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Abstract: A new parallel code based on models of special relativistic hydrodynamics is presented
for describing interacting flows. A new highly accurate numerical method is considered and ver-
ified. A parallel implementation of the method by means of Coarray Fortran technology and its
efficiency are described in detail. The code scalability is 92% on a cluster with Intel Xeon 6248R
NKS-1P with 192 Coarray Fortran images. Different interacting relativistic flows are considered as
astrophysical applications.
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1. Introduction

Many astrophysical phenomena proceed with relativistic speeds. Examples are rel-
ativistic jets in active galactic nuclei [1,2] or Herbig–Haro objects [3], collapse of massive
stars [4], black holes [5–7], neutron stars [8–10], and gravitational waves [11,12]. Of particu-
lar interest are interacting relativistic flows of matter [13–15]. Such processes are observed
well with modern instruments [16–19], and observations are used to construct models [20]
and perform laboratory experiments [21,22]. Important tools for research are provided by
mathematical modeling with supercomputers [23].

Godunov’s method, which was developed almost 70 years ago [24], is used in most
software codes to simulate hydrodynamic (in particular, relativistic) flows. It has been
studied in detail for convergence [25] and the behavior of entropy [26,27]. It has been
modified to take into account the transfer of matter [28] and extended to solve equations
of relativistic hydrodynamics [29], in particular for magnetic field flows [30,31]. Almost
immediately after the invention of Godunov’s method, works began to appear on simplified
solutions of the Riemann problem (for instance, Rusanov’s scheme [32]) and decreased
dissipation methods (for instance, Kolgan’s scheme [33]). In 2000, a scheme called MUSCL
was proposed [34]. It combines the advantages of the Rusanov and Kolgan schemes.
The next step in decreasing the dissipation of Godunov-type numerical methods was
the use of piecewise parabolic [35,36] and piecewise cubic [37] presentations of solutions.
A piecewise cubic presentation of the solution was extended by the authors to HLL-type
methods [38] and an operator separation method [39]. The separation of operators and
the use of a combination of Godunov- and Rusanov-type schemes made it possible to
formulate efficient numerical methods [40,41] and solve the problem of sound point in
Godunov’s method with linearized discontinuity breakdown [42]. There is a tendency
towards increasing the order of the polynomial for presenting the physical variables to be
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reconstructed in Godunov’s scheme [43]). Nevertheless, there are many original works on
using Kolgan’s approach to decrease the dissipation in solving the Riemann problem [44,45].
The present paper is essentially an extension of paper [42], using a new numerical method
for solving the equations of special relativistic hydrodynamics and adding the degenerate
Rusanov method with velocities limited to the speed of sound [46]. This approach will
allow simulating relativistic flows in highly rarefied zones, which are often present in
relativistic jets [47].

One of the major advantages of the MPI 3.0 standard is an efficient implementation
of one-way communications, which allows using one of the most promising parallel
programming models, called Partitioned Global Address Space (PGAS). Computational
experiments with continuum mechanics models have shown [48–50] that the code obtained
by the authors using Coarray Fortran is as efficient as the MPI code. At the same time, this
code is much less complicated, which allows the development of new libraries [51] and
language extensions [52]. Note that the multidimensional decomposition of computations
in the code has practically no effect on its efficiency [53,54].

The limitations of existing solutions in terms of reproducing individual relativistic gas
flows, which are primarily associated with the numerical technique used, as well as the lack
of codes that use all the advantages of one-way network communications implemented in
MPI 3.0 and especially in Coarray Fortran, show us the need to develop a new numerical
code for modeling relativistic gas flows. The implementation priority is Coarray Fortran
for us, since its use significantly simplifies the code in terms of parallel implementation,
which will simplify its implementation. Section 2 provides a description of a new numerical
method for solving the equations of special relativistic hydrodynamics. Section 3 is devoted
to a parallel implementation of the method. In Section 4, the numerical method is verified
on standard tests. Section 5 presents two astrophysical applications. Section 6 provides
conclusions to the paper.

2. Numerical Method

Let us first introduce the physical variables: ρ—density, ~v—velocity vector, and p—
pressure. For definiteness, we take the speed of light c ≡ 1. In this case the Lorentz factor Γ
is defined by the formula

Γ =
1√

1− (v/c)2
=

1√
1− v2

. (1)

The condition imposed on the speed of light ensures that the velocity modulus is
limited by unity. This fact will be used in the construction of the numerical scheme. In
the code, we will use an ideal gas model whose equation of state is written in the form of
an equation for special enthalpy h:

h = 1 +
γ

γ− 1
p
ρ

, (2)

where γ is the adiabatic index. The speed of sound cs is defined by the formula

c2
s =

γp
ρh

. (3)

To write the equations of special relativistic hydrodynamics, we introduce the follow-
ing conservative variables: relativistic density D = Γρ, relativistic momentum Mj = Γ2ρhvj,
where vj are components of the velocity vector ~v at j = x, y, z, and total relativistic energy
E = Γ2ρh− p. We write the system of equations in vector conservative form from classic
book [55]:
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∂

∂t

 Γρ
Γ2ρhvj

Γ2ρh− p

+
3

∑
k=1

∂

∂xk

 ρΓvk
ρhΓ2vjvk + pδjk

(Γ2ρh− p)vk + pvk

 = 0, (4)

where δjk is the Kronecker symbol. The conservative variables are easily calculated from
the physical variables, but for the inverse transformation the following nonlinear equation
has to be solved:

f (p) = Γ2ρh− p− E = 0, (5)

For this, Newton’s iterative method is used:

pm+1 = pm −
f (pm)

f ′(pm)
, (6)

where the derivative of the function f is

f ′(p) =
γ

γ− 1
Γ2 − M2Γ3

(E + p)3

(
D + 2

γ

γ− 1
pΓ
)
− 1. (7)

When a given accuracy is reached, the iterative process is terminated. The value from
the previous time-step is used as the initial pressure approximation.

The system of Equation (4) can be rewritten in vector form as follows:

∂U
∂t

+
3

∑
k=1

∂Fk
∂xk

= 0, (8)

Then for any cell, Godunov’s scheme can be written as

Un+1
i+ 1

2 ,k+ 1
2 ,l+ 1

2
−Un

i+ 1
2 ,k+ 1

2 ,l+ 1
2

τ +
F∗

x,i+1,k+ 1
2 ,l+ 1

2
−F∗

x,i,k+ 1
2 ,l+ 1

2
∆x

+

+
F∗

y,i+ 1
2 ,k+1,l+ 1

2
−F∗

y,i+ 1
2 ,k,l+ 1

2
∆y

+
F∗

z,i+ 1
2 ,k+ 1

2 ,l+1
−F∗

z,i+ 1
2 ,k+ 1

2 ,l

∆z
= 0,

(9)

where ∆x,y,z are the grid spacings along the corresponding coordinates, τ is a time-step,
and F∗ are the fluxes of the corresponding quantities through the cell boundaries obtained
by solving the Riemann problem. Let us describe a method for constructing a numerical
scheme for solving the Riemann problem.

To construct the numerical scheme, we consider the one-dimensional equations:

∂

∂t


Γρ

Γ2ρhvx
Γ2ρhvy
Γ2ρhvz

Γ2ρh− p

+
∂

∂x


ρΓvx

ρhΓ2vxvx + p
ρhΓ2vyvx
ρhΓ2vzvx

(Γ2ρh− p)vx + pvx

 = 0, (10)

With the operator separation scheme, the system of Equation (10) is divided into the
Eulerian stage with the pressure forces at work:

∂

∂t


Γρ

Γ2ρhvx
Γ2ρhvy
Γ2ρhvz

Γ2ρh− p

+
∂

∂x


0
p
0
0

pvx

 = 0 (11)

and the Lagrangian stage at which the advective transport takes place:
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∂

∂t


Γρ

Γ2ρhvx
Γ2ρhvy
Γ2ρhvz

Γ2ρh− p

+
∂

∂x


ρΓvx

ρhΓ2vxvx
ρhΓ2vyvx
ρhΓ2vzvx

(Γ2ρh− p)vx

 = 0. (12)

For the systems O (Original)—(10), E (Eulerian)—(11), and A (Lagrangian)—(12),
we will use a Rusanov-type scheme, which can be written for an arbitrary cell in a one-
dimensional statement in the following form:

Un+1
i+ 1

2
−Un

i+ 1
2

τ
+

FO,E,A
i+1 − FO,E,A

i
∆

= 0, (13)

where ∆ is the grid spacing, τ is a time-step, and FO,E,A
i are the solutions of Riemann

problems for equations O, E, and A on the interface between cell i − 1
2 and cell i + 1

2 .
We have

FE,A =
FE,A

L + FE,A
R

2
+

λ

2
(UL −UR), (14)

where L denotes the left cell and R the right one. Let us solve the system at each stage of
the method.

To solve system (11), we find the eigenvalues of the Jacobian. Omitting long but
obvious manipulation, we obtain

λR = max

vn,R

(
1− c2

s,R

)
+ cs,RΓ−1

R ωR

1− c2
s,Rv2

R
− vn,R, 0

, (15)

λL = min

vn,L

(
1− c2

s,L

)
− cs,LΓ−1

L ωL

1− c2
s,Lv2

L
− vn,L, 0

, (16)

where ω =
√

1− v2
n − cs(v2 − v2

n), and vn is the normal velocity component. To implement
Rusanov’s scheme, at the Eulerian stage we use the maximum characteristic angle:

λE = max(|λR|, |λL|). (17)

The scheme for calculating the flux is

FE =
FE

L + FE
R

2
+

λE

2
(UL −UR), (18)

Note that the characteristics are limited by the angle associated with the speed of
light, that is, the condition λ ≤ 1 is satisfied. In this way we can considerably simplify the
numerical scheme.

When solving the system of Equation (12), the eigenvalue of the Jacobian matrix is the
numerical advection speed calculated from the equation

λA =

√
ρLvn,L +

√
ρRvn,R√

ρL +
√

ρR
, (19)

where, taking into account Rusanov’s scheme (14) and the form of Equation (12), we obtain
the following simple scheme:

FA = λA
{

UL, λA ≥ 0
UR, λA < 0

. (20)
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Thus, we have obtained fluxes for the Eulerian (E) and Lagrangian (A) stages. The
flux for solving the full system of equations of special relativistic hydrodynamics is the
sum of these fluxes:

F∗ = FO = λA
{

UL, λA ≥ 0
UR, λA < 0

+
FE

L + FE
R

2
+

λE

2
(UL −UR). (21)

Taking into account that the velocity is naturally limited by the speed of light, the flux
in trivial form may be written as follows:

F∗ =
FL + FR

2
+

UL −UR
2

, (22)

To reduce the dissipation of the numerical method, we will use a piecewise parabolic
reconstruction of the physical variables. For definiteness, a piecewise parabolic function
of a physical variable q(x) will be constructed on a regular grid with spacing ∆ on the
interval [xi, xi+1]. For simplicity, we will use subscript i. In general form, the parabola may
be written as follows:

q(x) = qL
i + ξ

(
4qi + q(6)i (1− ξ)

)
,

where qi is the value in the cell center, ξ = (x − xi)∆−1, 4qi = qL
i − qR

i , and q(6)i =
6(qi − 1/2(qL

i + qR
i )); the conservation condition is

qi = ∆−1
∫ xi+1

xi

q(x)dx.

Let us describe the construction of the parabola step by step.
At the first step, we construct δqi = 1/2(qi+1 − qi−1). To avoid the extrema of the

functions, we use the formula

δmqi =


min(|δqi|, 2|qi+1 − qi|, 2|qi − qi−1|)sign(δqi),

(qi+1 − qi)(qi − qi−1) > 0
0, (qi+1 − qi)(qi − qi−1) ≤ 0

.

Then, we recalculate the values at the boundary using the fourth-order interpolant

qR
i = qL

i+1 = qi+1/2 = 1/2(qi + qi+1)− 1/6(δmqi+1 − δmqi).

At the second step, we begin to construct the local parabola itself using the formula

4qi = qL
i − qR

i , q(6)i = 6(qi − 1/2(qL
i + qR

i )).

If the local parabola is nonmonotone (this may take place at discontinuities), we
rearrange the values at the boundaries qL

i , qR
i by the formulas

qL
i = qi, qR

i = qi, (qL
i − qi)(qi − qR

i ) ≤ 0,

qL
i = 3qi − 2qR

i ,4qiq
(6)
i > (4qi)

2,

qR
i = 3qi − 2qL

i ,4qiq
(6)
i < −(4qi)

2.

Thus, the boundary values satisfy the monotonicity conditions.
At the third step, the parameters of the parabola are reconstructed taking into account

the new values at the cell boundaries:

4qi = qL
i − qR

i ,

q(6)i = 6(qi − 1/2(qL
i + qR

i )).
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Recall that the local parabolas are used as important parts of the Riemann problem,
since there may be discontinuities at the interfaces.

At the fourth step, the parabola is finally reconstructed, taking into account the new
values at the cell boundaries:

4qi = qL
i − qR

i ,

q(6)i = 6(qi − 1/2(qL
i + qR

i )).

As a result, we obtain a local parabola in each cell [xi−1/2, xi+1/2].
The left and right values of the physical variables are recalculated using the formulas

qL(−λLτ) = qR
i −

λLτ

2∆

(
4qi − q6

i

(
1− 2λLτ

3∆

))
,

otherwise

qR(λRτ) = qL
i +

λRτ

2∆

(
4qi + q6

i

(
1− 2λRτ

3∆

))
,

where λL,R is the corresponding eigenvalue at each step.
The Courant–Friedrichs–Lewy (CFL) condition is a necessary condition for the stability

of an explicit Godunov-type scheme. From this condition, we determine the time-step.
Completing the description of the numerical method, we again use the limitation of veloci-
ties by the light speed to limit the time-step. Then, the CFL condition can be formulated
as follows:

τ

∆
≤ CFL, (23)

where CFL is the Courant–Friedrichs–Lewy number.

3. Parallel Code

When using the 2563 computational grid, one time-step is calculated in approximately
a minute; a complete calculation takes approximately a day.

Of course, it is necessary to develop a parallel implementation of the code based on the
geometric decomposition of the computational domain with overlapping subdomains. De-
composition occurs on the images of the Coarray Fortran program. The description and study
of the parallel implementation will be described below. In this section, we consider the struc-
ture of the parallel code. For simplicity, we will describe in detail a one-dimensional version of
the code. However, all computational experiments and efficiency studies will be made using
a three-dimensional version (see https://gitflic.ru/project/igorkulikov/rhd3dhllk, accessed
on 29 May 2022).

The parallel implementation is based on a one-dimensional geometric decomposition
of the computational domain with overlapping over two cells. This is due to the use of
a five-point stencil for calculating the parabolas. The interprocess communications are
performed by using Coarray Fortran based on one-way communications implemented in
MPI-3.0 standard. Note that the interprocess communication tools are standards of the
language, not of an external library.

This implies that the software of the code being developed is portable. A schematic
diagram of the geometric decomposition of calculations and the one-way communications
using, as an example, a one-dimensional implementation, are shown in Figure 1, where
the blue color shows the cells for the boundary conditions, the green color denotes the
calculation cells, and the gray color is the overlapping of subdomain cells. Note that in
one-way interaction the exchange process is always initiated by the left process (image
for Coarray Fortran programs). This is due to the fact that reading and writing data
of a right image is always in the first cells. Therefore, the information about the local
computational domain size contained in each image need not be stored in each program
image. Nevertheless, this organization of data exchanges ensures data integrity when
calculating the next time-step. Implementation details of the Coarray Fortran code are
given in Appendix A.

https://gitflic.ru/project/igorkulikov/rhd3dhllk


Mathematics 2022, 10, 1865 7 of 19

Figure 1. Geometric decomposition of the calculation domain and scheme of communications.

To study the parallel implementation, we use two nodes of an NKS-1P cluster, each
with two 24-core Intel Xeon 6248R processors with Hyper-Threading support. Let us
perform a preliminary study of the program speedup on a 2563 grid with various numbers
of nodes, sockets, cores, and threads, which, upon multiplication, forms the number
of images.

A study of the calculation time shows that to increase the program images optimally,
the following scheme should be used: increase the number of nodes, threads, processors,
and cores, as shown in Table 1.

Table 1. Calculation time for one time-step when using a 2563 grid.

Nodes Sockets Cores Threads Images Time (s)

1 1 1 1 1 27.542

1 1 2 1 2 14.724
1 1 1 2 2 14.443
1 2 1 1 2 14.122
2 1 1 1 2 14.072

1 1 2 2 4 7.345
1 1 4 1 4 7.485
1 2 1 2 4 7.395
2 1 2 1 4 7.398
2 1 1 2 4 7.318
2 2 1 1 4 7.378

1 1 8 1 8 3.952
1 1 4 2 8 4.045
1 2 2 2 8 4.051
1 2 4 1 8 3.985
2 2 1 2 8 3.945
2 1 2 2 8 3.946
2 2 2 1 8 3.971

To study the speedup of the software implementation, we use a 2563 calculation grid
with different numbers of Coarray Fortran program images, and to study the scalability,
a 1283 grid per one program image.

A 17-fold speedup was achieved with 32 images and 92% efficiency when using 192
Coarray Fortran images, results are shown in Figure 2.
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Figure 2. Speedup (left) and scalability (right) of the parallel program. A 17-fold speedup was
achieved on a 2563 grid using 32 images of the Coarray Fortran program, and 92% efficiency was
achieved using 192 Coarray Fortran images when each image had a grid of 1283.

4. Verification

For verification, we formulate three one-dimensional tests to consider the dynamics of
a relativistic gas on the interval [0, 1] up to t = 0.4. At point x0 = 0.5 from the initial time
the gas has a discontinuity. The adiabatic index γ = 5/3. We use non-reflecting boundary
conditions. In the simulation, 200 cells for all one-dimensional tests are used. In addition
to comparing a numerical solution with an analytical one, we will analyze the order of
convergence of the method in L1 norm:

L1 = ∑
i

h|ui − u(xi)|,

where u(xi) is the exact solution at point xi, ui is the numerical result, and h is the uniform
grid spacing.

First, consider a one-dimensional shock wave test with the following parameters:
pressure pL = 40/3, density ρL = 10, and velocity vL = 0. The parameters of the gas to
the right of the discontinuity are: pressure pR = 10−8, density ρR = 1, and velocity vR = 0.
The simulation results are shown in Figures 3 and 4.
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Figure 3. Cont.
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Figure 3. One-dimensional shock wave problem. Exact solution (solid line), numerical solution
(circles) for physical variables: (a) density, (b) pressure, and (c) normal velocity component.
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Figure 4. One-dimensional shock wave problem. Exact solution (solid line), numerical solution
(circles), and difference between exact and numerical solution (red circles) for physical variables:
(a) density, (b) pressure, and (c) normal velocity component.

Figure 5 shows the behavior of the numerical solution error and the order of conver-
gence of the method at grid refinement.
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Figure 5. One-dimensional shock wave problem. Behavior of errors (a) and order of convergence (b).

The method correctly reproduces all components of the solution. The shock wave
dissipates only over two cells, which is due to the use of piecewise parabolic methods. The
shock wave peak in the density function is reproduced correctly. No additional dissipation
is observed on the rarefaction wave. Note that there are no entropy traces in the pressure
and velocity functions. Although the error curves decrease rather smoothly, for small
grids there are jumps in the order of convergence curves. With significant grid refinement,
the density and velocity functions converge to 0.8, whereas the pressure function converges
to 0.9.

As a second test, consider a stronger shock wave with the following parameters:
pressure pL = 1000, density ρL = 1, and velocity vL = 0. The parameters of the gas to the
right of the discontinuity are: pressure pR = 10−2, density ρR = 1, and velocity vR = 0.
The simulation results are shown in Figures 6 and 7.
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Figure 6. One-dimensional strong shock wave problem. Exact solution (solid line) and numerical
solution (circles) for physical variables: (a) density, (b) pressure, and (c) normal velocity component.
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Figure 7. One-dimensional strong shock wave problem. Exact solution (solid line), numerical solution
(circles), and difference between exact and numerical solution (red circles) for physical variables:
(a) density, (b) pressure, and (c) normal velocity component.

Figure 8 shows the behavior of the numerical solution error and the order of conver-
gence of the method at grid refinement.
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Figure 8. One-dimensional strong shock wave problem. Behavior of errors (a) and order of conver-
gence (b).

The main difficulty of this test is that behind the shock wave front there is a very thin
shell, which covers only two cells in the experiment. Even at this resolution, the numerical
method was able to reproduce the shell location, and only 60% of the density peak was
reproduced. Note that in the shell zone the solution dissipates over two cells in the direction
of the shock wave and over two cells behind the shell front. At the same time, the mass
of the dissipation zone corresponds well to the mass of the shell. The other parts of the
solution are reproduced correctly. The difficulties in reproducing the shell impose some
restrictions on the order of convergence of the density function. Note that on small grids the
shell is reproduced with a small, increasing order of convergence to 0.6. At the same time,
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the convergence of the velocity and pressure functions is quite stable; they converge to the
first-order for the pressure function since the smooth part of the rarefaction wave prevails
in the solution, and to 0.8 for the velocity function due to a large shock wave amplitude.

Let us add complexity to the second test by adding a nonzero tangential initial velocity.
The parameters of the gas to the left of the discontinuity are: pressure pL = 1000, density
ρL = 1, normal velocity component vL

x = 0, and tangential velocity component vL
y = 0.

The parameters of the gas to the right of the discontinuity are: pressure pR = 10−2, density
ρR = 1, normal velocity component vR

x = 0, and tangential velocity component vR
y = 0.99.

The simulation results are shown in Figures 9 and 10.
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Figure 9. One-dimensional strong shock wave problem with tangential initial velocity. Exact solution
(solid line) and numerical solution (circles) for physical variables: (a) density, (b) pressure, (c) normal
velocity component, and tangential velocity component (d).
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Figure 10. One-dimensional strong shock wave problem with tangential initial velocity. Exact solution
(solid line), numerical solution (circles), and difference between exact and numerical solution (red
circles) for physical variables: (a) density, (b) pressure, (c) normal velocity component, and tangential
velocity component (d).

Figure 11 shows the behavior of the numerical solution error and the order of conver-
gence of the method at grid refinement.
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Figure 11. One-dimensional strong shock wave problem with tangential initial velocity. Behavior of
errors (a) and order of convergence (b).

In contrast to ideal hydrodynamics, in the equations of special relativistic hydrody-
namics, the tangential velocity greatly affects the normal velocity component due to the
nonlinearity of the Lorentz factor. The test is much more complicated in that the tangential
velocity is given in a cold gas. Therefore, the method must correctly reproduce the interac-
tion of the velocity resulting from the shock impact of the hot gas. Note that the method
reproduces well the shock wave zone with dissipation over two cells at the front and over
four cells behind the shock wave shell zone, as in the previous test. Not only the location
but also the density peak amplitude is reproduced correctly. The absence of shell-type
solutions causes more-regular behavior of the error and the order of convergence of the
method. Thus, for the pressure function, the order of convergence is one (the reason being
the same as in the previous test), and for the density and velocity functions it is 0.8.

Let us take up the problem of discontinuity breakdown in a two-dimensional statement.
For this, consider gas dynamics in the [−1/2; 1/2]2 domain up to time t = 0.4. Let us
divide the domain into four parts in geographical directions: NW—[−1/2; 0]× [0; 1/2],
NE—[0; 1/2]× [0; 1/2], SW—[−1/2; 0]× [−1/2; 0], SE—[−1/2; 0]× [0; 1/2]. Let us define
the parameters of the gas in each part as follows:(

ρ, vx, vy, p
)NE

= (0.1, 0, 0, 0.01),(
ρ, vx, vy, p

)NW
= (0.1, 0.99, 0, 1),
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(
ρ, vx, vy, p

)SE
= (0.1, 0, 0.99, 1),(

ρ, vx, vy, p
)SW

= (0.5, 0, 0.99, 1),

The adiabatic index γ = 5/3. Nonreflecting boundary conditions are set on all
boundaries. In the simulation, a grid of 2002 cells is used. The results of the simulation are
presented in Figure 12.
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Figure 12. Two-dimensional test on discontinuity breakdown. Density function distribution at t = 0.1
(a), t = 0.2 (b), t = 0.3 (c), and t = 0.4 (d). The evolution of the interaction of discontinuity decays in
a two-dimensional formulation is shown. The first feature of the test is a numerical artifact due to the
interaction of contact discontinuities. The second feature of the test is the interaction of shock waves
and the formation of a density jump at the front.

The interaction between domains NW/SW and SE/SW form contact discontinuities
with a jump in the tangential velocities. These contact discontinuities result in a numerical
artifact that expands over time in domain SW. The formation of two interacting shock waves
causes a density jump in domain NE, which has the same amplitude and limited dissipation.
In this test, only the interaction of different waves is investigated, since the reproduction of
individual waves has already been considered in the previous test problems.

5. Numerical Simulation

Let us consider the problem of shock wave formation for a gas at rest in a three-
dimensional statement. For this, consider gas dynamics in the [−1; 1]3 domain up to time
t = 0.4. Let the domain have a spherical radius r0 = 0.5. In the internal part of the domain,
the gas parameters are: pressure p0 = 40/3 and density ρ0 = 10. In the external part of the
domain, the gas parameters are: pressure p = 10−8 and density ρ = 1. The adiabatic index
γ = 5/3. Nonreflecting boundary conditions are used. The results of the simulation are
presented in Figure 13. A grid of 4003 cells is used in the simulation.
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Figure 13. Density distribution in a three-dimensional shock wave at t = 0.4. This test is an extension
of the first one on the disintegration of the discontinuity to the three-dimensional case and demon-
strates, in addition to the correct reproduction of the shock wave front, the invariance of the solution
concerning rotation and the absence of the Carbuncle effect.

According to the results of this test, the solution is invariant with respect to rotation
in the three-dimensional case. The density peak is reproduced correctly, and the shock
wave is reproduced well (its analytical solution is shown by a dotted line). This problem
is considered as a central explosion of a supernova without analyzing the cause of the
explosion (thermonuclear reactions or a core collapse) in the model of special relativistic hy-
drodynamics.

As a second problem, consider interacting relativistic jets. We will simulate two
interacting galactic jets with density ρJ = 10−3 cm−3 and radius RJ = 200 pc moving with
Lorentz factor Γ = 10 and having relativistic Mach numberM = 8. The atmosphere of
the galaxy has temperature TA = 107 K and density ρA = 10−2 cm−3. The adiabatic index
γ = 5/3. Figure 14 presents the results of simulating the evolution of the galactic jets.
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Figure 14. Schlieren density in the equatorial plane in the evolution of a galactic jet at 1000 years (a)
and 2000 years (b). Schlieren density was chosen to demonstrate the interaction of discontinuities
in the jet interaction problem. Until the moment of interaction, the structure of the shock wave
front and the hotpoint, which is formed in the shell due to the interaction of waves, is visible.
After the interaction of jets, an almost vertical shell structure is formed between two jets, while the
shock wave fronts do not contain any numerical artifacts that other implementations may have in
such interactions.

In both jets, a spherical shock wave propagates forward at the speed of light. Behind
the shock front there is a shell with a system of interacting shock waves. Inside the shell
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there is a sparse cocoon area. During the interaction of the jets, the hot point zone becomes
extended and covers about 1 kpc.

6. Discussion and Conclusions

Distinctive features of the code are as follows:

1. To increase the order of accuracy on smooth solutions and decrease dissipation at
discontinuities, a piecewise parabolic reconstruction is used for the physical variables
since they are responsible for the thermodynamic state of the continuous medium [43].

2. We use a piecewise-parabolic reconstruction of physical variables although the calcu-
lations in the scheme are based on the use of vectors of conservative variables and
their flows through cell boundaries. This is due to the fact that they determine the
thermodynamic state of a continuous medium. This was emphasized in [43] when
studying the accuracy of the discontinuous Galerkin method on the Einfeldt problem.

3. When using Rusanov-type methods as part of Godunov’s method, no full spectral
problem is solved; this is the case, for instance, when using an equation of state of the
Taub–Mathews type [56].

4. We plan to extend the model for a multiphase medium, where the equation of state
is more complicated [57]. In the present paper, we neglect the right-hand side of
the energy equation, although this term can be easily included in our numerical
scheme [58].

5. On the basis of the above computational experiments, we will try to avoid using the
MPI technology where possible. The Coarray Fortran technology is a good alternative
to develop parallel programs for distributed memory architectures.

6. In a number of problems, a significant part of the computational domain is occupied
by flows with a high value of the Lorentz factor and low pressure values. In these
cases, the energy equation is used in the form:

∂

∂t

(
Γ2ρh− p− Γρ

)
+

3

∑
k=1

∂

∂xk

(
ρhΓ2vk − ρΓvk

)
= 0. (24)

The above statements are disputable. However, we believe they are appropriate
when discussing the code. To conclude: in the present paper, a new code for describing
flows in a model of special relativistic hydrodynamics and implemented with Coarray
Fortran parallel programming technology was presented. During the development of
the code, a new original numerical method was constructed with high-order accuracy on
smooth solutions and low dissipation at discontinuities. The numerical method has been
thoroughly verified. A code scalability of 92% is obtained on a cluster with Intel Xeon 6248R
NKS-1P with 192 Coarray Fortran images. As an astrophysical application, we considered
two interacting relativistic jets.
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Appendix A

A typical pattern for the Coarray Fortran program (Listing A1) is as follows:

Listing A1. The Pattern for Coarray Fortran Codes.

1 . double prec i s ion , a l l o c a t a b l e : : array ( : ) [ : ]

https://rscf.ru/project/18-11-00044/


Mathematics 2022, 10, 1865 17 of 19

2 . i rank = this_image ( )
3 . i s i z e = num_images ( )

4 . Nlocal = N/ i s i z e
5 . i _ s t a r t _ i n d e x = (N/ i s i z e ) * ( irank −1)
6 . i f ( irank −1 < mod(N, i s i z e ) ) then
7 . Nlocal = Nlocal + 1
8 . i _ s t a r t _ i n d e x = i _ s t a r t _ i n d e x + irank − 1
9 . e l s e
1 0 . i _ s t a r t _ i n d e x = i _ s t a r t _ i n d e x + mod(N, i s i z e )
1 1 . endi f

1 2 . a l l o c a t e ( array ( Nlocal + 4 ) [ * ] )

1 3 . i f ( i rank < i s i z e ) then
1 4 . array ( 1 ) [ i rank +1] = array ( Nlocal +1)
array ( 2 ) [ i rank +1] = array ( Nlocal +2)
1 5 . array ( Nlocal +3) = array ( 3 ) [ i rank +1]
array ( Nlocal +4) = array ( 4 ) [ i rank +1]
1 6 . endi f
1 7 . sync a l l

1 8 . x = ( i + i _ s t a r t _ i n d e x − 2 ) * h − h/2. d0
1 9 . array ( i ) = f ( x )

2 0 . d e a l l o c a t e ( array )

Let us consider Listing A1 in detail:

1. definition of dynamic array located in shared memory between program images;
2. definition of variable irank—Coarray Fortran program image number;
3. definition of variable isize—the number of images of Coarray Fortran program;
4. with known calculation grid size N, calculate the first approximation of the size of the

grid Nlocal for the corresponding image of the program;
5. calculate the first approximation of the shift index i_start_index of the array part;
6. to obtain a uniform distribution of cells over the images, in the first processes the local

array size must not exceed the other ones by more than unity;
7. add unity to the calculated local size for all first images;
8. shift the shift index taking into account the fact that the size of the previous images is

greater than the first approximation by unity;
9. in the subsequent processes, the first approximation of the grid part size is not recalculated;
10. recalculate the shift index with the local sizes of the first images increased by unity;
11. this completes the calculation of the shift index and local size;
12. allocate memory for array taking into account boundary conditions and/or overlap-

ping areas;
13. perform one-way communications with initialization of exchange between the left

images of the program;
14. write two right extreme values of the local calculation grid into the first two cells—

overlapping areas of the next program image;
15. write the first two cells of the local calculation grid from the next program image into

two rightmost cells—overlapping areas;
16. this completes the exchanges between the overlapping areas;
17. synchronize data in all images of the Coarray Fortran program;
18. calculate the coordinates of the center of cell of size h, taking into account the shift index;
19. assign the function value to the corresponding array element;
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20. remove the memory allocated for the array.

The above listing and description of its main items are sufficient for writing a Coarray
Fortran program implementing the numerical method.
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