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Abstract: We constructed a summation—integral type operator based on the latest research in the
linear positive operators area. We establish some approximation properties for this new operator.
We highlight the qualitative part of the presented operator; we studied uniform convergence, a
Voronovskaja-type theorem, and a Griiss—Voronovskaja type result. Our subsequent study focuses
on a direct approximation theorem using the Ditzian-Totik modulus of smoothness and the order
of approximation for functions belonging to the Lipschitz-type space. For a complete image on
the quantitative estimations, we included the convergence rate for differential functions, whose
derivatives were of bounded variations. In the last section of the article, we present two graphs
illustrating the operator convergence.
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1. Introduction

The polynomial approximation of continuous functions represents an important part
of numerical analyses. It is based on a famous theorem, stated, proved, and published by
Karl Weierstrass in 1885. The result expresses the possibility of uniform approximation
for a continuous function f by polynomials, on a bounded and closed interval [a, b] of the
real axis, playing a fundamental role in the development of mathematical analyses. In
1912, Bernstein [1] constructed for the real-valued function ¢ : [0, 1] — R the positive linear

operators

- ] = (n i n—j ]
o) = 1 pi0p( L) = X2 (%)l - g L)), W

j=0 =N "
as a remarkable tool for the proof of the Weierstrass approximation theorem. Bernstein
polynomials (1) ushered in a new era of the approximation theory, inspiring thousands
of interesting articles to date. Bernstein polynomials, together with Bézier curves, are
used in computer-aided geometric designs and other areas of computer science. Powerful
algorithms (i.e., due to their constructions and visualizations) are available in the literature.
Some generalizations (approximation of integrable functions, approximation of measurable
functions, degenerate Bernstein polynomials, classical Bernstein polynomials), as well as
many other applications of the Bernstein polynomials (1), can be consulted in the excellent
book [2]. An exceptional historical perspective is provided in [3] on the evolution of the
Bernstein polynomials. The construction of the approximation processes (of linear positive
operators) is in a continuous expansion, determined only by the versatility of the existing
functions. Consequently, there are dozens of operators in the literature; new operators can
be built, all with direct contributions to the uniform approximation of the function. An
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interesting new modification of the Bernstein operator was brought to light by Usta [4]; it
is given by

B () = Zp,w () ue (0,1), @

where p;, (1) = % (1;) (j — nu)?w/ =1 (1 — u)" /7! are the fundamental polynomials. In

order to obtain an approximation process in the spaces of integrable functions on the
interval [0, 1], based on this new modification (2), for any non-negative fixed real parameter
«, we present the following Bernstein—Durrmeyer type operator

n 1
Bialdin) = Y- pij(0) [ Onals)p()ds, ©
j=0

s (1 — )
B(ja+1,(n—jla+1)
We should note that (3) is a summation—integral linear positive type operator and its
construction is based on many attempts to verify the hypotheses of an approximation
process. The aim of the present paper was to establish some approximation properties
of the Bernstein-Durrmeyer type operator (3). We highlight the qualitative part of the
presented operator, studying uniform convergence, a Voronovskaja-type theorem, and a
Griiss—Voronovskaja-type result. Our subsequent study focuses on a direct approximation
theorem using the Ditzian-Totik modulus of smoothness, on the order of approximation
for functions belonging to the Lipschitz-type space. For a complete image about the
quantitative estimations, we include the convergence rates for differential functions whose
derivatives were of bounded variations. In the last section of the article, we present two
graphs illustrating the operator convergence.

where ©,,4(s) = and B(ja + 1, (n — j)a + 1) are the Beta functions.

2. Auxiliary Results

Let N be the set of positive integers and Ny = NU {0}. In this section, we present
some auxiliary results. Let I C R be a nonempty interval of the real axis. We consider
C(I) the space of all real-valued functions continuous on I, endowed with uniform norm
£l =sup,c; |f(x)|. The mapping L : C(I) — C(I) is called an operator. The operator L is
linear if L(aclfl + (Xzfz) = 041L(f1) + 0(2L(f2), for f1, f» € C(I), «1,ay € R. The operator L
is positive if L(f1) > 0, for any f € C(I), f being positive. The next quantities represent
indispensable tools for the study of uniform approximation of the functions by linear
positive operators:

*  The images of the monomials e, (1) = u™ (called also Korovkin test functions) by
operator L, written L(ey; u), for m € Ny.

*  The central moments of order m, L((e; — u)™;u), for m € Ny.

Below, we present two results concerning the computations of the monomials images, as

well as the central moments by linear positive operator B;, ,

Lemma 1. The Bernstein—-Durrmeyer-type operators (3) hold:

B aleosu) =1; Bna(elf ) = (nmi)gu + aantrlz"
(6 ) (n 77n+6) ((5n76)a2+(3n76)a)u 243042 .
”lX 2 U um+3 (am+2) (an+3)(om+2) (an+3)(an+2)’
B ( —15n24-38n—24 )a’u ((12n%—48n+36)a®+ (61> —42n+36 ) a® ) u
n, “(63’ ) (an+2)(an+3)(an+4) (an+2)(an+3)(ant4)
n ((13n—14)a%+ (30n 36)a2+(11n—22)a )u B 11lat6
(an+ )(ocn+3) (an+4) (an+2)(an+3)(an+4)’

—26n3+131n2—226n+120) atu*
(an+2)(an+3)(an+4)(an+5)

B (esu) = &

n ((22n°—186n2+404n—240) a*+ (107 — 1501243801 —240) a® )

(an+2)(an+3)(an+4)(an+5)
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((61n2—211n+150 ) a* + (120n% —480n+360) >+ (351> —245n+210 ) a? ) u>
(an+2)(an+3)(an+4)(an+5)
((29n—30)a*+(130n—140)a®+(175n—210)a+(50n—100)a ) u 11003 13542 4500124
(an+2)(an+3)(an+4)(an+5) (an+2)(an+3) (an+4)(an+5)

Proof. Achieving the presented results requires the ability to operate with different types
of mathematical software (Maple or Mathematica). [

As for the central moments of the operators (3), for brevity, in the sequel, we will write
Tuam (1) = By, o ((e1 —u)™;u), withn >1,m > 0and u € (0,1).

Lemma 2. For the Bernstein—Durrmeyer-type operators (3), they hold:
(1+a)(1-2u)

Tuaa (M) = —nz
_ ((-3n+6)a?+(—n+12)a+6)u? | ((3n—6)a®+(n—12)a—6)u 23440
Tna2(1) = ( (an+2)(an+3) ) (an+2)(an+3) + (a:+;)(i(t+3)’

_ ((15#%—130n+120)a*+ (181> —436n+480 ) a’+ (3n® —464n+720 ) a® + (—8611+480)a+120) u*
T”f”‘r4(u) - (an+2)(an+3)(an+4)(an+5)
n ((—30n2+260n—240 ) a* 4 (—36n2+872n—960 ) a®+ (—61?+928n—1440 ) a®+ (1721 —960)a—240 ) ®
(an+2)(an+3)(an+4)(an+5)
((15n2—155n+150 ) a*+ (1872 —542n+640) a3+ (3n% —59511+1050 ) a4 (—11214-800) a+240 ) u?
+ (an+2)(an+3)(an+4)(an+5)
((25n—30)a*+ (1067 —160)a>-+ (131n—330)a>+ (261 —320)a—120 ) u 4ot 4100043502 4500424
(an+2)(an+3)(an+4)(an+5) (an+2)(an+3)(an+4)(an+5)*

+

Proof. We use the results in Lemma 1. Taking T, a,m (1) = Bj; , ((e1 — u)™;u), form = 1,2,
and 4 into account, we obtain the desired equalities. The computations were performed
with Maple software. [

Lemma 3. For every u € (0,1), applying the limit as n — oo, we have

. 1-2u)(1+a . 1—u)u(l+3a
Jgrgon"fn,ac,l(u> = (“#/ nlgr(}on"fn,a,Z(u) = ( )D(( )/

3(1 — u)?u?(1 + 6 + 542
lim 12 7y 0 4(t) (1 —u)?u*(1+ 6 + 5a7)

n—00 0(2

Proof. The equalities follow directly from Lemma 2, by applying the limitas n — co. [

Lemma 4. Forn € N, we have

Vi -u(l—u)
an + 2

B4 ((61 — u)Z;u) < ,
where Y, is a positive constant depending on the non-negative fixed real parameter «.

Proof. The second order central moment of the Bernstein-Durrmeyer type operator (3)
(see the result in Lemma 2), can be written in the following form

* 2. _ ((-3n+6)a?+(—n+12)a+6)u? (3n—6)a+(n—12)a—6)u 2
Tua2(1) = B ((er —u)5u) = ( (@n+2)(an+3) ) ( (ant2)(an+3) ) + (mfﬁf(ﬂfxﬁs)
_ ((Bn—6)a?+(n—-12)a—6)u(1-u) Padarr  GatDu(i—u) | 2+3a+2— (622 +21a+9)u(1-u)
- (an+2)(an+3) (an+2)(an+3) — an+2 + (an+2)(an+3)
< GuADu(l—u) 224941 Vau(l-u)
- an+2 4(an+2)(an+3) — ant2 7

with YV, = 3a + 1 being a positive constant and 0 < % <1 0O

The following result provides the simplest and strongest criteria for establishing
the convergence of a linear positive operator to the identity one. It was developed and
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demonstrated independently by three mathematicians: T. Popoviciu [5] in 1951, H. Bohman
[6] in 1952, and P.P. Korovkin [7] in 1953.

Theorem 1. Let (L”)n o be a sequence of linear positive operators, such that L, : Cla,b] —

Cla,b]. If

o Ly(eg;u) =1+v,(u),

o Ly(ep;u) =u+wy(u),

o Ly(eyu) =u?+z,(u),

such that lim on(u) = lim wy(u) = lim(u) = 0, then for any f € Cla,b] and u € [a,b],
n [0 9] n e8] n

nh_r}l;() Lu(f;u) = f(u) uniformly on [a,b).

Remark 1. This classical result is known in the literature as Bohman-Korovkin’s theorem,

because Popoviciu’s contribution remained unknown for a long period of time.

The power of this qualitative result impressed many mathematicians and, hence, during the last
seventy years, a considerable amount of research extended this theorem in different directions.

3. Main Results

In the following, we present a series of qualitative and quantitative results, which
confirm that the linear positive operator (3) is an approximation process in the space of
integrable functions on [0, 1].

Theorem 2. If ¢ € C(0,1), then nh_r)r;o By, o (¢;u) = ¢(u) uniformly on (0,1).

Proof. Taking the results presented in Lemma 1 into account, we have
B (Lu) =1, By . (e1;u) — u, By o (e2;u) — u?, as n — oo uniformly in (0,1).
Next, applying Bohman—Korovkin-Popoviciu criterion (Theorem 1), it follows that
B, (¢p;u) — ¢(u), as n — oo uniformly on (0,1).
O
Theorem 3. Let ¢ : (0,1) — R. If ¢ € C2(0,1), then

1-2u)(1+4a) , (1—w)u(l+3a) ,

Tim 1 (B (g0) — () = L8 gt ) ST gy, @)
Proof. Using Taylor’s expansion of the function ¢, we can write
P(s) = @(u) + ¢"(u)(s —u) + %fP”(u)(S —u)*+ (s, u)(s —u)?, ®)

@(s,u) := @(s — u) being a bounded function, with lim @(s,u) = 0. Applying the linear

operator Bj, , to the relation (5), we have

—¢(u) = By ((ex —u)su)¢'(u) + %Bié,a((el —u)%u)¢" (1) + By o (@(s, u) (er — )% u).

The Cauchy-Schwarz inequality for linear positive operators implies

n- By (@(s,u)(s — u) \/B (@2(s,u);u) - \/nz-B;,,X((el—u)‘l;u).
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Based on the uniform convergence proved in Theorem 2, we have lim B;, , ((Dz (s,u);u)=
n—o0 4

@?*(u,u) = 0, once @(s,u) — 0as s — u. For every u € (0,1), we know from Lemma 3 that

lim n? - B*
n—oo e

((31 B u)4;u> _3(1- u)2u2i12+ 60 + 502)

Hence, it follows that
n- By, (o(s,u)(er —u)*u) =0.

The results proved in Lemma 3:

nli_IgOnB;i,a(el — u;u) = w, y}l_%}o nB;;ﬂ((el . u)z’_u) _ (1 — M)Lllx(l +3Dé),
leads us to
1—2u)(1 , 1— 143 "
Jim (81 (g7) — ) = 20T g1y o LEUHEE3 gy,

O
We present a Griiss—Voronovskaja-type result for the Bernstein-Durrmeyer-type operators.
Theorem 4. Let ¢,g: (0,1) — R. If ¢, g € C*(0,1), then

lim - (B (9):1) — Ba(9i10)- B (i) = ¢'(u) - () L4023,

n—00 o

Proof. The following relation holds

By o (¢851u) = By o (iu) - By o(g5u) = By o(dgiu) —¢(u)g () = (¢8) (1) T (1) - % (¢8)" (1) T2 (1)

+%Tn,a,z(u) (@(w)g" (1) + 29" (u)g' (1) — §" () By (@510)) + T2 () (p(10)8" (1) — 8 (1) By, o (@5 0)).

Next, using the uniform convergence from Theorem 2, the Voronovskaja-type theorem
from Theorem 3, and the results presented in Lemma 3, we have

lim 1n{5;,4(9g: 1) — B (¢30)Bla(gi0)} = lim g (1)g' (1) T2 (1)

n—o0

Flim g’ () (p(u) — B (9510)) T2 (u) + lim g’ (1) (1) — B (9510 Ty (1)
— ¢ (w)g () (1—uw)u(l+ 30()'

o

O
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S
u 19

B (1)

In order to present some quantitative estimates of the Bernstein-Durrmeyer type
operators, we recall the definitions of the Ditzian—Totik first order modulus of smoothness
and the appropriate K-functional, taken from [8]. Let ¢(u) = /u(1 —u) and ¢ € C(0,1).
The first order modulus of smoothness is

>0

=51 (o) o)
0<h<suz(h/2)0(u)e(0,1)

and the appropriate K-functional is defined by

Ky(¢,0) = inf {ll¢ —gll +dl18¢"|| +&*¢'I} (6 >0),
gEWy

where Wy = {g: g € AC,, [|0¢'|| < o0,]|g'|| < oo} and || - || is the uniform norm on C(0, 1).
It is known (from Theorem 3.1.2, [8]) that Ky(¢,6) ~ wy(¢, ), which means that there
exists a constant M > 0, such that

M wy(¢,6) < Ky(¢,6) < Mwy(9h,6). (6)

We establish the order of approximation with the aid of the Ditzian-Totik modulus of
smoothness.

Theorem 5. If ¢ € C(0,1) and 8(u) = /u(1 — u), then

* Y
|Bn,a(¢;u)_¢(u)| SC'CU&((P/ lJm—T—Z)’
with Y, being defined in the Lemma 4 and C is a positive constant.

S
Proof. Using the relation g(s) = g(u) + / ¢'(w)dw and the fact that Bernstein-Durrmeyer

u
type operators (3) preserve constants (see Lemma 1), we may write

Bialsin) — s = |Bra( [ ¢/ @duiu )| ”
For any 4,5 € (0,1), we have
J -
Therefore,
Zaie| <L (5 + s )| < 215 v+ [vi=s - vi=al)
:25‘”'(ﬁ+ﬁ+mim)<2'5 A ) <

Combining (7)—(9) and applying the Cauchy-Schwarz inequality for linear positive opera-
tors, we have

1/2

~g(w)] < 2v3|8g 1167 () B (1 — ulsw) < 2v28' 0~ (1) (B:;,,x((el - u)z;u>)
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Using the result presented in the Lemma 4, we have

Bralgiw) — ()] < C- /2210y, (10)

Ya /
119 ||>,

where the relation (10) is used. Taking infimum on the right-hand side of the above relation
over all ¢ € Wy, we may write

It is clear that

1B o (@) = ¢| < |Bru(@p—giu)| + ¢ —g|+ |Bralgu) - g<u>!£C-<|¢gll+

1By o (p;u) —p(u)] < C-Ky (cp; myi 2)- (11)

Taking Ky(¢,s) ~ wg(¢,s) into account, we have the desired estimate. [

Let us consider the Lipschitz-type space defined as:

Lipy™ (0) := {¢ec<o,1>:|¢<s>—¢<u>| cm— B e <o,1>,ue<o,1>}, with0 <o <1,
(s + x1u? +xu)2

Theorem 6. If ¢ € Lip,, (1, KZ)( ), then

/2
Tn,a,2
) - (Klzsw) -
and

Proof. Using Holder’s inequality with p = = q= ZL for 0 < ¢ <1 we show that

Biatdi = 900] < L ) [1965) ~ 91O >dss;p:;] (/ 95 - 91 F0a(5)is

. s —u)? 2
Z PZ,](“) /1 <)>®n,a(s)ds>

0 (s+xu2+xou

M N w0, | = — M B (e — )
g(K1u2+K2u)g<]§pn,]()/()< )®n,a()d> * ((er — )% u)

(rqu? + Kxou) 2

NI

NI

= = (Tua2(¥))

K1u? + xou 8
(11

Theorem 7. If ¢ € C1(0,1), then

1—2u
ne+ 2

By o (¢iu) — p(u)| <

| ()| + 24/ T (1) -w(¢’, Tn,arz(u)>. (12)

Proof. For any s, u € (0,1), we can write

$() — plu) = ¢'(w) (s — )+ [ (') — (1) o
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| By, o (s u) —

B (93 u) —

Applying B;; ,(-;u) on both sides of the above relation, we have

Bia(905) = 0(win) = ¢/ ()i aler — i) + B [ (0/0) = ()i

Using the well-known inequality of modulus of continuity |¢(s) — ¢(u)| <
w(9,6)(154 +1), 6 > 0, yields

/;((/’/(w) - ¢/(u))dw‘ < w(4>’,(5)((s ;u)2 +s— u|>

Therefore,

p(w)] < 19/ ()] - |Bin (61 - n+ww<»@Bm«a—m%@+smum—wm0.

Applying the Cauchy-Schwarz inequality for linear positive operators, we have

$0] < 10| 1Braler = 0]+ w(9',0)( 53/ Bialler =) +1) B (ler = ).

Choosing 6 = /Ty 2(1), the desired result follows. [

Let DBV(0,1) be the class of all absolutely continuous functions defined on (0,1),
whose derivatives have bounded variation on (0,1). If § € DBV(0,1), then

o) = [ g()ds +910)

where ¢ € BV(0,1), which means that g is a function with a bounded variation on (0, 1).
Moreover, the operators Bj; ,¢ admit the integral representation

BE (i) / Viua(it,5)p(s)ds, (13)
where the kernel V,, (1, 5) is given by Vy, (1, 5) = j—0 p;;/]«(u)(@n,,x(s).

Lemma 5. For a fixed u € (0,1) and sufficiently large n, it follows
. y RY u(1—u)
(D) e (w0, y) = /0 Voo (u,8)ds < m:‘_z =y
Ve ' u(l—u)
an+2 (z—u)?’

0<y<u,

u<z<l.

1
(i) 1 — fpa(u,z) = / Via(1,8)ds <
z

Proof. (i ) Using the result from Lemma 4, we have

u—y (u—1y)? “an+2 (u—y)?

/ 2 * 2 B
e (U, y) = /Vn,a(u,S)ds < /Oy (u —s) Via (1t,5)ds — B o ((er — u)*u) c Y u(1 u).
0

(ii) The proof’s argumentation is similar to (i); hence, the details are omitted. [J
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Theorem 8. Let ¢ € DBV(0,1). If u € (0,1) and n is sufficiently large, then

1—2u ¢/ (u+) + ¢’ (u—)| Vo -u(l—u) ¢’ (u+) — ¢ (u—)]
an +2 2 an +2 2

|Bhu(¢u) — plu)| <

d
where \/ (¢},) denotes the total variation of ¢,, on [c,d] and ¢;, is defined by
c

0, s=1u (14)

¢'(s) —¢'(u—), 0<s<u
(P{l( ): {
P(s)— ¢ (ut), u<s<l.

Proof. Since B;; ,(1;u) = 1, using (13), for every u € (0,1) we may write

B, . (¢;u) /Vn,xus —¢(u))ds = /Vn,xus (/gb dw)ds (15)

If $ € DBV(0,1), then using (14) we have

#(0) =4i() + 3 (' (uh) + 9/ (u=)) + (' () — ¢/ (=) pogn(w — )
(@) () — 2 (¢ (t) + ¢/ (u-))], 16)
with
5u(w)={ (}Z;Z
Therefore,

L (#0500 4 9/t )l ) Vi s)is =

By (13) and simple calculations we find

/01 (/us %(‘Pl(u-l—) +¢'(u ))dw) Via(u,s)ds = = (¢' (u+) + ¢’ (u—)) /Ol(s — 1) Vya(u,s)ds

1
2
= 2@ ) + ¢ (@) Byl — w)

and

<

1
¢’ (u+) — ¢ (u—)] ./0 s — u|Vyu(u,s)ds

NI~

1/2

/ Vi (14,8 (/ (¢ (u+) gb’(u))sgn(wu)dw)ds
¢’

< 3100 )| Braller = i) < 3107 0) = ') (Bl (er — wm) )

Using Lemma 4 and the relations (15), (16), we have
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Bralgs0) = 9] <519 (ut) — ¢/ (=) W :

+ 1( S%(w)dw)an,x(u,s)ds.

/Ou (/: cp{,(w)dw> Vi (1, 5)ds

(17)

Let

Sua(@l) = [ ([ dhtedteo ) Vaatusids and Tontgtn) = [ ( [ ghiwli ) Vas(u,s)s

To complete the proof, it is sufficient to determine the terms Sy, (¢, u) and Ty o (¢, ).
Since | Cd dsiine(u,8) < 1 for all [c,d] C (0,1), applying the integration by parts and
Lemma 5 withy = u — (u/+/n), we have

|SM 4’w ’—‘/ (/ 4’14 dw>d577na”5 ‘/ 77nrx”54’u()

< () st sias < L N gyt s+ [* Vol

u

YVau(l—u) 4= (u//m) _2 /
<= V=) ds+ﬁu_(yﬁ)<¢u>.

By the substitution of w = u/(u — s), we have

_ u—(u//n) !
=y SRR TATEE = AT

an —+ 2 s (/)

Vel —u) [Vnl g1 u . y,xl—u)[ u
= an+2 ]Z/] V' (gu)dw < an+2 LV

1 u—(u/w) J=1 u— (”/])
Thus,
Vu(1—u) “ ,
| S (1 1) < Z \/ @) +—= V(g (18)
on +2 =1 u—(u/j) \/ﬁu (u//n)

Using the integration by parts and Lemma 5 with z = u + ((1 — u)/+/n), we can write
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Tontio =| [ ([ bt ) Va1
([ it )= st + [ [ oo ) a1 = gt s))
= || [ )1 = mato) dw} = [0 =t s [ ([ o) a1~ gaats))

1

— ’/uzfﬁ(w)dw(l — na(tt, z)) —/u ¢l (8)(1 = (u,s))ds + [/ ¢ (w)dw(1 — ana(u,s))}

zZ

- / 9 (5) (1~ a9

’/ ,(8) (1 — 17,0 (u,8) ds+/ ,(8) (1 — 1 (u,8))ds
yau 1—u)

(24 na) /V(%)(S_”)_zd“r/u \/(4’;)015

_ Yau(l—w) 1t g (O
a (2+n“) /((1 u)/\/n) \/(4)1[)( ) ds + \/ﬁ \u/ (4)u)'

By the substitution of v = (1 —u)/(s — u), we have

/ Yau(l —u) vt (/) / (1—u) /
Ta@ho] < 20255 [0V G- SV )

an +2

3

) ]+1u+ 1= ) Oz
= azfz / %)dw ( \/ﬁu) Voo
[ﬂ ut((1-u)/j) / (1—u) ut((1-u))/v/n /
= +2 Z Vo= Voo (o (19)

u
Combining (17)—(19), we obtain the desired relation. [

4. Numerical Examples

Example 1. Figure 1 illustrates the convergence of the Bernstein—Durrmeyer type operators

5
B;; (¢;u) to the function ¢p(u) = % -sin(8u?), for various nodes, and a fixed parameter a.
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Figure 1. Approximation process.

Example 2. Figure 2 illustrates the convergence of the Bernstein—Durrmeyer type operators

4 1 2u’ . ,
B;; o (¢; u) to the function ¢(u) = v +u® —u’ - cos (;) , for various parameters, and a fixed
number of nodes.

0 0.2 0.4 0.6 0.8 1
u

)

| Byg,s -

Figure 2. Approximation process.

5. Conclusions

In this paper, we introduced a summation—integral linear positive-type operator. Any
research related to the approximation of functions by linear positive operators involves
highlighting two distinct parts. We proved the uniform convergence of the operators as well
as a Voronovskaja-type theorem and Griiss—Voronovskaja-type results, which belong to the
qualitative side. To obtain a complete picture of the quantitative estimates, we pointed out
the orders of approximation of the new linear positive operators, using the Ditzian-Totik
modulus of smoothness, as well as the convergence rate for differential functions whose
derivatives were of bounded variations.
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