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Abstract: We present two novel results for small damped oscillations described by the vector differ-
ential equation Mẍ + Cẋ + Kx = 0, where the mass matrix M can be singular, but standard deflation
techniques cannot be applied. The first result is a novel formula for the solution X of the Lyapunov
equation AT X + XA = −I, where A = A(v) is obtained from M, C(v) ∈ Rn×n, and K ∈ Rn×n,
which are the so-called mass, damping, and stiffness matrices, respectively, and rank(M) = n− 1.
Here, C(v) is positive semidefinite with rank(C(v)) = 1. Using the obtained formula, we propose
a very efficient way to compute the optimal damping matrix. The second result was obtained for
a different structure, where we assume that dim(N (M)) ≥ 1 and internal damping exists (usually
a small percentage of the critical damping). For this structure, we introduce a novel linearization,
i.e., a novel construction of the matrix A in the Lyapunov equation AT X + XA = −I, and a novel
optimization process. The proposed optimization process computes the optimal damping C(v) that
minimizes a function v 7→ trace(ZX) (where Z is a chosen symmetric positive semidefinite matrix)
using the approximation function g(v) = cv +

a
v + bv, for the trace function f (v) .

= trace(ZX(v)).
Both results are illustrated with several corresponding numerical examples.

Keywords: damping optimization; mechanical system; singular mass matrix; Lyapunov equation;
trace minimization

MSC: 65F45; 49M25

1. Introduction

We consider small damped oscillations in the absence of gyroscopic forces, described
by the vector differential equation

Mẍ + Cẋ + Kx = 0 , (1)

x(0) = x0, ẋ(0) = ẋ0 ,

where M, C, and K (mass, damping, and stiffness matrices, respectively) are real, symmetric
matrices of order n.

The main problem considered in this paper is the derivation (or computation) of the
optimal damping for vibrating systems, such as those mentioned above, for the case where
the damping matrix becomes singular. The problem of damping optimization is part of a
very interesting and active research area where several different approaches exist. Damping
optimization is usually a very demanding problem; moreover, the problem of optimizing
damping positions with viscosities still has no satisfactory solution.

Damping optimization contains two different sub-problems, including one in which
the mass matrix is non-singular and one in which the mass matrix can be singular.
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Damping optimization with non-singular mass has been widely investigated during
the last two decades. Some of the results concerning the so-called stationary system can be
found in [1–9]. A more detailed description of these references can be found in [10].

On the other hand, the problem of non-stationary systems has been considered
in [10–12].

Here, M, K, and C are large, usually of order n > O(1000), and do not have a
prescribed structure; M and K are very often diagonal, tridiagonal, or some other structure,
depending on the application. It is important to emphasize that the assumptions concerning
the mass and the damping matrix do not allow the use of standard deflation techniques
as in [13,14], nor the frequency domain approach from [15] because M and C cannot be
diagonalized simultaneously.

A damping matrix can be defined in several different ways. One of the most common
ways is that C = Cin + Cext(v), where Cin represents internal damping, and only the
external damping part depends on the parameters v > 0 (called viscosities). Moreover,
external damping can be written as Cext(v) = vCi, where Ci determines the geometry of
the i-th damper, and it has a small rank, so that Cext(v) is a semidefinite matrix.

Internal damping, Cin, can be modeled in different ways. The most popular is the
classical Rayleigh damping:

Cin = αM + βK .

However, throughout this paper, we use the definition that internal damping is a small
multiple of critical damping; that is, in the case of critical damping

Cin = αM1/2
√

M−1/2KM−1/2M1/2 , (2)

see, e.g., [16,17]. More details regarding the model can be found in [6,7,11,16,18–22].
There are several different (damping) optimization criteria, and the most common

ones are based on the asymptotic approach or the approach in which the damping criterion
is based on an infinite time scale. For example, in [12,23–26], the optimal displacement or
optimal damper positions are based on the criterion that considers asymptotical behavior.
On the other hand, in [10], the optimization criteria are defined over the basic period of the
periodic external force g(t).

In this paper, we consider the optimization process based on the so-called energy
minimization criterion, which is equivalent to the minimization of the trace of the solution
of the Lyapunov equation

ATX + XA = −I. (3)

For the case where M can be singular, the matrix A that depends on M, D, and K
must be carefully constructed because standard linearization is not possible. The particular
construction of the matrix A is one of our novel results.

Further, the optimal damping is obtained from the following optimization process:

v = argminv f (v) .
= argminvtrace(ZX(v)) , (4)

where the damping matrix is given as D(v) = Cin + vCex. For the physical background of
this penalty function, see [19,20,27].

Here, Z is a symmetric positive semidefinite matrix, usually defined as

Z = Z1 ⊕ Z1 , where Z1 ∈ Rn×n, and Z1 =

0 0 0
0 Is 0
0 0 0

 , (5)

where Is denotes an identity matrix of dimension s.
As was shown in [3] (or [27]), the above optimization criterion is equivalent to the

minimization of the mean value of the total energy of all initial data. More details about
the construction of the matrix Z can be found in [3].
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In this paper, we consider two different cases (two different structures) of damping
matrices. In the first part of the paper, we assume that the damping matrix is given as
D(v) = vCex, that is, that the internal damping is zero (Cin = 0). For this particular
case, we additionally assume that the dimension of the null space of the mass matrix
dim(N (M)) = 1. For this case, we derive the formula for the solution X of the Lyapunov
Equation (3) as a function of v; this allows us to discuss some properties of the solution
and to find the graph of the meromorphic function v 7→ trace(ZX) by finding its poles and
performing a corresponding partial fraction decomposition.

An example of such a system is the so-called n-mass oscillator or oscillator ladder
(Figure 1), where

M = diag(m1, m2, . . . , mn), (6)

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . . . . . . . .
−kn−1 kn−1 + kn −kn

−kn kn + kn+1

, (7)

D ≡ Cin + C(v) = Cin + veieT
i . (8)

Here, mi ≥ 0 are the masses, ki > 0 are the spring constants or stiffnesses, ei is the i-th
canonical basis vector, and v is the viscosity of the damper applied on the i-th mass. Note
that, for the system presented in Figure 1, the rank of the matrix C(v) is one.

Figure 1. The n-mass oscillator with one damper.

The first part of this paper is devoted to structures similar to the one in Figure 1. For
example, in the mass-spring system shown in (6)–(8), if one of the masses, for example, mn,
were to vanish (that is, if one mass were substituted with a damper or if it were sufficiently
smaller then the others such that it could be neglected), then the mass matrix M would be
singular, and the standard linearization would not be possible. In fact, in such a case, we
could not prescribe the initial velocity ẋn(0), and the phase space would have a dimension
less than 2n. This would be even more the case if there were no damping at the position in
question; then, we could not even prescribe xn(0). More details on this type of structure
can be found in [11].

Since we have a strong structure in the first part of the paper (Cin = 0 and
dim(N (M)) = 1) and, as a result, we present a formula for the solution X(v), we re-
fer to this as the“theoretical part”. As we see in the numerical examples, the structures are
extremely unstable without internal damping, and it is hard to calculate any quantities for
dim(N (M)) ≥ 1 when Cin = 0.

Thus, in the second part of the paper, we assume that dim(N (M)) ≥ 1 and Cin > 0
(usually a small percentage of the critical damping). The second part of the paper is the
“numerical part” or “numerical point of view”. In this part, we present a novel construction
of the matrix A in the Lyapunov Equation (3) and a novel optimization process that is
based on the properties of the formula obtained in the first part of the paper and the new
approximated (projected) Lyapunov equation. Our optimization process is based on the
idea of approximating the trace function f (v) .

= trace(ZX(v)) with its approximation

g(v) = cv +
a
v
+ bv, a, b > 0 , (9)
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which allows us to find the minima. Here, a, b, and cv are obtained by simple interpolation
using the approximate trace function f̃ (v) .

= trace(ZX̃(v)) through the three points v1, v2,
and v3, where X̃ is the solution of the approximate Lyapunov equation

ÃTX̃ + X̃Ã = −I, (10)

and Ã is the projected matrix A of smaller dimension.
A similar formula was obtained in [20] for the case rank(D(v)) = 1, while the case

rank(D(v)) > 1 seems to be more difficult to handle, as shown in [10,21].
As we see in the section that includes the numerical illustrations, our approach speeds

up the viscosity optimization process by 3 to 10 times.
We would like to emphasize that damping optimization using criterion (4) requires

solving the Lyapunov Equation (3) numerous times, which may be inefficient, as well
as memory- and time-consuming. However, most of the usual (engineering) approaches
that assume that all three matrices M, C, and K can be simultaneously diagonalized are
inappropriate here due to the structure of the damping matrix.

The paper is organized as follows. In Section 2, we present the novel formula for
the solution X of the Lyapunov Equation (3) as the function of the viscosity parameter v.
In Section 3, we present a novel approach to calculating the optimal damping matrix D,
which includes quasi-optimal positions together with the corresponding optimal viscosity
parameter. At the end of Section 3, we illustrate the main results using a numerical example.

2. The Singular Mass Case, dim(N (M)) = 1

As we emphasized in the introduction, the damped mass-spring system with a singular
mass matrix deserves special treatment since standard linearization is not possible. For this
purpose, we use the results from the book [11] by Krešimir Veselić on the linearization of
damped mass-spring systems with singular mass.

Without losing on generality, we assume that Φ is a real non-singular matrix such that

ΦT MΦ =

[
In−1 o
oT 0

]
, ΦTKΦ =

[
Ω1 o
oT ωn

]
, (11)

where o is a zero vector of dimension n− 1, Ω1 = diag(ω1, . . . , ωn−1). Then, the matrix is
as follows:

D = ΦTCΦ = vΦTccTΦ =

[
D11 D12
DT

12 D22

]
, D11 ∈ Rn−1,n−1, D22 6= 0 .

We now proceed to construct the phase-space formulation of (1), which, after the
substitution x = Φy, with Φ from (11), reads

ÿ1 + D11ẏ1 + D12ẏ2 + Ω2
1y1 = 0,

DT
12ẏ1 + D22ẏ2 + ω2

ny2 = 0 .
(12)

Here, it is important to emphasize that the assumption that D12 6= 0 distinguishes this
system from others obtained simply by deflation; that is, when one has a damping such
that D12 = 0, then (12) is equivalent with a system

ÿ1 + D11ẏ1 + Ω2
1y1 = 0,

D22ẏ2 + ω2
ny2 = 0 ,

of two independent equations, and it can be considered similar to [28,29].
By introducing the new variables

z1 = Ω1y1 , z2 = ωny2 , z3 = ẏ1 ,
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the system (12) becomes

ż1 = Ω1z3 (13)

ż2 = −ωnD−1
22

(
DT

12z3 + ωnz2

)
(14)

ż3 = −D11z3 + D12 D−1
22

(
DT

12z3 + ωnz2

)
−Ω1z1 (15)

which yields the following linearization:

ż = Az, (16)

A =

On−1 o Ω1

oT − ω2
n

D22
− ωn

D22
DT

12
−Ω1

ωn
D22

D12 −D11 + D12D−1
22 DT

12

 . (17)

Recall that the first problem is to find a formula for the solution of the Lyapunov
Equation (3).

Thus, we continue with deriving the solution of the Lyapunov Equation (3) using the
matrix A form (17), that is:On−1 o −Ω1

oT − ω2
n

D22

ωn
D22

DT
12

Ω1 − ωn
D22

D12 −D11 + D12D−1
22 DT

12


X11 η X12

ηT x0 µT

XT
12 µ X22



+

X11 η X12
ηT x0 µT

XT
12 µ X22


On−1 o Ω1

oT − ω2
n

D22
− ωn

D22
DT

12
−Ω1

ωn
D22

D12 −D11 + D12D−1
22 DT

12

 =

−In−1 o On−1
oT −1 oT

On−1 o −In−1

 (18)

Before we continue, we denote that d =
√

v ΦTc =
√

v
[

d1
d2

]
, d1 is an n− 1 dimensional

vector, and 0 6= d2 ∈ R. This implies

D11 = vd1dT
1 D12 = vd1 d2 , D22 = vd2

2 ,
D12

D22
=

d1

d2
,

1
D22

=
1
v
· 1

d2
2

, −D11 + D12D−1
22 DT

12 = On−1 .

The above Lyapunov Equation (18) is equivalent to the following 6 equations:

Ω1XT
12 + X12Ω1 = In−1, (19)

Ω1µ +
ω2

n

vd2
2

η − ωn

d2
X12d1 = o, (20)

−Ω1X22 + X11Ω1 −
ωn

d2
ηdT

1 = On−1, (21)

−2
v
· ω2

n

d2
2

x0 +
ωn

d2

(
µTd1 + dT

1 µ
)
= −1, (22)

−1
v
· ω2

n

d2
2

µT +
ωn

d2
dT

1 X22 + ηTΩ1 −
ωn

d2
x0 dT

1 = o, (23)

Ω1X12 −
ωn

d2
d1µT + XT

12Ω1 −
ωn

d2
µdT

1 = −In−1. (24)

From Equation (19), it follows

X12Ω1 =
1
2

In−1 + S , where S is skew-symmetric, that is S = −ST ,
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which implies sij = −sij for i 6= j and sii = 0. This further gives us

X12 =
1
2

Ω−1
1 + SΩ−1

1 . (25)

From Equation (24), it follows

ωn

d2
d1µT +

ωn

d2
µdT

1 = In−1 + Ω1X12 + XT
12Ω1,

which, using Equation (25), gives

ωn

d2

(
d1µT + µdT

1

)
= 2 In−1 + Ω1SΩ−1

1 −Ω−1
1 SΩ1 . (26)

Diagonal entries in Equation (26) give

ωn

d2
((d1)iµi + µi(d1)i) = 2 ,

or

µi =
d2

ωn (d1)i
, i = 1, . . . , n− 1 , (27)

which gives the unknown vector µ.
Now, we can obtain the matrix S. Indeed, from Equation (26), for i 6= j, it follows

ωi
ωj

sij −
ωj

ωi
sij =

ωn

d2

(
(d1)iµj + (d1)jµi

)
,

which gives

sij =
ωn

d2
·
(d1)iµj + (d1)jµi

ω2
i −ω2

j
ωi ωj

, i, j = 1, . . . , n− 1, i 6= j . (28)

Once we have skew-symmetric S, we can derive X12. From Equation (25), it follows
that

(X12)ij =
δij

2ωj
+ (1− δij) ·

ωn ωi

d2 (ω
2
i −ω2

j )

(
(d1)iµj + (d1)jµi

)
=

δij

2ωj
+

(1− δij)ωj

(ω2
i −ω2

j )

(
(d1)i
(d1)j

+
(d1)j

(d1)i

)
, (29)

where δij is Kronecker’s delta.
We proceed to considering Equation (20), which gives

ω2
n

v d2
2

η, =
ωn

d2
X12d1 −Ω1µ,

η = v
d2

2
ω2

n

(
ωn

d2
X12d1 −Ω1µ

)
, ⇒ ηi = v

(
d2

ωn

n−1

∑
k
(X12)ik(d1)k −

d2
2

ω2
n

ωiµi

)
,

or

ηi = v

(
d2

ωn

n−1

∑
k

(
δik

2ωk
+

(1− δik)ωi

(ω2
i −ω2

k)

(
(d1)i
(d1)k

+
(d1)k
(d1)i

)
(d1)k

)
−

d3
2

ω3
n

ωi
(d1)i

)
,
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which gives:

ηi = v

(
d2

ωn

n−1

∑
k

(
δik

2ωk
+

(1− δik)ωi

(ω2
i −ω2

k)

(d1)
2
i + (d1)

2
k

(d1)i

)
−

d3
2

ω3
n

ωi
(d1)i

)
. (30)

Further, from Equation (22), it follows

2
v
· ω2

n

d2
2

x0 = 1 +
ωn

d2

(
dT

1 µ + µTd1

)
⇒ ,

x0 = v ·
d2

2
2ω2

n

(
1 +

ωn

d2

(
dT

1 µ + µTd1

))
.

Using the fact that ωn
d2

µTd1 = n− 1 (which can bee seen from Equation (27)), it follows

x0 = v
d2

2
2ω2

n
(2n− 1) . (31)

The remaining two diagonal blocks X11 and X22 we derive using Equations (23) and
(21). Thus, from Equation (21), one obtains

X22 = Ω−1
1 X11Ω1 −

ωn

d2
Ω−1

1 ηdT
1 , (32)

using the symmetry of X11 and X22 from Equation (32), it follows

X22 = Ω1X11Ω−1
1 −

ωn

d2
d1ηTΩ−1

1 . (33)

Now, Equations (32) and (33) imply

Ω−1
1 X11Ω1 −

ωn

d2
Ω−1

1 ηdT
1 = Ω1X11Ω−1

1 −
ωn

d2
d1ηTΩ−1

1 . (34)

From Equation (34), for i 6= j, it follows

ωj

ωi
(X11)ij − (X11)ij

ωi
ωj

=
ωn

d2

(
1

ωi
ηi(d1)j − (d1)iηj

1
ωj

)
,

or

(X11)ij =
ωn

d2

ωi ωj

ω2
j −ω2

i

(
v

ωi

(
d2

ωn

n−1

∑
k

(
δik

2ωk
+

(1− δik)ωi

(ω2
i −ω2

k )

(d1)
2
i + (d1)

2
k

(d1)i

)
−

d3
2

ω3
n

ωi

(d1)i

)
(d1)j−

v(d1)i

ωj

(
d2

ωn

n−1

∑
k

(
δjk

2ωj
+

(1− δik)ωi

(ω2
j −ω2

k )

(d1)
2
j + (d1)

2
k

(d1)j

)
−

d3
2

ω3
n

ωj

(d1)j

))
. (35)

On the other hand, from Equation (32), it follows

(X22)ij =
ωj

ωi
(X11)ij −

ωn

d2

ηi(d1)j

ωi
.

Finally, we can obtain the diagonal entries for both matrices X11 and X22 from
Equation (23). Indeed, for the diagonal entries of X22, one obtains:

(X22)ii = −
n−1

∑
k 6=i

(X22)ik(d1)k +
d2

ωn(d1)i

(
1
v

ω2
n

d2
2

µi − ηiωi +
ωn

d2
x0(d1)i

)
,
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and

(X11)ii = (X22)ii −
ωn

d2

ηi
ωi

(d1)i .

Now, the trace of the solution X of the Lyapunov Equation (3) can be obtained as

trace(X) = 2 · trace(X11) +
n−1

∑
i

ωn

d2

ηi
ωi

(d1)i + x0 ,

or

trace(X) = 2 ·
k−1

∑
i
(X11)ii +

n−1

∑
i

ωn

d2

ηi
ωi

(d1)i + v
d2

2
2ω2

n
(2n− 1) . (36)

As one can see from the structure of Equation (36), the formula for the trace is very
complicated, even for this special case in which the damping matrix is of rank one. More-
over, if Z1 has just one non-zero entire function, that is, if Z1 = eieT

i , where ei denotes the
i-th canonical vector, the formula for the trace of (ZX) is still complicated. Indeed, if we let
Z be defined as Z = eieT

i ⊕ 1⊕ eieT
i , then

trace(ZX) = 2 · (X11)ii + v
d2

2
2ω2

n
(2n− 1)

+ v

(
n−1

∑
i

(d1)i
ωi

n−1

∑
k

(
δik

2ωk
+

(1− δik)ωi

(ω2
i −ω2

k)

(d1)
2
i + (d1)

2
k

(d1)i

)
−

d3
2

ω3
n

ωi
(d1)i

)
, (37)

where

(X11)ii = −
n−1

∑
k 6=i

(
ωk
ωi

(X11)ik −
ωn

d2

ηi(d1)k
ωi

)
(d1)k +

d2
ωn(d1)i

(
1
v

ω2
n

d2
2

µi − ηiωi +
ωn

d2
x0(d1)i

)

− ωn

d2

ηi
ωi

(d1)i , (38)

and where (X11)ik, µi, and ηi can be obtained from Equations (35), (27), and (30), respec-
tively.

Once again, we see that Formula (37) for the trace of the solution of the Lyapunov
Equation (3) is still very complicated, which is partly a consequence of the fact that we use
all entries of the solution for the sum of the diagonal entries.

Thus, the formulas presented in this section serve primarily as a way to find an implicit
formula for the solution X(v) and a corresponding partial fraction decomposition for the
function v 7→ trace(ZX).

On the other hand, as we see in the next section, we only need the trace of the
solution for the optimization process, which can be obtained much more efficiently for a
certain setting.

3. Damping Optimization

Recall that, in the optimization process, we must find such c, viz. d =
√

v ΦTc,
such that

trace(ZX) = min ,

where X is a solution of the following Lyapunov equation:

ATX + XA = −I , (39)

where A is defined as in (17), and Z is defined as in (5).
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Usually, the optimization procedure means that we choose a vector (depending on the
position of the damper) c1, and then find the corresponding optimal viscosity by simply
solving

d
d v

trace(ZX(v0)) = 0 .

Once we find the optimal damping vector (dopt)1 =
√

v0 ΦTc1, we continue the same
process for the next vector c2. After obtaining a set of “optimal vectors” {(dopt)1, . . . , (dopt)k}
for the global optimization vector, we choose one that produces the smallest trace(ZX).

One can see that, even in this very simple case (rank one damping), the whole opti-
mization process is computationally demanding.

Therefore, we propose here a novel approach that allows us to very efficiently calculate
a quasi-optimal damping vector dopt.

3.1. Case 1

As in the first case, consider the optimization problem

trace(ZX) = min ,

where X is the solution of the Lyapunov Equation (50), A is defined as in (17), and Z is
defined as

Z = eieT
i ⊕ 1⊕ eieT

i ,

for some i ∈ {1, . . . , n− 1}.
As shown in the previous section for this case, the trace is equal to

trace(ZX) = 2(X22)ii −
ω2

n

vd2
2

ηi
ωi

(d1)i .

Now, we propose a novel approach. Instead of choosing the first (position) vector c1
and deriving an optimal viscosity using Formulas (37), (35), (27), and (30) to give us the
first optimal vector (dopt)1 =

√
v0 ΦTc1, we assume that an optimal position vector copt has

the following form:

ΦTcopt = [ei, d2]
T ⇒ copt = Φ−T [ei, d2]

T .

This means that d1 = ei, which greatly simplifies the computation of the trace.
The choice of this (dopt) we call quasi-optimal.
Now, multiplying Equation (23) by d1 = ei from the right-hand side, we obtain

+
ωn

d2
eT

i X22ei =
1
v
· ω2

n

d2
2

µTei − ηTΩ1ei +
ωn

d2
x0 eT

i ei ,

or

(X22)ii =
d2

ωn

(
1
v
· ω2

n

d2
2

µi − ηiωi +
ωn

d2
x0

)
. (40)

This all implies that the trace of the solution of the Lyapunov Equation (50) is given as

trace(ZX) = 2
d2

ωn

(
1
v
· ω2

n

d2
2

µiηiωi +
ωn

d2
x0

)
+

ωn

d2

ηi
ωi

+ x0 .
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For this simplified case, a simple calculation yields

(X12)ii =
1

2 ωi
, µi =

d2

ωn
,

ηi = v
d2

2
ω2

n

(
ωn

d2

1
2 ωi
−ωi

d2

ωn

)
, x0 = v

3
2

d2
2

ω2
n

.

The new, simplified formula for the trace reads:

trace(ZX) =
2
v
+

v
2
·
(

1
ω2

i
+ 4

d4
2 ω2

i
ω4

n
+ 5

d2
2

ω2
n

)
.

The optimal viscosity vopt is a stationary point of the trace(ZX(v)), that is

vopt =
2ωiω

2
n√

4d4
2ω4

i + 5d4
2ω2

i ω2
n + ω4

n

.

This means that the optimal damping vector is given by

copt =
1
√vopt

·Φ−T [ei, d2]
T .

3.2. Case 2

As in the second case, we consider the similar optimization problem

trace(ZX) = min ,

where X is the solution of the Lyapunov Equation (50), A is defined as in (17), but Z is
defined as

Z = Z1 ⊕ 1⊕ Z1 ,

where

Z1 =

0 0 0
0 Is 0
0 0 0

 ,

for some s� n.
For simplicity, let us assume that s = 2, viz.

Z1 = 0n−i ⊕ I2 ⊕ 0n+i−1 =
[
ei ei+1

][ eT
i

eT
i+1

]
,

where 0k denotes a zero matrix of dimension k× k.
Then, similarly to Case 1, we can determine (copt)1 = 1√

(vopt)1
·Φ−T [ei, d2]

T for the

case (Z1)1 = eieT
i and (copt)2 = 1√

(vopt)2
·Φ−T [ei+1, d2]

T for the case (Z1)2 = ei+1eT
i+1.

Now, we define the quasi-optimal damping matrix as

Dopt = (vopt)1 · (copt)1(copt)
T
1 + (vopt)2 · (copt)2(copt)

T
2 .

3.3. Numerical Example: Rank One

We now illustrate the results from Section 3.1 with a simple numerical example
describing the mass-spring system (6)–(8).
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For simplicity, we take n = 10, all mi = 1, for i = 1, . . . , n− 1 and mn = 0 and all
ki = 1 for i = 1, . . . , n− 1, yielding

M =


1 0
0 1 0

. . . . . . . . .
0 1 0

0 0

, K =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 .

We define the damping matrix D .
= D(i, v) as a function of the viscosity parameter v

and damper positions i ∈ {1, . . . , n− 1}, with two different structures.

Structure 1: D(i, v) = v ΦTccTΦT , c = [ei, 1]T ,

where ei denotes the i-th canonical basis vector of dimension n− 1.

Structure 2: D(i, v) = vccT , c = [ei, 1]T .

Table 1 shows the optimal values of the trace function v→ trace(ZX), for

Z .
= f3 f T

3 ⊕ 1⊕ f3 f T
3 ,

where f3 denotes the 3-th canonical basis vector of dimension 2 · n− 1.

Table 1. Optimal traces vs. damper positions.

Positions i 1 2 3 4 5 6 7 8 9

Optimal trace structure 1 327.22 105.75 210.88 81.38 118.10 311.10 3300.1 15,083 117,110

Optimal trace structure 2 109 109 7.1768 109 109 109 109 109 109

As can be seen from Table 1, it is obvious that “the best possible damping matrix”
is D = vopt[e3, 1][e3, 1]T with optimal viscosity vopt = 0.56, which is consistent with the
results from Section 3.1.

We want to emphasize that, for all other positions within structure 2, the system is
extremely unstable; therefore, we add a small perturbation (of single precision order),
which results in traces O(109).

4. The Singular Mass Case, dim(N (M)) ≥ 1

As we described in the introduction, in this section, we consider a slightly differ-
ent configuration.

Recall that we are considering a system of differential Equations (1), viz.

Mẍ + Cẋ + Kx = 0 , (41)

x(0) = x0, ẋ(0) = ẋ0 ,

where M, C, and K (mass, damping, and stiffness matrices, respectively) are real, symmetric
matrices of order n.

Let Φ =
[
Φ0 Φ+

]
be a real non-singular matrix, such that ΦT

0 MΦ0 = 0n0 , ΦT
0 MΦ+ =

0n0,m, and ΦT
+MΦ+ = Im, which means that we can write:

ΦT MΦ =

[
0n0

Im

]
, ΦTKΦ =

[
Ω2

0
Ω2

+

]
, (42)
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where 0n0 and Ω0 are quadratic matrices of dimension n0, with zeros and ω0
1, . . . , ω0

n0
> 0

corresponding, respectively, with zero eigenvalues in the matrix M. Further, Ω+ = diag(ω1,
. . . , ωm), where m = n− n0.

In addition, we assume here that n0
.
= dim(N (M)) ≥ 1, and the damping is defined as

Cin + v · Cex, where Cin
.
= αΩ = α

[
Ω0

Ω+

]
.

Then, the damping matrix has the form

D = ΦT(Cin + v · Cex)Φ =

[
D11 D12
DT

12 D22

]
, D11 ∈ Rn0,n0 , D22 6= 0 .

Similarly to Section 2, in the first part of this section, we derive a new “linearized”
system of differential equations.

First, note that all the above imply that

D11 ẋ1 + D12 ẋ2 + Ω2
0x0 = 0,

ẍ2 + DT
12 ẋ1 + D22 ẋ2 + Ω2

+x+ = 0 ,
(43)

where x = [x0, x+], and x0 and x+ are of dimension n0 and m, respectively.
Let us emphasize again that the assumption D12 6= 0 distinguishes the system under

consideration from other (usually considered) systems obtained simply by deflation. If we
were to have a damping such that D12 = 0, then (43) would be equivalent to a system

D11 ẋ1 + Ω2
0x0 = 0,

ẍ2 + D22 ẋ2 + Ω2
+x+ = 0 ,

of two independent equations that represent a system of differential algebraic equations
and would be considered similar to [28,29].

By introducing the new variables

z1 = Ω0x0 , z2 = Ω+x+ , z3 = ẋ2 ,

the system (43) becomes

ż1 = −Ω0D−1
11 D12z3 −Ω0D−1

11 Ω0z1 (44)

ż2 = Ω+z3 (45)

ż3 = DT
12D−1

11 Ω0z1 −Ω+z2 +
(

DT
12D−1

22 D12 − D22

)
z3 (46)

which yields to the following linearization:

ż = Az, (47)

A =

−Ω0D−1
11 Ω0 0n0,m −Ω+D−1

11 D12
0m,n0 0m,m Ω+

DT
12D−1

11 Ω+ −Ω+ DT
12D−1

11 D12 − D22

 . (48)

We would like to emphasize that if D12 = 0, then the linearization (48) would become

A+ =

[
0 Ω+

−Ω+ −D22

]
, (49)

which is the standard linearization used in many papers, such as [3–7].
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Again, our goal is to find such an external damping vΦTCexΦ such that

trace(ZX) = min ,

where X is a solution of the following Lyapunov equation:

ATX + XA = −I , (50)

where A is defined as in (48), and Z is defined as in (5).
Recall that from (36), in the case of dim(N (M)) = 1 and α = 0 (no internal damping),

we have

f (v) = trace(X) = 2 ·
k−1

∑
i
(X11)ii +

n−1

∑
i

ωn

d2

ηi
ωi

(d1)i + v
d2

2
2ω2

n
(2n− 1) .

This and (38) imply that, for the one-dimensional singularity case, the trace function
has the following form:

f (v) =
a0

v
+ b0v + c0,

where the constants a0, b0, and c0 are obtained from (36) and (38).
This result is quite similar to the formula obtained in [20] for the case with non-singular

mass M and rank one damping.
Unfortunately, at the moment, we do not have a similar formula for damping with

a rank larger than one. Thus, we propose a new (projection) approximation for solving
Lyapunov Equation (50).

Further, we take advantage of the fact that, for the solution X of the Lyapunov
Equation (50) and the solution Y of the so-called dual Lyapunov equation

AY + YAT = −Z , (51)

it holds that
trace(Y) = trace(ZX) .

Thus, in what follows, instead of A from (48) and Z from (5), we consider the projected
Lyapunov equation

ApXp + Xp Ap
T = −Zp , (52)

where

Ap =

−Ω0D−1
11 Ω0 012 −Ω+D−1

11 D̂12
021 022 Ωp

D̂T
12D−1

11 Ωp −Ωp D̂T
12D−1

11 D̂12 − D̂22

 , (53)

where Ωp and D̂12 are p dimensional principal submatrices of Ω+ and D12, respectively.
The matrix Zp is obtained as the direct sum of two p dimensional submatrices of the matrix
Z. That is, if Z = Z1 ⊕ Z2, where Z1 is n× n and Z2 is (n− n0)× (n− n0) with Is (identity
of order s) as principal submatrix, respectively, then

Zp = Z(p,1) ⊕ Z(p,2) , (54)

where Z(p,1) is a (p + n0)× (p + n0) dimensional matrix, and Z(p,2) is a p× p dimensional
matrix, where both have Is as principal submatrix. Note that the matrices in the projected
Lyapunov Equation (53) have dimensions (2p + n0)× (2p + n0).

We now illustrate the efficiency of the above approach. We have noticed that, in
many applications, the reduced dimension is between the order of s (half the rank of the
projection matrix Z from the right-hand side of the Lyapunov equation) up to two or three
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times s. Thus, if s = 0.1 · n and we set p = 2 · s, this means that any direct Lyapunov
solver requiring O(n3) (such as Bartels–Stewart or Hammerling) requires 0.23O(n3) for the
projected equations, which represents a speed increase of a factor more than 100. Obviously,
the increase in speed can be even larger if the rank of the matrix Z is smaller.

To demonstrate the accuracy of the obtained approximation, we propose a simple
residual error. Indeed, after solving the Lyapunov Equation (52), we have the approximate
solution

p p + n0

Xp =

[
(Xp)11 (Xp)12
(Xp)T

12 (Xp)22

]
.

Now, our approximation of the full dimension can be defined as

p m− p p m + n0 − p

X̃ =


(Xp)11 0 (Xp)12 0

0 0 0 0
(Xp)T

12 0 (Xp)22 0
0 0 0 0

 .

Let A be full dimensional matrix form (52); then, the residual is simply defined as

E = AX̃ + X̃AT + Z . (55)

The error that determines our tolerance is defined as

err .
=
‖E‖F

trace(X̃)
. (56)

Finally, for the optimization process, we propose an approach similar to parabolic
minimization, but instead of using parabolic model functions, we propose using hyper-
bolic functions

g(v) =
a
v
+ bv + c,

where a, b, and c are determined by a simple interpolation through the three previously
determined points v1, v2, and v3. The zero of g′(v4) = 0 is our first approximation for the
optimal v. Now, one of the previous points {v1, v2, v3} is replaced by this new minimum
v4, and the process is repeated until the selected tolerance level is attained.

All of the above considerations are presented in Algorithm 1. After performing one
offline step of the simultaneous diagonalization of matrices M and K as in (42),

ΦT MΦ =

[
0n0

Im

]
, ΦTKΦ =

[
Ω2

0
Ω2

+

]
,

and setting (or defining) the damper “positions” (geometry),

D = ΦT(Cin + v · Cex)Φ = Din + vDex ,

we can present Algorithm 1.
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Algorithm 1 Calculate optimal viscosity vopt

Require: Ω1, Ω2, {v1, v2, v3} - starting viscosites, Z, Din, Dex, maxiter, tol
Ensure: vopt

1: for i ∈ {1, 2, 3}, define do
2: D(vi) = Din + vDex
3: corresponding A(vi) as in (53) and Zp as in (54)
4: define reduced dimension p, and calculate approximate solution Xp of ApXp +

Xp Ap
T = −Zp ,

5: check does err from (56) satisfy err < tol
6: if err < tol, for err from (56) then
7: continue to 11:
8: else

increase p and go to 4:
9: end if

10: end for
11: For the model function

g(v) =
a
v
+ bv + c,

use standard linear least squares method through the points {g(v1), g(v2), g(v3)} to
determine a, b, and c

12: v0 =
√

a
b - the first approximation of optimal viscosity

13: for k = 1, . . . , maxtier do
14: vk = vk−1
15: D(vk) = Din + v(k)Dex
16: set A(vi) as in (53)
17: calculate approximate solution Xp of ApXp + Xp Ap

T = −Zp
18: determine new set {v1, v2, v3} (leave new minimum and its “neighbors”)
19: determine new a, b, and c for the new points {g(v1), g(v2), g(v3)}
20: vk =

√
a
b - the new approximation of optimal viscosity

21: if
|vk − vk−1|
|vk|

≤ tol

then
22:

vopt = vk

23: else
goto 8:

24: end if
25: end for

5. Numerical Illustration

In this section, we illustrate the performance of Algorithm 1 on three different classes
of mechanical systems, used in many papers such as [6,16], with the essential difference
that we assume that the mass matrix can be singular.

Example 1. Consider the mechanical system with

M = diag(m1, m2, . . . , mn)
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where m1 = . . . mn0 = 0, and

K =


k1 −k1
−k1 k1 + k2 −k2

. . . . . . . . .
−kn−2 kn−2 + kn−1 −kn−1

−kn−1 kn−1 + kn

 .

Let Φ =
[
Φ0 Φ+

]
be a real non-singular matrix as in (42), such that

ΦT MΦ =

[
0n0

Im

]
, ΦTKΦ =

[
Ω2

0
Ω2

+

]
.

As we have mentioned above, the damping matrix is defined as

D = Din + vDex

Din = ΦTCinΦ , Dex = ΦTCexΦ .

We present results on optimal viscosities vopt obtained for three different configurations of mi
and ki, and a set of 10 prescribed positions, that is, for 10 predefined matrices Dex.

Configuration 1.
For the first configuration, we set

n = 1000— dimension of matrices , n0 = 10— dimension of null subspace of M ,

mj = 12 · j, j = n0 + 1, . . . , n, k j = 1 , j = 1, . . . , n .

The internal damping matrix is defined as

Din = 10−4 ·Ω , Ω .
= Ω0 ⊕Ω+ .

Let ϕt be the t-th column of the matrix Φ+. Then, the external damping matrix (which depends
on positions) is defined as

Dex =
[
Φ0 Φt

]
, Φt =

[
ϕ21+100·t . . . , ϕ40+100·t

]
, t = 0, . . . , 9 .

This means that for the first configuration, the external damping has columns from ϕ21 to ϕ40;
the second configuration has columns ϕ21 to ϕ40; and so on to the last one with columns ϕ921 to
ϕ940.

It is important to emphasize that at the first n0 positions, the system contains only dampers, so
the first n0 masses are 0.

For the matrix Z (on the right-hand side in the Lyapunov equation), we set

Z = 0n0 ⊕ Z1 ⊕ Z1 , Z1 = Is ⊕ 0m−s ,

where 0n0 is an n0 × n0 zero matrix, and Is is an identity matrix of dimension s = 100.
The obtained results are presented in Table 2.
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Table 2. Optimal viscosities for Configuration 1.

Positions(t) 21:40 + 100·t 0 1 2 3 4

Optimal visc. Algorithm 1 4.2948 1.7368× 101 30.463 45.934 61.748
Optimal trace Algorithm 1 5.6153× 106 1.1645× 106 1.7440× 106 2.5305× 106 3.2829× 106

Optimal visc. fminsearch 4.2948 17.368 30.087 44.850 59.332
Optimal trace fminsearch 5.6153× 106 1.1645× 106 1.7440× 106 2.5305× 106 3.2829× 106

Rel. error (56) 7.4424× 10−17 2.7935× 10−8 1.5191× 10−5 1.9908× 10−5 2.2599× 10−5

Positions(t) 21:40 + 100·t 5 6 7 8 9

Optimal visc. Algorithm 1 5.3480× 101 4.3959× 101 3.8125× 101 3.4038× 101 2.9794× 101

Optimal trace Algorithm 1 2.9840× 106 2.6623× 106 2.4733× 106 2.3638× 106 2.1533× 106

Optimal visc fminsearch 5.2054× 101 4.3070× 101 3.7460× 101 3.3536× 101 2.9460× 101

Optimal trace fminsearch 2.9625× 106 2.6519× 106 2.4660× 106 2.3581× 106 2.1487× 106

Rel. error (56) 2.0869× 10−5 1.8709× 10−5 1.7431× 10−5 1.6362× 10−5 1.5729× 10−5

Configuration 2.
For the second configuration, we use bigger matrix dimensions and a different matrix K.

n = 2000— dimension of matrices , n0 = 10— dimension of null subspace of M ,

mj = 12 · j, j = n0 + 1, . . . , n, k j = 1 , j = 1, . . . , n .

In this configuration, we consider the following stiffness matrix:

K̂ =



4 −1 −1
−1 4 −1 −1
−1 −1 4 −1 −1

. . . . . . . . . . . . . . .
−1 −1 4 −1 −1

−1 −1 4 −1
−1 −1 4


The internal and external damping matrices are similar to the previous case, that is

Din = 10−4 ·Ω , Ω .
= Ω0 ⊕Ω+ ,

is defined as

Dex =
[
Φ0 Φt

]
, Φt =

[
ϕ21+150·t . . . , ϕ40+150·t

]
, t = 0, . . . , 9 ,

where ϕt is the t-th column of the matrix Φ+.
For the matrix Z, we use the same matrix as in the previous case defined by (54):

Z = 0n0 ⊕ Z1 ⊕ Z1 , Z1 = Is ⊕ 0m−s ,

where 0n0 is an n0 × n0 zero matrix, and Is is an identity matrix of dimension s = 100.
The obtained results are presented in Table 3.
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Table 3. Optimal viscosities for Configuration 2.

Positions(t) 21:40 + 100·t 0 1 2 3 4

Optimal visc. Algorithm 1 9.0137 39.209 7.8999× 101 1.2126× 102 1.5291× 102

Optimal trace Algorithm 1 9.7801× 106 1.4589× 106 2.5182× 106 3.4452× 106 3.9859× 106

Optimal visc. fminsearch 9.0137 39.209 7.6474× 101 1.13892 1.4135× 102

Optimal trace fminsearch 9.7801× 106 1.4589× 106 2.5174× 106 3.4136× 106 3.9424× 106

Rel. error (56) 7.0347× 10−17 1.0986× 10−16 1.9372× 10−5 2.5991× 10−5 3.1844× 10−5

Positions(t) 21:40 + 100·t 5 6 7 8 9

Optimal visc. Algorithm 1 1.8644× 102 2.3116× 102 2.6915× 102 3.2734× 102 2.4521× 102

Optimal trace Algorithm 1 4.3150× 106 4.8266× 106 4.8698× 106 5.2954× 106 4.5854× 106

Optimal visc fminsearch 1.6896× 102 2.0028× 102 2.2848× 102 2.7213× 102 2.1241× 102

Optimal trace fminsearch 4.2718× 106 4.7244× 106 4.6841× 106 5.0019× 106 4.4533× 106

Rel. error (56) 3.8534× 10−5 4.5229× 10−5 5.0984× 10−5 5.4818× 10−5 4.9010× 10−5

Configuration 3.
The last case within the numerical illustrations is again an oscillator ladder with a differ-

ent configuration.
This configuration is found in [6,16].
We consider the mechanical system shown in Figure 2, with 3d + 1 masses, consisting of three

rows of masses with d + 1 springs. Each row has springs of the same stiffness equal to k1, k2, and
k3. On the left-hand side, rows of springs are connected to the fixed base, and on the right-hand side,
they are connected to the last mass (m3d+1), which is connected to the fixed base with a spring of
stiffness k4.

4

3d+1

1 1 d

d+1 2d

2d+1 3d

2

3 33 3

2 2 2

1 1 1

Figure 2. 3d + 1 mass oscillator.

The mathematical model for the considered vibrational system is given by Equation (41), where
the mass matrix is

M = diag(m1, m2, . . . , mn).

The stiffness matrix is defined as

K =


K11 −κ1

K22 −κ2
K33 −κ3

−κT
1 −κT

2 −κT
3 k1 + k2 + k3 + k4

,
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where

Kii = ki


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

, κi =


0
...
0
ki

, i = 1, 2, 3.

In our example, we consider the following configuration:

d = 300, n = 3d + 1 = 901,

mk = 0, k = 1, . . . , n0, mk = 0.01, k = n0 + 1, . . . , d,

mk = 2, k = d + 1, . . . , 2 · d, mk = 400, k = 2 · d, . . . , 3 · d, mn = 100 ,

k1 = 1, k2 = 2, k3 = 2, k4 = 5.

As in the two previous cases, for the damping we take

Din = 10−5 ·Ω , Ω .
= Ω0 ⊕Ω+ ,

which is the internal damping matrix and

Dex =
[
Φ0 Φt

]
, Φt =

[
ϕ21+150·t . . . , ϕ40+150·t

]
, t = 0, . . . , 9 ,

for the external damping, where ϕt is the t-th column of the matrixΦ+.
Here, as in the previous two cases, at the first n0 positions (“first row”), the system contains

only dampers; therefore, the first mi = 0, for i = 1, . . . , n0.
For the matrix Z, we use the same matrix as in the previous two cases; it is defined by (54).
The obtained results are presented in Table 4, where the largest projection space has a dimension

of p = 350. As a result of specified structure (the first two rows are lighter than the third one),
it suffices to take p = 200 for the positions n0 + 1, . . . , 2 · n, and p = 300 for the positions
2 · n + 1, . . . , 3 · n + 1.

Table 4. Optimal viscosities for Configuration 3.

Positions(t) 21:40 + 100·t 0 1 2 3 4

Optimal visc. Algorithm 1 2.0284× 10−3 2.5811× 10−3 2.2827× 10−3 5.8067× 10−2 4.5660× 10−2

Optimal trace Algorithm 1 6.0377× 104 4.3650× 104 4.9078× 104 1.6128× 105 1.6156× 105

Optimal visc. fminsearch 2.0275× 10−3 2.5790× 10−3 2.2813× 10−3 5.8335× 10−2 4.6291× 10−2

Optimal trace fminsearch 6.0377× 104 4.3650× 104 4.9078× 104 1.6128× 105 1.6156× 105

Rel. error (56) 2.0499× 10−4 3.0910× 10−4 2.7175× 10−4 1.9799× 10−3 1.8297× 10−3

Positions(t) 21:40 + 100·t 5 6 7 8 9

Optimal visc. Algorithm 1 0.01212 2.0990× 103 9.0360× 103 5.2554× 103

Optimal trace Algorithm 1 8.8469× 104 7.8204× 104 3.3000× 105 1.6797× 105

Optimal visc fminsearch 0.01206 2.0175× 103 1.9739× 103 4.8508× 103

Optimal trace fminsearch 8.8468× 104 7.7174× 104 7.7982× 104 1.4775× 105

Rel. error (56) 1.3229× 10−3 9.8193× 10−3 1.1273× 10−2 9.3280× 10−3

As can be seen from Table 4, most of the obtained approximations are satisfactory, except for
the positions of the external dampers from 621 to 640 (this for t = 7). For this case, we need to
increase the reduced (projected) dimension to p = 400. This leads to the following approximations:

Opt. viscosity = 2.0581× 103 , Opt. trace = 7.8030× 104 , relative error(56) = 5.1034× 10−3.
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6. Conclusions

This paper contains two novel results for small damped oscillations described by the
vector differential equation Mẍ + Cẋ + Kx = 0, where the mass matrix M can be singular,
but standard deflation techniques cannot be applied. For example, N (M) ∩N (C) = ∅.

The first result is the novel formula for the solution X of the Lyapunov equation
ATX + XA = −I, where A = A(v) is obtained from M, C(v), and K, which are the
so-called mass, damping, and stiffness matrices, respectively. These matrices are real,
symmetric of order n, and rank(M) = n− 1. In addition, we assume that K is positive
definite and C(v) is positive semidefinite, with rank(C(v)) = 1 and no internal damping.

Using the obtained formula, we propose a novel approach for very efficiently calculat-
ing the optimal damping matrix Copt = voptdoptdT

opt.
In contrast to the first part of the paper, which we refer to as the “theoretical part”,

in the second part, we assumed that dim(N (M)) ≥ 1 and Cin > 0 (usually a small
percentage of the critical damping). We refer to this part as the “numerical part” or
“numerical point of view”.

In said part, we presented a novel linearization, i.e., a novel construction of the
matrix A in the Lyapunov equation ATX + XA = −I, and a novel optimization process.
The proposed optimization process computes the optimal damping C(v) that minimizes a
function v 7→ trace(ZX), where Z is a chosen symmetric positive semidefinite matrix, using
the approximation function g(v) = cv +

a
v + bv for the trace function f (v) .

= trace(ZX(v)).
The results obtained in both parts were illustrated with several corresponding numeri-

cal examples.
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