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1. Introduction

Numerous processes in mechanical and technological systems were described using
fractional delay differential equations (DDE). These systems are frequently utilized in the
modelling of phenomena in technological and scientific problems. These models have ap-
plications in diffusion processes [1], viscoelastic systems [2,3], modeling disease [4], forced
oscillations, signal analysis, control theory, biology, computer engineering, finance, and pop-
ulation dynamics; see for instance [5-7]. Khusainov and Shuklin [8] constructed a new idea
of a delayed exponential matrix function, in 2003, to express the solutions of linear DDEs.
By generating a delayed matrix sine and a delayed matrix cosine, Khusainov et al. [9] used
this approach to describe the solutions of an oscillating system with pure delay, in 2008.
These pioneering research yielded plenty of novel results on the representation of solutions
that are employed in the stability analysis and control problems of time-delay systems; see,
for example [10-20] and the references therein.

Finite-time stability is a novel definition that involves a fixed finite-time interval and a
prescribed constraint for the system, as opposed to the exponential /asymptotic stability
definition, which is exposed to an infinite-time interval. In recent decades, there has
been a growing interest in fractional delay system finite time stability (FTS) analysis, and
several methods for studying FTS of fractional delay systems have been developed; see for
example [21-32].

To our knowledge, there is no study dealing with the fractional system’s finite temporal
stability analysis with a single delay

(°D&.y)(u) = —Ay(u—x) + f(u), forx >0, u € W:=10,L],

y(u)=vu), v'(u) =y (u) for —x <u <0, M
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where CDS‘+ is said to be the Caputo fractional derivative of order a € (1,2] with the lower
index zero, « is a delay, L is a pre-fixed positive number, y(u) € R", p € C2([—«,0],R"), A
€ R"™*" is a constant nonzero matrix and f € C([0,00),R") is a given function.

Recently, Elshenhab and Wang [14] gave a new representation of solutions of (1) of
the form

y(u) = Hia (A(u — )" )P(0) + Mo (A(u —x)")9'(0)
—A [ Sea(Alu—2c—)")p(8)de
+ | Sea(Alu—x=8)")f(©)d2, ¢)

where Hy o (Au®), My o(Au®) and Sy (Au®) are called the delayed Mittag-Leffler type
matrix functions formulated by

o, —oo<u<—K,
I, v —xk<u<0,
I— Ar(fi;k), 0<u<x,
Hia (Aut) = 3 : )
« 2 (u—x)™
I- Ar(ﬁ«) +A C(1+24)
+...+(_1)mAm(”_r((’1”+L")), (m—1)x < u < mx,
o, —oco < u< —K,
I(u+x), —x<u <0,
a+1
I(M+K)*A%, 0§M<K,
Ma(Au®) = : @)
a+1 Z(M_K)Z(wrl
I(u+x) = Aglggy + A T2 2)
ma+
+...+(_1)mAm%, (m—1)k < u < mx,
and
o, —o0 < u < —K,
()1 _
I( 1_()“)1, . x<u<o,
u+x)*" -
) = = Afag 0su<x
Sicu(Au®) 1= : . ®)
(u1)* ! 201 2 (u—x)**!
G —Afe A( o)
(uf(mfl)x)“ m+1)—1
4+ (=1)mAm NECERY) , (m—=1x <u < mxk,

respectively, where m = 0,1,2,..., the notations [ is the n X n identity matrix, © is the
n X n null matrix and I' is a gamma function.

Motivated by [15], as an application, the explicit formulas of solutions of (1) and the
delayed Mittag-Leffler matrix functions are used to get FTS results on W = [0, L].

The rest of this paper is organized as follows: In Section 2, we give preliminaries on
fractional calculus theory and FTS. Moreover, we give alternative formulas of solutions
of (1) and estimations of norms for the delayed Mittag-Leffler matrix functions, which are
used while discussing FTS. In Section 3, as an application, the representation of solutions
of (1) is used to obtain FTS results. Finally, to illustrate our theoretical results, we give
an example.
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2. Preliminaries

Throughout the paper, we denote the vector norm as ||y|| = ¥/ ;|y;| and the matrix
norm as [|Al| = maxj<j<, Y ; and a;; are the elements of the vector y and the
matrix A, respectively. Denote C(W,R") the Banach space of vector-value continuous
function from W — R" endowed with the norm ||y||- = max,cw||ly(u)|| for anorm ||-|| on
R". We introduce a space C}(W,R") = {y € C(W,R") : y’ € C(W,R")}. Furthermore, we

see [|i]|c = maxye—x0)|¥(V)]]-
We recall some basic definitions of fractional calculus theory and FTS.

Definition 1 ([6]). The two-parameter Mittag-Leffler function is given by

(o] Zk
Exq(2z) = —, a,7v>0,z€C.
) kgof(rxHW)

Especially, if v = 1, then

00 k
E .
x1(2) 2 T(ak+1) a>0

Definition 2 ([6]). The Caputo fractional derivative with lower index 0 of a functiony : [—x, 00) —
R" is defined as

(€051 y) (w) = r(zl_a) /O (uy_(gg)lldg, >0,

Definition 3 ([23]). The system (1) is finite time stable with respect to {0, W, x,d,€}, 6 < € if
and only if § < & implies ||y(u)| < € for all u € W, where = max{||¢||c, ¢l o, |9 ||c } and
0, € are real positive numbers.

Next, we obtain some alternative formulas of solutions of (2) used in analyzing
the FTS.

Lemma 1 (Theorem 2.6 [18]). The system (1) has a unique solution y(u), and
Y1) = Hica (AU )P(—1) + Mua(Au®)y' (=)
[ Mea(Al—x— )" @
+ (CDy ) (=) * f(w).

Remark 1. We can obtain some alternative formulas of solutions of (2) by applying integration by
parts and simplification of the conclusion of Lemma 1 to derive that

y(u) = Hia(Au)p(—1) + Miu(Au®) ¢’ (—x)
+ i Min (A —x — 0)*) " (v)dv
+ /O " Sen (Al — x — 0)") f(v)do, ©)
or
y(u) = Hiea(Au")p(—x) + Mua(A(u —1)%)'(0)
+ /j{ Hicw (A — 1 — 0)*) ¢! (v)dv
[ Sun (Al —x = v)") f(0)do, )
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To conclude this section, we provide estimations of norms for the delayed Mittag-
Leffler matrix functions, which are used in discussing FTS.

Lemma 2. Foranyu € [(m —1)x,mk|, m = 1,2,..., we have
[[Hca (Au®)[| < Eo([[Af|u).

Proof. Using (3), we get

u® 2 (u—x)™
AuMl <1 All=——— Al 75—
[Hia(Au®)|| <1+ Hr(lJHX) + [|A] T+ 20)

(u— (m—1)x)™
I'(1+ ma)

ot Al

u21x

2
+l4l (1 + 2a)

umac
AN
Al

< -
= 1+4l (1 + ma)

(14a)
(| Alu®)*
T(1+ ka)

IN
hgk

= Eo([|A][u").

k=0

Hence, the proof is complete. [J
Lemma 3. Forany u € [(m —1)x,mk|, m = 1,2,..., we have
[Mica(Au®)|| < (4 6) B (| A] (u +1)%).

Proof. Using (4), we get

o+l ) (u _ K)ZDHrl
[Mua (AW < (ut50) + 1Al Gy T 1A T s aay
m (10— (m — 1))
o A T g e
a+1 20+1
< e+ A A
u ma+1
+o A
= [lAf(u+ )" tx) ‘
gkgo NeEay = (1 +1)Ea2 (|| Al (1 +1)%).

Hence, the proof is complete. I
Lemma 4. Foranyu € [(m —1)x,mk|, m =1,2,..., we have

ISia(Au®)|| < (1 + 1) Eyu ([|A] (1 +1)").
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Proof. Using (5), we get

U+ x a—1 20—1 —K Sa—1
Ica(ant)) < P+ Al + AP
m (= (m = 1)) "D
o4 |A| T(a(m + 1))
a1 20—1 Ba—1
(u+K)a(m+1)71
A D
= [J)A] e+ )]+ 0"
S kg%) I'(ak 4 a)
= (u+1)" "B (| A] (u+1)%).

Hence, the proof is complete. [J

3. Main Results

In this section, we establish some sufficient conditions for FTS results of (1) by making
use of the three possible formulas of solutions (2), (6) and (7), respectively.

Theorem 1. The system (1) is finite time stable with respect to {0, W,x,6,€}, § < € if

LA o) < 2081 EelIALLY) ~ LA I BaslIAILY)

Proof. By using Definition 3 and (2), we have < § and

ly ()| < [[Haa (A = €)) [l O0)[| + || Mica (A — )% [[[[9/(0)

+|A||\ [ SealA—26-gp) daH

[ Sntate-x-r) f(é)dCH

< [[Haa (A=) ) [ Ol + [ Muca (A =0)%) |9 (O)]]
0

AL [ 1Ssa(A =26 =2 [I19(6) 2

+ [ Sealaw—x -2y 7@z
< 5“7‘[;{,@ (A(M — K)“) H +5HMK,IX (A(u - K)IX) H

0 o
oAl [ [[Sca(Alu—2x—2)") | de
Hlflle [ 1Sea (A —x - 2)") dz. ©)

Note that S (Au*) = @ if u € (—oo, —«). For —x < ¢ <0, we get

ay Sk A(u—ZK—C)a , CE[-ru—x],
Sx,zx(A(“_z’c_‘:) )—{ @(, ) ¢ e (u—rx,0].
Thus
S (A — 25— ) )||—{ HSK,“( = ze=el 5&5"’2’,&_"]’
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Therefore, from Lemma 4, we have

Sk (A =25 = 8)*) || < (u = = &)* " Euu (| Al (n = x = §)*)
< (1=K = &) Eual||Au%), (10)

for —x < ¢ <0,u € W, and since Eq o (||A|/u*) is increasing function when u > 0. From
(10), we get

0 o
[ 1Sea(Aln =26 = 2)%) 42 < ZEaa(l A, (11)

and

" o o H a—1
[ (Al 5~ ) € < Buallal) [~ 0 e
= P Eea(lA). (12)
From (9), (11) and (12), we have
ly()ll < 0B ([[All(u = x)%) + ouBa ([ Allu®)

)
+ 21+ LY 4 (13

for all u € W. Combining (8) with (13), we get ||y(u)|| < € for all u € W. Hence, the proof
is complete. O

Theorem 2. The system (1) is finite time stable with respect to {0, W,x,6,€}, d < € if

e — LD (AL +x)*) — Eller, , (a) L)

Ea(J1A]1L) < 2 - (14)

Proof. By using Definition 3 and (6), we have 7 < § and
ly ()l < [ Hua (Au) [l (=) || + | Mica(Au®)[[[[¢ (=x)]]

0
| [ Men(ae - -er)p oo

4 H [ Sen(Au - é‘)“)f(é)déH
< B[ M (A% | + 8] M (Au)|

0 14
0 [ [ Mua(Au—x—5)")]a2
Al [ Sen (A —x=)*) Jdc )
From Lemma 3, we have

0 0
[ M (A== 0)")Jde < Baa(All e+ [ (0= )dg

(u 4 )

<
- 2

Ea2 (1Al (1 +x)%). (16)
From (12), (15) and (16), we get

ly ()l < OB ([|Al|u) + 6 (u + 1) Eua (| Al (1 + x)%)

5 2
L Outr)7

" (a0t + s, gape. a7
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for all u € W. Combining (14) with (17), we have ||y(u)|| < € for all u € W. Hence, the
proof is complete. [J

Theorem 3. The system (1) is finite time stable with respect to {0, W,x,6,€}, d < € if

we — SaLBa, ([|AJIL") — LY| fll (B ([ ALY)

Ea(l1A]1L) < e (18)
Proof. By using Definition 3 and (7), we have <  and
ly ()|l < [ Ha(Au) [ (=)l] + | Mia (A = )% [[[[9/(0) |
0
#| [ oAt x- o)y
| [ st -0 s
< 0| Hia(Au®)[| + 0| Mia (A(u — )" |
0
0 [ [[HealAl—x—2)")]dz
e [ lSen (Al —x—)*) Jaz. (19)
From Lemma 2, we have
0
[ (Al =5 = 2)*) 2 < *Eu(l1A]12%) (20)
From (12), (19) and (20), we get
ly()|| < SEa([|Al]u) + SuBa, (|| Alju®)
+5KE“(||A||u“)+%u“E“,a(||A||u“). (21)

for all u € W. Combining (18) with (21), we have ||y(u)|| < € for all u € W. Hence, the
proof is complete. [J

Remark 2. Let & = 2 in (1). Then Theorems 1-3 coincide with the conclusion of Theorems 1-3
in [32].

Remark 3. Let o =2, A = A2 in (1) such that the matrix A is a nonsingular n X n matrix. Then
Hen (A%ﬂ) = cosg(Au), My (A2u2> — A lsing(Au).

where cos, (Au) and sin, (Au) are called the delayed matrix of cosine and sine type, respectively,
defined in [9]. Thus, Theorems 1-3 coincide with the conclusion of Theorems 3.1-3.3 in [30].
Therefore, by dropping the nonsingularity criterion on a matrix coefficient A and making the matrix
A an arbitrary, not necessarily squared matrix A2, our results improve and extend the corresponding
results in [30,32].

4. An Example
Consider the fractional DDEs

(CD(l)fy) (1/{) = _Ay(u - 1/2) +f(u)f uec [Orl]/

P(u) = (0.162,0.2u) ", ¢/ (1) = (0.24,02)7, 9" (u) = (02,0)T, —1/2<u <0, (22)
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where
2 0 1

From (6), for all 0 < u < 1, and through a basic calculation, we can obtain

() = 00257{0518(214 %)\ L ( —01Moss(2u'f)
ylu) = —0.1H5,1.5(2u'?®) 0.2M51.8(2u'8)
(

+( 0.2 /%5 Moss(2(u —1/2 - &)%) dC)
0

[ o Sosns (2(u-05-) d@ < () )
2 [V Sos1s (2( —05-¢@)" y2(u)
which implies that
]/1 (Ll) = 00257—[0.5,1.8 (21/[1'8) — 0-1MO.5,1.8 (2“1'8)

0

402 / Mosis (2(u —1/2— g)1-8>dg
—05

" 1.8
+ /0 So5,1.8 (2(M -1/2-¢) )dC,

and
ya(u) = —0.1Ho5,18 (2u1'8> +0.2Mps18 <2M1‘8)
U
+2 /0 Sosns(20—1/2 - 8)*%)de,
where
1/ — 1/2 S u < 0,
Hos,1.8 (21«!1'8) = 14—00(%;41 8 w000 i 0<u<1/2,
1— 33531 ° + 1aaer (0 — 1/2)°7, 1/2<u<1,
(1 +1/2), ~1/2<u <0,
Mosas(2u1%) =4 (u+1/2) - 3090028, L 0Su<1/2
v 1/2) - WA A 12, 12 <,
and
0'35138@ " 1/2%(;8, 2000, 2.6 Slzsu<h
80518(2u1'8) - 0.931138(” +1/2) '08— %g '2/6 0<u<1/2,
' 093138(”"‘1/2)4'4_%” '
"‘4%1050909(”—1/2) '/ 1/2<u<1.

Thus the explicit solutions of (22) are

Y1 (1) = 0.025H05,1.5 (2u1~8) —0.1Mos15 (2u1'8)

1—0.5
o2 [ Mosis (Z(u —1/2— g)l-s)dg
0.5

402 /u(io.5 Mosis (Z(u —1/2— g)l's)dg

+ /Ou So05,18 (Z(M -1/2—- 5)1'8)d§,
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ya(u) = —0.1Ho 5,18 (2u1'8> +02Mos,18 <2M1‘8)
+2 /Ou So05,18 (2(u -1/2— ﬁ)l's)dé,

where 0 < u < 1/2, which implies that

yi(u) = —0.022424138 4 0.04261u>8 + 0.56666u'*,

y2(u) = —0.0852u% + 1.3123u'® + 0.2,

and

1 (u) = 0-0257'[0.5,1.8 (Zul's) — 0.1M0.5,1,g (Zul'S)

- 18
+0.2 0 Mos18 (Z(u —1/2-¢) )dg
0
+0.2 B Mos1s (Z(u —1/2— g)l.s)dg

+/u_l/250.51.8<2(“ - 1/2_@1'8)‘15
+/ 50518 (u—1/2— ‘5)18)d‘:

yz(u) = *0'17’[0.5,1.8 (2”1'8) + 0'2M0.5,1.8 (21/!1'8)
+2 /Wl/z 505,18 (2(u —1/2— 5)1'8> dg
+2/ So5,18 (”—1/2—5)1'8)016,

where 1/2 < u < 1, which implies that

y1(u) = 0.0023(u —1/2)°¢ — 0.0065(u — 1/2)*® +0.0224(u

—1/2)38

—0.14199(u — 1/2)*¢ — 0.02241>8 + 0.0426u>® + 0.56666u' %,

ya(u) = 0.012997(u — 1/2)*¢ — 0.3288(u — 1/2)>°

— 0.0852u28 +1.3123u'8 + 0.2u.

By calculating we obtain 7 = max{|[¢[[c, [¢'llc, [I¥"llc} = 03, [|All = 2 [Ifllc =3,
Ey(2L18) = 3.351, Eyg <2(L 1 /2)“3) = 22152, By 515(2L18) = 1.7095, then we set
0 = 031 > 0.3 = 5. Figure 1 demonstrates y(u) and the norm ||y(u)|| of (22). Now
Theorems 1-3 implies that ||y(u)|| < 4.32597, ||y(u)|| < 5.690596 and ||y (u)|| < 4.871297,
respectively, we just take € = 4.326, 5.691, 4.872, respectively. Table 1 shows the data.

We can see ||y(u)|| < € for all u € W and (22) is finite time stable under Theorems 1-3.
Concerning on the definition of finite time stable, we need to determine a specific threshold
€. By checking the value of € in Theorems 1-3, we find that in this example the result of

Theorem 1 is the optimal.
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y, () P
> f y,(u) -
Iycwi ‘
--- s
4 r ! s ]
s
-
o 31 e )
= g
g 27 - - .
- - - -
1r _— - b
o 4__-'__________,__.—-
0r ]
-1 ‘ ‘ . .
0 0.2 0.4 0.6 0.8 1
u
Figure 1. The state y(u) and ||y(u)]] of (22)
Table 1. Finite-time stability results of (22) and fixed the time L = 1.
Theorem L I|A]| ) [ly(u)]| € K FTS
1 1 2 0.31 < 4.32597 4.326 (optimal) 1/2 Yes
2 1 2 0.31 < 5.690596 5.691 1/2 Yes
3 1 2 0.31 < 4.871297 4.872 1/2 Yes
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5. Conclusions

In this work, by making use of three possible formulas of solutions of nonhomoge-
neous systems governed by linear fractional differential equations with pure delay, and
estimations of norms for the delayed Mittag-Leffler matrix functions, we derived finite-time
stability results of these systems. Finally, we provided an example to demonstrate the
effectiveness of the obtained results. The results are applicable to all singular, non-singular
and arbitrary matrices, not necessarily squared. Consequently, our results improve and
extend upon the existing results in [30,32].

One possible direction in which to extend the results of this paper is toward that of
stochastic cases with various behaviours like impulses, delays in multistates, and neu-
tral fractional differential and conformable fractional order time delay systems of order
ae(1,2].
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