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Abstract: In this paper, two not-difficult inequalities are invented and proved in detail, which ade-
quately describe the behavior of discrete logical functions xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn).
Based on these proven inequalities, infinitely differentiable extensions of the logical functions
xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn) were defined for the entire Rn. These suitable exten-
sions were applied to systems of logical equations. Specifically, the system of m logical equations in a
constructive way without adding any equations (not field equations and no others) is transformed in
Rn first into an equivalent system of m smooth rational equations (SmSRE) so that the solution of
SmSRE can be reduced to the problem minimization of the objective function, and any numerical
optimization methods can be applied since the objective function will be infinitely differentiable.
Again, we transformed SmSRE into an equivalent system of m polynomial equations (SmPE). This
means that any symbolic methods for solving polynomial systems can be used to solve and analyze an
equivalent SmPE. The equivalence of these systems has been proved in detail. Based on these proofs
and results, in the next paper, we plan to study the practical applicability of numerical optimization
methods for SmSRE and symbolic methods for SmPE.

Keywords: inequalities; proof of inequalities; application of inequalities; Zhegalkin polynomials;
logical operations; systems of logical equations; algebraic cryptanalysis; approximation; numerical
optimization; system of polynomial equations
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1. Introduction

For many years, systems of logical equations have been an important area of research.
The solution of logical equations penetrates into many areas of modern science, such
as logical design, biology, grammar, chemistry, law, medicine, spectroscopy, and graph
theory [1]. Numerous problems in operations research may be reduced to the solution of
a system of logical equations. A striking example is the problem of a coalition game of
n people with a dominance relation between different strategies [2]. Solutions of logical
equations also serve as an important tool in the processing of pseudo-Boolean equations
and inequalities and associated problems of integer linear programming [2].

Another important and promising area in which the solution of a system of logical
equations is used is algebraic cryptanalysis. For a specific cipher, algebraic cryptanalysis
consists of two stages: transforming the cipher into a system of polynomial equations
(usually over a Boolean ring) and solving the resulting system of polynomial equations [3].
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One of the first successful applications of solving a system of logical equations in a crypto-
graphic problem was demonstrated in [4]. Therefore, many new directions and algorithms
for solving systems of logical equations are being developed and adapted [5–11]. One such
direction is the transformation to the real continuous domain, since the real continuous
domain is a richer area to work with since it includes many well-developed methods and
algorithms. The essence of this direction lies in the fact that the system of logical equations
is transformed into a system in a real domain and the solution is sought in a real continu-
ous domain. The transformed system is reducible to a numerical optimization problem.
It enables the application, analysis, and combination of techniques such as the steepest
descent algorithm, Newton’s method, and the coordinate descent algorithm [11–18].

Very recently, in [17,18], an interesting idea was proposed, namely, based on the proofs
of simple inequalities, an arbitrary system of logical equations was transformed into the
corresponding unique system of polylinear–polynomial equations in a unit n-dimensional
cube Kn. In Kn, the equivalence of systems of logical and polylinear-polynomial equations
was shown after adding one equation of a special form to the system. In Kn, the solution of
a system of polylinear–polynomial equations was reduced to the problem of optimizing a
polylinear objective function. The authors found that, according to the system of equations,
the composed polylinear objective function does not have a local extremum either inside,
or on the edges, or on the faces of Kn. It takes the minimum value at the vertices of Kn.

In this paper, we approached this issue from the point of view of constructively
finding a system of m rational (polynomial) equations, which in Rn is equivalent to a
system of m logical equations based on suitable inequalities. Thus, two simple inequal-
ities were constructed and shown in detail. Thanks to the proofs of the transformations
of these inequalities into equalities, we have determined (found) suitable smooth (in-
finitely differentiable) extensions of the discrete logical functions xor(x1, x2, . . . , xn) and
and(x1, x2, . . . , xn) relative to the entire domain Rn. These suitable extensions are applied
to systems of logical equations. Namely, the system of m logical equations in a constructive
way without adding any equations (not field equations and no others) is transformed in
Rn first into an equivalent system of m smooth rational equations so that the solution of
the system of m smooth rational equations can be reduced to the problem minimization of
the objective function and any numerical optimization methods can be applied since the
objective function will be infinitely differentiable. Again, we transformed the system of
m smooth rational equations into an equivalent system of m polynomial equations. This
means that any symbolic methods for solving polynomial systems can be used to solve and
analyze an equivalent system of m polynomial equations. The equivalence of these systems
has been proved in detail.

2. A Suitable Inequality for the Logical Operation xor(x1, x2,..., xn) and a Proof of Its
Necessary Properties

First, we define or recall the necessary notations and formulas for further convenience.
Let Rn = { (x1, x2, . . . , xn) : xk ∈ R = (−∞;+∞), ∀k ∈ {1, 2, . . . , n}} be an

n-dimensional real domain.
Let Bn = { (b1, b2, . . . , bn) : bk ∈ B = {0, 1}, ∀k ∈ {1, 2, . . . , n}} be an n-dimensional

unit Boolean cube.
Let ⊕ be the logical operation xor (addition by mod 2), i.e., xor(y1, y2, . . . , yn) =

y1⊕ y2⊕ · · · ⊕ yn, yi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}. Let⊗ be the logical operation and (logical
multiplication), i.e., and(y1, y2, . . . , yn) = y1 ⊗ y2 ⊗ · · · ⊗ yn, yi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}.

In this section, we formulate and prove one inequality that “adequately” describes
the behavior of the logical function xor(x1, x2, . . . , xn), and based on this provable in-
equality, we define a suitable infinitely differentiable extension of the logical function
xor(x1, x2, . . . , xn) to the entire domain Rn.
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Proposition 1. If (x1, x2, . . . , xn) ∈ Rn and the following is the case:

xord(x1, x2, . . . , xn) =
1
2
− 1

2
·

n

∏
k=1

(2− 4xk)

1 + (1− 2xk)
2 ,

then the following comparisons are true:

(i) 0 ≤ xord(x1, x2, . . . , xn) ≤ 1, ∀(x1, x2, . . . , xn) ∈ Rn;
(ii) xord(x1, x2, . . . , xn) ∈ B1 = {0, 1} ⇔ (x1, x2, . . . , xn) ∈ Bn ;
(iii) xord(x1, x2, . . . , xn) = 0 ⇔ (x1, x2, . . . , xn) ∈ Bn and x1 + x2 + . . . + xn—even;
(iv) xord(x1, x2, . . . , xn) = 1 ⇔ (x1, x2, . . . , xn) ∈ Bn and x1 + x2 + . . . + xn—odd.

Proof of Proposition 1.

(i) For any x ∈ R, 0 ≤ (1− |1− 2 · x|)2 ⇔ 2 · |1− 2 · x| ≤ 1+

(1− 2 · x)2 ⇔ |2− 4 · x|
1 + (1− 2 · x)2 ≤ 1 ⇔ −1 ≤ (2− 4 · x)

1 + (1− 2 · x)2 ≤ 1.

It follows from the last inequality that the following is the case.

− 1 ≤ (2− 4x1)

1 + (1− 2x1)
2 ·

(2− 4x2)

1 + (1− 2x2)
2 · . . . · (2− 4xn)

1 + (1− 2xn)
2 ≤ 1, ∀(x1, x2, . . . , xn) ∈ Rn

Althernatively, it is the same as the following.

0 ≤ xord(x1, x2, . . . , xn) ≤ 1, ∀(x1, x2, . . . , xn) ∈ Rn;

(ii) First, we prove in the direct direction, if (x1, x2, . . . , xn) ∈ Bn, then the following is
the case:

xk ∈ B1, ∀k ∈ {1, 2, . . . , n} ⇒ (2−4xk)

1+(1−2xk)
2 ∈ {−1, 1}, ∀k ∈ {1, 2, . . . , n} ⇒

− 1
2 ·

(2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2 ∈

{
− 1

2 , 1
2

}
or it is the same as the following.

xord(x1, x2, . . . , xn) ∈ B1 = {0, 1}, ∀(x1, x2, . . . , xn) ∈ Bn.

Now, we prove in the opposite direction, if xord(x1, x2, . . . , xn) ∈ {0, 1} ⇒ .

(2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2 ∈ {−1, 1} ⇒∣∣∣∣ (2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2

∣∣∣∣ = 1⇒
∣∣∣∣ (2−4xk)

1+(1−2xk)
2

∣∣∣∣ = 1,

∀k ∈ {1, 2, . . . , n} ⇒ xk ∈ B1, ∀k ∈ {1, 2, . . . , n} ⇒ (x1, x2, . . . , xn) ∈ Bn;

(iii) First, let us prove in the direct direction, if xord(x1, x2, . . . , xn) = 0, then it follows
from item (ii) that (x1, x2, . . . , xn) ∈ Bn. Now, note that if (x1, x2, . . . , xn) ∈ Bn, then
the following is the case.

xk ∈ B1, ∀k ∈ {1, 2, . . . , n} ⇒ (2−4xk)

1+(1−2xk)
2 = (2−4xk)

1+(±1)2 = 1− 2xk = (−1)xk , ∀k ∈

{1, 2, . . . , n} ⇒ 0 = 1
2 −

1
2 ·

(2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2 =

1
2 −

1
2 ·

(2−4x1)

1+(±1)2 ·
(2−4x2)

1+(±1)2 · . . . · (2−4xn)

1+(±1)2 = 1
2 −

1
2 · (1− 2x1) · (1− 2x2) · . . . · (1− 2xn)

= 1
2 −

1
2 · (−1)x1 · (−1)x2 · . . . · (−1)xn = 1

2 −
1
2 · (−1)x1+x2+...+xn ⇒ x1 + x2 + . . . + xn—even.
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Now we prove in the opposite direction, if (x1, x2, . . . , xn) ∈ Bn and x1 + x2 + . . .+ xn—
even, then we have the following.

0 = 1
2 −

1
2 · (−1)x1+x2+...+xn = 1

2 −
1
2 · (−1)x1 · (−1)x2 · . . . · (−1)xn =

1
2 −

1
2 · (1− 2x1) · (1− 2x2) · . . . · (1− 2xn) =

1
2 −

1
2 ·

(2−4x1)

1+(±1)2 ·
(2−4x2)

1+(±1)2 · . . . · (2−4xn)

1+(±1)2

= 1
2 −

1
2 ·

(2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2 = xord(x1, x2, . . . , xn);

(iv) This point follows from points (ii) and (iii); for clarity and visibility, we can conduct
a separate proof and it is similar to the proof of point (iii).

First, let us prove in the direct direction, if xord(x1, x2, . . . , xn) = 1, then it follows
from item (ii) that (x1, x2, . . . , xn) ∈ Bn. Now, note that if (x1, x2, . . . , xn) ∈ Bn, then the
following obtains.

xk ∈ B1, ∀k ∈ {1, 2, . . . , n} ⇒ (2−4xk)

1+(1−2xk)
2 = (2−4xk)

1+(±1)2 = 1− 2xk = (−1)xk , ∀k ∈

{1, 2, . . . , n} ⇒ 1 = 1
2 −

1
2 ·

(2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2 =

1
2 −

1
2 ·

(2−4x1)

1+(±1)2 ·
(2−4x2)

1+(±1)2 · . . . · (2−4xn)

1+(±1)2 = 1
2 −

1
2 · (1− 2x1) · (1− 2x2) · . . . · (1− 2xn)

= 1
2 −

1
2 · (−1)x1 · (−1)x2 · . . . · (−1)xn = 1

2 −
1
2 · (−1)x1+x2+...+xn ⇒ x1 + x2 + . . . + xn—odd.

Now we prove in the opposite direction, if (x1, x2, . . . , xn) ∈ Bn и x1 + x2 + . . . + xn—
odd, then the following obtains.

1 = 1
2 −

1
2 · (−1)x1+x2+...+xn = 1

2 −
1
2 · (−1)x1 · (−1)x2 · . . . · (−1)xn =

1
2 −

1
2 · (1− 2x1) · (1− 2x2) · . . . · (1− 2xn) =

1
2 −

1
2 ·

(2−4x1)

1+(±1)2 ·
(2−4x2)

1+(±1)2 · . . . · (2−4xn)

1+(±1)2

= 1
2 −

1
2 ·

(2−4x1)

1+(1−2x1)
2 ·

(2−4x2)

1+(1−2x2)
2 · . . . · (2−4xn)

1+(1−2xn)
2 = xord(x1, x2, . . . , xn);

�

Thus, we obtain the following.

∀b ∈ {0, 1}, xord(x1, x2, . . . , xn) = b ⇔ (x1, x2, . . . , xn) ∈ Bn and
xor(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ . . .⊕ xn = b.

Based on the last fact, the infinitely differentiable function xord(x1, x2, . . . , xn) can be
called a suitable and smoothly continuous extension of the discrete function
xor(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ . . . ⊕ xn to the entire domain Rn. Therefore, from the
beginning, we decided that the following expression:

1
2
− 1

2
·

n

∏
k=1

(2− 4xk)

1 + (1− 2xk)
2

would be denoted by xord(x1, x2, . . . , xn).

3. A Suitable Inequality for the Logical Operation and(x1, x2, . . . , xn) and a Proof of Its
Necessary Properties

In this section, we formulate and prove one inequality that “adequately” describes
the behavior of the logical function and(x1, x2, . . . , xn), and based on this provable in-
equality, we define a suitable infinitely differentiable extension of the logical function
and(x1, x2, . . . , xn) to the entire domain Rn.
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Proposition 2. If (x1, x2, . . . , xn) ∈ Rn and the following is the case:

andd(x1, x2, . . . , xn) =
n

∏
k=1

x2
k

2x2
k − 2xk + 1

+
1
n
·

n

∑
k=1

(
x2

k − xk
)2(

2x2
k − 2xk + 1

)2 ,

then the following comparisons are true:

(i) 0 ≤ andd(x1, x2, . . . , xn) ≤ 1, ∀(x1, x2, . . . , xn) ∈ Rn;
(ii) If (x1, x2, . . . , xn) ∈ Bn, then andd(x1, x2, . . . , xn) ∈ B1 = {0, 1};
(iii) andd(x1, x2, . . . , xn) = 0 ⇔ (x1, x2, . . . , xn) ∈ Bn\{(1, 1, . . . , 1)} ;
(iv) andd(x1, x2, . . . , xn) = 1 ⇔ (x1, x2, . . . , xn) = (1, 1, . . . , 1) .

Proof of Proposition 2.

(i) The first inequality on the left is obvious, since 0 ≤ x2

2x2−2x+1 ≤ 1 and

(x2−x)
2

(2x2−2x+1)2 ≥ 0, ∀x ∈ R⇒ andd(x1, x2, . . . , xn) = .

n

∏
k=1

x2
k

2x2
k − 2xk + 1

+
1
n
·

n

∑
k=1

(
x2

k − xk
)2(

2x2
k − 2xk + 1

)2 ≥ 0, ∀(x1, x2, . . . , xn) ∈ Rn.

Now, let us prove the second inequality, which is on the right. To perform this, in the
process, we also use the inequality between the arithmetic mean and the geometric mean.

andd(x1, x2, . . . , xn) =
x2

1
2x2

1−2x1+1
· x2

2
2x2

2−2x2+1
· . . . · x2

n
2x2

n−2xn+1

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 =

(
n

√
x2

1
2x2

1−2x1+1
· x2

2
2x2

2−2x2+1
· . . . · x2

n
2x2

n−2xn+1

)n

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 ≤
(

1
n ·
(

x2
1

2x2
1−2x1+1

+
x2

2
2x2

2−2x2+1
+ . . . + x2

n
2x2

n−2xn+1

))n

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 ≤ 1
n ·
(

x2
1

2x2
1−2x1+1

+
x2

2
2x2

2−2x2+1
+ . . . + x2

n
2x2

n−2xn+1

)
+ 1

n ·
n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 = 1
n ·

n
∑

k=1

x2
k

2x2
k−2xk+1

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2

= 1
n ·

n
∑

k=1

x2
k ·(2x2

k−2xk+1)

(2x2
k−2xk+1)

2 + 1
n ·

n
∑

k=1

x2
k ·(2x2

k−2xk+1)−x4
k

(2x2
k−2xk+1)

2 =

1
n ·

n
∑

k=1

2·x2
k(2x2

k−2xk+1)−x4
k

(2x2
k−2xk+1)

2 = 1
n ·

n
∑

k=1

2·x2
k(2x2

k−2xk+1)−x4
k−(2x2

k−2xk+1)
2

(2x2
k−2xk+1)

2

+ 1
n ·

n
∑

k=1

(2x2
k−2xk+1)

2

(2x2
k−2xk+1)

2 = − 1
n ·

n
∑

k=1

(x2
k−2xk+1)

2

(2x2
k−2xk+1)

2 +
n
n ≤ 1, ∀(x1, x2, . . . , xn) ∈ Rn;

(ii) If (x1, x2, . . . , xn) ∈ Bn, then the following is obtained.

xk ∈ B1, ∀k ∈ {1, 2, . . . , n} ⇒ x2
k

2x2
k−2xk+1

=
x2

k
2xk ·(xk−1)+1 = xk

0+1 = xk ∈ B1,

(x2
k−xk)

2

(2x2
k−2xk+1)

2 = (xk(xk−1))2

(2xk(xk−1)+1)2 = 02

(0+1)2 = 0 ∈ B1, ∀k ∈ {1, 2, . . . , n} ⇒
n
∏

k=1

x2
k

2x2
k−2xk+1

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 = andd(x1, x2, . . . , xn) ∈ B1;

(iii) Indeed, the following is the case.
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andd(x1, x2, . . . , xn) =
n
∏

k=1

x2
k

2x2
k−2xk+1

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 = 0 ⇔
n
∏

k=1

x2
k

2x2
k−2xk+1

= 0

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 = 0
⇔


n
∏

k=1
x2

k = 0
n
∑

k=1

(
x2

k − xk
)2

= 0
⇔


x1 · x2 · . . . · xn = 0

x2
1 − x1 = 0

x2
2 − x2 = 0
. . . . . . . . .

x2
n − xn = 0

⇔ (x1, x2, . . . , xn) ∈ Bn\{(1, 1, . . . , 1)};

(iv) Indeed, the following is the case.

andd(x1, x2, . . . , xn) =
n
∏

k=1

x2
k

2x2
k−2xk+1

+ 1
n ·

n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 = 1 ⇔(
−1 + 1

n ·
n
∑

k=1

(x2
k−xk)

2

(2x2
k−2xk+1)

2 +
1
n ·

n
∑

k=1

x2
k

2x2
k−2xk+1

)
+(

− 1
n ·

n
∑

k=1

x2
k

2x2
k−2xk+1

+
n
∏

k=1

x2
k

2x2
k−2xk+1

)
=

− 1
n ·

n
∑

k=1

(2x2
k−2xk+1)

2

(2x2
k−2xk+1)

2 +
1
n ·

n
∑

k=1

x2
k ·(2x2

k−2xk+1)−x4
k

(2x2
k−2xk+1)

2 + 1
n ·

n
∑

k=1

x2
k(2x2

k−2xk+1)

(2x2
k−2xk+1)

2

+

(
− 1

n ·
n
∑

k=1

x2
k

2x2
k−2xk+1

+
n
∏

k=1

x2
k

2x2
k−2xk+1

)
=

(
− 1

n ·
n
∑

k=1

(x2
k−2xk+1)

2

(2x2
k−2xk+1)

2

)
+(

− 1
n ·

n
∑

k=1

x2
k

2x2
k−2xk+1

+
n
∏

k=1

x2
k

2x2
k−2xk+1

)
= 0 ⇔

n
∑

k=1

(x2
k−2xk+1)

2

(2x2
k−2xk+1)

2 = 0

− 1
n ·

n
∑

k=1

x2
k

2x2
k−2xk+1

+
n
∏

k=1

x2
k

2x2
k−2xk+1

= 0
⇔


(

x2
k − 2xk + 1

)2
= 0, ∀k ∈ {1, 2, . . . , n}

x2
i

2x2
i −2xi+1

=
x2

j

2x2
j−2xj+1

, ∀i, j ∈ {1, 2, . . . , n}
⇔ (x1, x2, . . . , xn) = (1, 1, . . . , 1);

�

Thus, we obtain the following:

∀b ∈ {0, 1}, andd(x1, x2, . . . , xn) = b ⇔ (x1, x2, . . . , xn) ∈ Bn and
and(x1, x2, . . . , xn) = x1 ⊗ x2 ⊗ . . .⊗ xn = b.

Based on the last fact, the infinitely differentiable function andd(x1, x2, . . . , xn) can be
called a suitable and smoothly continuous extension of the discrete function
and(x1, x2, . . . , xn) = x1 ⊗ x2 ⊗ . . . ⊗ xn to the entire domain Rn. Therefore, from the
beginning, we decided that the following expression:

n

∏
k=1

x2
k

2x2
k − 2xk + 1

+
1
n
·

n

∑
k=1

(
x2

k − xk
)2(

2x2
k − 2xk + 1

)2

would be denoted by andd(x1, x2, . . . , xn).

4. Application of the Developed and Proven Inequalities for the Equivalent
Transformation of the System of Logical Equations into the Real Domain Rn

In this section, we apply these contrived and proven inequalities to a system of
logical equations. Specifically, we transform the system of m logical equations in Rn into
an equivalent system of m rational equations by using suitable continuations of logical
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functions xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn) without adding any other equations
(not field equations of the form x2

k − xk = 0 and no other). We prove the equivalence of
these systems in great detail.

Consider the following arbitrary system of logical equations:
p1 = ⊕

(a1,...,an)∈Bn
c1(a1, . . . , an)⊗ xa1

1 ⊗ . . .⊗ xan
n = ⊕

c1(a1,...,an)=1
xa1

1 ⊗ . . .⊗ xan
n = 0

p2 = ⊕
(a1,...,an)∈Bn

c2(a1, . . . , an)⊗ xa1
1 ⊗ . . .⊗ xan

n = ⊕
c2(a1,...,an)=1

xa1
1 ⊗ . . .⊗ xan

n = 0

pm = ⊕
(a1,...,an)∈Bn

cm(a1, . . . , an)⊗ xa1
1 ⊗ . . .⊗ xan

n = ⊕
cm(a1,...,an)=1

xa1
1 ⊗ . . .⊗ xan

n = 0

(1)

where x1, x2, . . . , xn ∈ {0, 1}—essential variables of the system (1); ⊕—logical opera-

tion xor; ⊗—logical operation and; xai
i =

{
1, i f ai = 0
xi, i f ai = 1

, pk = pk(x1, . . . , xn)—Zhegalkin

polynomial; ck(a1, a2, . . . , an) ∈ {0, 1}—coefficient of xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n of polynomial

pk(x1, . . . , xn).
Replacing the functions xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn) with the functions

xord(x1, x2, . . . , xn) and andd(x1, x2, . . . , xn) from system (1), we obtain the corresponding
smooth transformed system:

f1(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

c1(a1,a2,...,an)=1

(2−4·andd(x
a1
1 ,xa2

2 ,...,xan
n ))

1+(1−2·andd(x
a1
1 ,xa2

2 ,...,xan
n ))

2 = 0

f2(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

c2(a1,a2,...,an)=1

(2−4·andd(x
a1
1 ,xa2

2 ,...,xan
n ))

1+(1−2·andd(x
a1
1 ,xa2

2 ,...,xan
n ))

2 = 0

fm(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

cm(a1,a2,...,an)=1

(2−4·andd(x
a1
1 ,xa2

2 ,...,xan
n ))

1+(1−2·andd(x
a1
1 ,xa2

2 ,...,xan
n ))

2 = 0

, (2)

where xai
i =

{
1, i f ai = 0
xi, i f ai = 1

.

andd
(

xa1
1 , xa2

2 , . . . , xan
n
)
=

n

∏
k=1

(
xak

k
)2

2 ·
(
xak

k
)2 − 2 · xak

k + 1
+

1
n
·

n

∑
k=1

((
xak

k
)2 − xak

k

)2

(
2 ·
(
xak

k
)2 − 2 · xak

k + 1
)2 .

Theorem 1. In Rn, systems(1)and(2)are equivalent in the sense that they have the same solutions.

Proof of Theorem 1. (i) Let (b1, b2, . . . , bn) ∈ Bn be an arbitrary solution of system (1).
Then, it is obvious that

(
ba1

1 , ba2
2 , . . . , ban

n
)
∈ Bn, ∀(a1, a2, . . . , an) ∈ Bn ⇒

andd
(
ba1

1 , ba2
2 , . . . , ban

n
)
∈ B1. Now, it follows from Propositions 1 and 2 that fk(b1, b2, . . . , bn)

= pk(b1, b2, . . . , bn) = 0, ∀k ∈ {1, 2, . . . , m} or in other words (b1, b2, . . . , bn) is the solution
of system (2). Thus far, we have proved that the set of solutions of system (1) is a subset of
the set of solutions of system (2). Conversely, let (r1, r2, . . . , rn) be an arbitrary solution of
system (2). This means that fk(r1, r2, . . . , rn) = 0, ∀k ∈ {1, 2, . . . , m}. Proposition 1 implies
that andd

(
ra1

1 , ra2
2 , . . . , ran

n
)
∈ B1, ∀(a1, a2, . . . , an) ∈

{(
a∗1 , a∗2 , . . . , a∗n

)
: ck
(
a∗1 , a∗2 , . . . , a∗n

)
= 1

}
and ∀k ∈ {1, 2, . . . , m}. From the fact that any variable is essential for at least one poly-
nomial of system (1) and from Proposition 2, it follows that (r1, r2, . . . , rn) ∈ Bn. Now,
it follows from Propositions 1 and 2 that if (r1, r2, . . . , rn) ∈ Bn, then pk(r1, r2, . . . , rn) =
fk(r1, r2, . . . , rn) = 0, ∀k ∈ {1, 2, . . . , m} or in other words (r1, r2, . . . , rn) is a solution of
system (1). Conversely, we also proved that the set of solutions of system (2) is a subset of
solutions of system (1).

Thus, we proved that if at least one system has a solution, then their sets of solutions
are equal, or in other words, they are equivalent.

(ii.a) Let system (1) have no solution. Let us prove that, in this case system, (2) also has
no solution. From contradiction, let (r1, r2, . . . , rn) be the solution of the system (2).
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This means that fk(r1, r2, . . . , rn) = 0, ∀k ∈ {1, 2, . . . , m}. Proposition 1 implies that
andd

(
ra1

1 , ra2
2 , . . . , ran

n
)
∈ B1, ∀(a1, a2, . . . , an) ∈

{(
a∗1 , a∗2 , . . . , a∗n

)
: ck
(
a∗1 , a∗2 , . . . , a∗n

)
=1
}

and ∀k ∈ {1, 2, . . . , m}. From the fact that any variable is essential for at least one
polynomial of system (1) and from Proposition 2, it follows that (r1, r2, . . . , rn) ∈
Bn. Now, it follows from Propositions 1 and 2 that if (r1, r2, . . . , rn) ∈ Bn, then
pk(r1, r2, . . . , rn) = fk(r1, r2, . . . , rn) = 0, ∀k ∈ {1, 2, . . . , m}, or in other words
(r1, r2, . . . , rn) is a solution of system (1). We have obtained a contradiction, which
had to be proved.

(ii.b) Let system (2) have no solution. Let us prove that in this case that system (1) also
has no solution. From contradiction, let (b1, b2, . . . , bn) ∈ Bn be the solution of the
system (1). Then, it is obvious that

(
ba1

1 , ba2
2 , . . . , ban

n
)
∈ Bn, ∀(a1, a2, . . . , an) ∈ Bn ⇒

andd
(
ba1

1 , ba2
2 , . . . , ban

n
)
∈ B1. Now, it follows from Proposition 1 and Proposition 2

that fk(b1, b2, . . . , bn) = pk(b1, b2, . . . , bn) = 0, ∀k ∈ {1, 2, . . . , m}, or in other words,
(b1, b2, . . . , bn) is the solution of system (2). We have obtained a contradiction, which
had to be proved. �

Remark 1. After entering the value of andd
(

xa1
1 , xa2

2 , . . . , xan
n
)

into system(2)and reducing to a
common denominator, each function fk(x1, x2, . . . , xn)will look as follows:

fk(x1, x2, . . . , xn) =
qk(x1, x2, . . . , xn)

hk(x1, x2, . . . , xn)
,

where qk(x1, x2, . . . , xn), hk(x1, x2, . . . , xn) are polynomials of variables x1, x2, . . . , xn, and
hk(x1, x2, . . . , xn) 6= 0, ∀(x1, x2, . . . , xn) ∈ Rn. Then, it is clear that in the Rn system, (2) is
equivalent to the following system of polynomial equations.

q1(x1, x2, . . . , xn) = 0
q2(x1, x2, . . . , xn) = 0

. . . . . . . . . . . . . . .
qm(x1, x2, . . . , xn) = 0

. (3)

5. Conclusions

In this paper, firstly, we invented and proved in detail two not-difficult inequalities.
Thanks to the proofs of the transformations of these “aesthetic” inequalities into equalities,
we have determined (found) suitable smooth (infinitely differentiable) extensions of the
discrete logical functions xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn) to the entire domain
Rn. These suitable extensions are applied to systems of logical equations. The system of m
logical equations in a constructive way without adding any equations (not field equations
and no others) is transformed in Rn first into an equivalent system of m smooth rational
equations so that the solution of the system of m smooth rational equations can be reduced
to the problem minimization of the objective function and any numerical optimization
methods can be applied since the objective function will be infinitely differentiable. Sec-
ondly, again, we transformed the system of m smooth rational equations into an equivalent
system of m polynomial equations. This means that any symbolic methods for solving
polynomial systems can be used to solve and analyze an equivalent system of m polynomial
equations. The equivalence of these systems has been proved in detail.

Thanks to the proofs of these suitable inequalities, we can also conclude that another
advantage of the proposed method for transforming the system is that it can be applied to
any system described with arithmetic operations and logical operations xor and and.
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