e) the phase portraits in
the three-dimensional space (w1, dw1

dt , w2); (f) the phase portraits in the three-dimensional space
( dw1

dt , w2, dw2
dt ).
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Figure 4. The phase portraits and waveforms of the sandwich plate with truss core when µ = 0.06
and f = 100: (a) the phase portrait on plane (w1, dw1

dt ); (b) the waveform on plane (t, w1); (c) the
phase portrait on plane (w2, dw2

dt ); (d) the waveform on plane (t, w2); (e) the phase portraits in
the three-dimensional space (w1, dw1

dt , w2); (f) the phase portraits in the three-dimensional space
( dw1

dt , w2, dw2
dt ).
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Figure 5. The Lyapunov exponent spectrum system (12): (a) when µ = 0.4 and f = 13.3; (b) when
µ = 0.1 and f = 50.
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5. Conclusions

The chaotic dynamics are investigated for a simply supported sandwich plate by using
rigorous analytical approaches. The improved extended Melnikov method in [10,18] is
applied to detect chaotic motions of the non-autonomous nonlinear system. By introducing
Σφ0 , the four-dimensional non-autonomous system is transformed into a five-dimensional
autonomous system, by which the chaotic motions can be investigated by directly em-
ploying this analytical method. The k-pulse Melnikov function Mk has simple zeros.
Furthermore, we obtain the parameter conditions for the occurrence of chaotic motion.

Numerical simulations are also used to detect the complicated chaotic motions of the
truss core sandwich plate model. Moreovecr, the numerical results verify the possibility
of chaotic behaviors when the structural parameters satisfy specific conditions given by
theoretical analysis. The chaotic motions of the sandwich plate with truss core can be
exhibited by the phase portraits, the waveforms and the maximum Lyapunov exponents
for different control parameters. Based on the theoretical analysis and numerical results,
it is observed that the chaotic motions of the sandwich plate with truss core can be affected
by the excitation coefficients and damping coefficients. Thus, the nonlinear dynamical
behaviors of the sandwich plate model can be controlled by varying the structural damp-
ing and transverse excitations parameters, respectively. The analytic results bear certain
guiding significance for the design and control of the system.

The extended Melnikov method is an effective theoretical technique in detecting the
chaotic motions of the high-dimensional nonlinear system. However, a limitation of several
analytical methods is that we must follow the special form of the high-dimensional system
when detecting chaotic motions. Therefore, future work should focus on how to improve
the analytical methods to adapt research of more general forms for a high-dimensional
nonlinear system.
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