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Abstract: Herein, a spectral Galerkin method for solving the fractional Rayleigh–Stokes problem
involving a nonlinear source term is analyzed. Two kinds of basis functions that are related to the
shifted sixth-kind Chebyshev polynomials are selected and utilized in the numerical treatment of the
problem. Some specific integer and fractional derivative formulas are used to introduce our proposed
numerical algorithm. Moreover, the stability and convergence accuracy are derived in detail. As a
final validation of our theoretical results, we present a few numerical examples.
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1. Introduction

The importance of non-Newtonian fluids in science and industrial applications has
piqued the interest of numerous researchers. There are many examples of non-Newtonian
fluids such as in natural substances (lava, magma, gums, honey), in biology (semen, mucus,
synovia, blood), in industry (molten polymer, lubricant, paint, ink, glue), in food products
(ketchup, butter, mustard, chocolate, mayonnaise, cheese), and in cosmetics (cream, silicone,
toothpaste, nail polish, soap solution). In this regard, the fractional Rayleigh–Stokes
equation (FRSE) plays an important role in describing the dynamic behavior of some
non-Newtonian fluids [1–4].

The nonlinear FRSE [5] is as follows:

ut(x, t)− Dα
t [ a uxx(x, t) ]− b uxx(x, t) = f (u(x, t), x, t), 0 < α < 1, (1)

with, respectively, the following homogeneous initial and boundary conditions:

u(x, 0) = 0, 0 < x < `,

and
u(0, t) = u(`, t) = 0, 0 < t ≤ τ,

where a and b are two positive constants and the nonlinear source term f (u(x, t), x, t)
satisfies the global Lipschitz condition with respect to u(x, t). The symbol Dα

t is the Caputo
fractional derivative operator of order α that describes the viscoelastic behavior of the
flow. Some researchers have investigated and proposed a few methods for the solution
of FRSE. In Ref. [6], the authors proposed the finite element method for the numerical
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solution of FRSE. In Ref. [7], the authors applied the radial basis function-generated finite
difference method for the solution of the FRSE, while in [8], the authors solved the FRSE by
using the spectral Jacobi–Galerkin method. Furthermore, an improved tau method for the
multi-dimensional FRSE for a heated generalized second grade fluid was developed in [9].
Some other studies regarding the Rayleigh–Stokes problem can be found in [10,11].

Chebyshev polynomials (CPs) play significant roles in numerical analysis and ap-
proximation theory. There are well-known four kinds of CPs, which are specific types of
Jacobi polynomials. These kinds of polynomials have been extensively used in a variety
of papers related to numerical analysis; see, for instance, ref. [12–14]. The other two kinds
of Chebyshev polynomials, namely, the fifth and sixth kinds of Chebyshev polynomi-
als were investigated in [15]. These two classes are symmetric like the first and second
kinds of Chebyshev polynomials. In fact, they are particular polynomials of the so-called
“generalized ultraspherical polynomials” (see, for example, ref. [16,17]). Regrading these
polynomials, their theoretical, as well as practical aspects, have attracted a significant
attention from several authors. In this respect, Xu et al. [18] treated the fractional optimal
control problems using sixth-kind Chebyshev wavelets. Moreover, Babaei et al. [19] em-
ployed Chebyshev polynomials of the sixth kind for solving the variable-order fractional
nonlinear quadratic integro-differential equations. In addition, Jafari et al. [20] developed a
spectral collocation method for treating the inverse reaction-diffusion–convection based on
Chebyshev polynomials of the sixth kind. Some other contributions regarding sixth-kind
Chebyshev polynomials can be found in [21,22], while for some contributions regarding
Chebyshev polynomials of the fifth kind, one can referred to [23,24].

Since obtaining an exact solution is very computationally expensive for fractional
differential equations, it is therefore impossible or extremely difficult to analytically solve
such models. As a consequence, it has become an active research pursuit to analyze and
implement high-efficient numerical techniques such as spectral methods for the simulation
of solutions to these models. Spectral methods are based on the idea that approximate
solutions to differential equations can be expressed as a series of truncated special functions.
Three main spectral methods are employed, namely, the collocation, tau, and Galerkin
methods. Readers interested in this subject can consult [25–27] for detailed explanations
and applications of these techniques.

The following is a brief summary of the principal aims of this article:

• Construct and develop a new method for solving the nonlinear FRSE through shifted
CPs of the sixth-kind by the application of the Galerkin method;

• Discuss the convergence and error analysis of the presented method;
• Present some numerical results to examine the applicability and accuracy of the algorithm.

The structure of the paper is as follows. Section 2 displays a few fundamental concepts
related to Caputo fractional calculus. A few definitions and formulas concerning sixth-
kind shifted CPs are also displayed. Section 3 discusses the Galerkin approach for the
numerical treatment of the FRSE. The proposed double Chebyshev expansion is examined
for convergence and error analysis in Section 4. Section 5 contains some numerical examples
and comparisons between our numerical results and those produced by other approaches.
A few conclusions are summarized in Section 6.

2. Preliminaries and Essential Relations

Essential definitions and formulas are included in this section.

2.1. Some Definitions and Properties of the Fractional Calculus

Definition 1 ([28]). On the typical Lebesgue space L1[0, 1], the Riemann–Liouville fractional
integral operator of order ρ is defined as

Iρh(y) =

 1
Γ(ρ)

∫ y

0
(y− t)ρ−1h(t)dt, ρ > 0,

h(y), ρ = 0.
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Definition 2 ([28]). The Caputo definition of the fractional-order derivative is:

Dρ
yh(y) =

1
Γ(m− ρ)

∫ y

0
(y− t)m−ρ−1h(m)(t)dt, ρ > 0, y > 0,

where m− 1 ≤ ρ < m, m ∈ N.

The operator Dρ
y fulfills the accompanying properties for m− 1 ≤ ρ < m, m ∈ N,

(i) (Dρ
y Iρh)(y) = h(y),

(ii) (Iρ Dρ
yh)(y) = h(y)−

m−1

∑
k=0

h(k)(0+)
Γ(k + 1)

(y− a)k, y > 0,

(iii)Dρ
y yk =

Γ(k + 1)
Γ(k + 1− ρ)

yk−ρ, k ∈ N, k ≥ dρe,

where dρe is the smallest integer greater than or equal to ρ.

2.2. Some Basic Formulas and Properties of Sixth-Kind CPs and Their Shifted Ones

Sixth-kind Chebyshev polynomials Yi(t) [15] are orthogonal polynomials with respect
to the weight function w̃(t) = t2

√
1− t2. The orthogonality relation of these polynomials

is given by [21]
1∫
−1

t2
√

1− t2 Yi(t) Yj(t) dt =

hi, if i = j,

0, if i 6= j,

where

hi =
π

22 i+3

{
1, if i even,
i+3
i+1 , if i odd.

These polynomials may be constructed using the following recursive formula:

Yi(t) = t Yi−1(t)−
i(i + 1) + (−1)i (2i + 1) + 1

4 i (i + 1)
Yi−2(t), Y0(t) = 1, Y1(t) = t, i ≥ 2.

In [21], the authors also provide trigonometric representations of sixth-kind Chebyshev
polynomials as follows:

Y2 i(cos θ) =
sin(2 i + 2) θ

4i sin(2 θ)
,

Y2 i+1(cos θ) =
2 (i + 2) cos θ sin((2 i + 3) θ)− sin((2 i + 4) θ)

4i+1 (i + 1) sin(2 θ) cos θ
.

(2)

Now, we define the shifted orthogonal polynomials Y∗i (t) on [0, τ] as:

Y∗i (t) = Yi

(
2 t
τ
− 1
)

.

The following recurrence relation:

Y∗i (t) =
(

2 t
τ
− 1
)

Y∗i−1(t)− αi Y∗i−2(t), Y∗0 (t) = 1, Y∗1 (t) =
2 t
τ
− 1, i ≥ 2, (3)

generates the sequence of the shifted sixth-kind CPs Y∗i (t) on [0, τ], with

αi =
i (i + 1) + (−1)i (2 i + 1) + 1

4 i (i + 1)
.
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These polynomials are orthogonal on [0, τ] with respect to ω(t) = (2 t− τ)2
√

t τ − t2.
More precisely, we have the following orthogonality relation (see, [21]):∫ τ

0
ω(t)Y∗i (t)Y∗j (t) dt = hτ,i δi,j, (4)

where δi,j is the well-known Kronecker delta function and

hτ,i =
π τ4

22 i+5

{
1, if i even,
i+3
i+1 , if i odd.

(5)

The power form representation of Y∗j (t) is given by [21]

Y∗j (t) =
j

∑
r=0

Br,j tr, (6)

where

Br,j =
22r−j

τr(2r + 1)!



b j
2 c

∑
k=b r+1

2 c

(−1)
j
2+k+r(2k + r + 1)!
(2k− r)!

, if j even,

2
j + 1

b j−1
2 c

∑
k=b r

2 c

(−1)
j+1

2 +k+r(k + 1)(2k + r + 2)!
(2k− r + 1)!

, if j odd.

Another important formula of the Y∗j (t) is its inversion formula [21]

tj =
j

∑
i=0

Qi,j Y∗i (t),

where

Qi,j =
τ j(2j + 1)!2i−2j+2

(j− i)!(i + j + 4)!

(i + 2)
(
i(i + 4) + j2 + j + 3

)
, if i even,

(i + 1)(i(i + 4) + j(j + 3) + 6), if i odd.

For more properties about Y∗j (t), see [21,22].

Theorem 1. The first derivative of Y∗i (t) is given by [29]

dY∗i (t)
dt

=
i−1

∑
r=0

Mr,i Y∗r (t), i ≥ 1,

and the coefficients Mr,i are given by

Mr,i =
22−i+r

τ



r + 1, i even, r odd,

i(r + 2)
i + 1

, i odd, i−r−1
2 even,

(i + 4)(r + 2)
i + 1

, i odd, i−r−3
2 even,

0, otherwise.
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3. Galerkin Approach for Treating the FRSE

We begin by selecting our basis functions in this section. Then, using the spectral
Galerkin approach, we present a numerical solution for solving the FRSE with homoge-
neous initial and boundary conditions.

3.1. Basis Functions Selection

The following are the basis functions that we choose:

φi(t) =t Y∗i (t), (7)

ψi(x) =x (`− x)Y∗i (x).

The orthogonality relations of φi(t) and ψi(x) are respectively given by:

∫ τ

0

(2 t− τ)2
√

t τ − t2

t2 φi(t) φj(t) dt = hτ,i δi,j,

and ∫ `

0

(2 x− `)2

x
3
2 (`− x)

3
2

ψi(x)ψj(x) dx = h`,i δi,j,

where hτ,i is as given in (5).

Theorem 2. The second-order derivative of ψi(x) can be written as [29]:

d2ψi(x)
d x2 =

i

∑
j=0

λj,i Y∗j (x),

where

λj,i =
1

2i−j−1



−(i+1)(i+2)
2 , if i = j,

j + 2, if i, j even and i−j+2
2 odd,

−3 (j + 2), if i, j even and i−j+2
2 even,

−(j+1)(i+2 j+6)
i+1 , if i, j odd and i−j+2

2 even,

(j+1)(−i+2 j+2)
i+1 , if i, j odd and i−j+2

2 odd,

0, otherwise.

Theorem 3. The first-order derivative of φi(t) is given by

dφi(t)
dt

=
i

∑
r=0

Ar,i Y∗r (t), i ≥ 1,

where the coefficients Ar,i are given by

Ar,i =
τ

2



Mr−1,i + Mr,i + αr+2 Mr+1,i, 1 ≤ r ≤ i− 2,

2
τ
+ Mr−1,i, r = i,

Mr,i + Mr−1,i, r = i− 1,

M0,i + α2 M1,i, r = 0.
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Theorem 4. The following approximation formula holds for 0 < α < 1

Dα
t φj(t) ≈

N

∑
k=0

σk,r,j,α Y∗k (t),

where

σk,r,j,α =
j

∑
r=0

(r + 1)! Br,j ρk,r+1−α

(r + 1− α)!
.

Remark 1. The proofs of Theorems 3 and 4 are given in the Appendix A at the end of this paper.

3.2. Galerkin Solution for the FRSE

Now, consider the following two spaces:

Λ = span{ψi(x) φi(t) : i, j = 0, 1 . . . , N},
∆ = {u(x, t) ∈ Λ : u(0, t) = u(`, t) = u(x, 0) = 0, 0 < x < `, 0 < t ≤ τ},

then, any function ũ(x, t) ∈ ∆ may be written as

ũ(x, t) =
N

∑
i=0

N

∑
j=0

cij ψi(x) φj(t).

Thanks to Theorems 2–4 along with the recurrence relation (3), we have the follow-
ing expressions:

ũt(x, t) =
`2

4

N

∑
i=0

N

∑
j=0

j

∑
r=0

Ar,j cij [−Y∗i+2(x) + (1− αi+1 − αi+2)Y∗i (x)− αi αi+1 Y∗i−2(x) ]Y∗r (t),

ũxx(x, t) =
τ

2

N

∑
i=0

N

∑
j=0

i

∑
s=0

λs,i cij Y∗s (x)
[
Y∗j+1(t) + Y∗j (t) + αj+1 Y∗j−1(t)

]
,

Dα
t [ ũxx(x, t) ] ≈ τ

2

N

∑
i=0

N

∑
j=0

i

∑
s=0

N

∑
k=0

λs,i cij σk,r,j,α Y∗s (x)Y∗k (t).

Now, the residual of Equation (1) may be written in the following form:

R(x, t) = ũt(x, t)− Dα
t [ a ũxx(x, t) ]− b ũxx(x, t)− f (ũ(x, t), x, t)

=
`2

4

N

∑
i=0

N

∑
j=0

j

∑
r=0

Ar,j cij [−Y∗i+2(x) + (1− αi+1 − αi+2)Y∗i (x)− αi αi+1 Y∗i−2(x) ]Y∗r (t)

− b τ

2

N

∑
i=0

N

∑
j=0

i

∑
s=0

λs,i cij Y∗s (x)
[
Y∗j+1(t) + Y∗j (t) + αj+1 Y∗j−1(t)

]

− a τ

2

N

∑
i=0

N

∑
j=0

i

∑
s=0

N

∑
k=0

λs,i cij σk,r,j,α Y∗s (x)Y∗k (t)− f (ũ(x, t), x, t).

(8)
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The following system of equations can be obtained using the Galerkin method as follows:

∫ τ

0

∫ `

0
R(x, t)ψm(x) φn(t)w(x, t) d x d t = 0, 0 ≤ m, n ≤ N, (9)

where w(x, t) = (2 x−`)2 (2 t−τ)2
√

t τ−t2

t
√

x (`−x)
.

By virtue of Equation (8), we can rewrite Equation (9) as

`2

4

N

∑
i=0

N

∑
j=0

j

∑
r=0

Ar,j cij [− h`,i+2 δi+2,m + (1− αi+1 − αi+2) h`,i δi,m − αi αi+1 h`,i−2 δi−2,m ] δr,n hτ,r

− b τ

2

N

∑
i=0

N

∑
j=0

i

∑
s=0

λs,i cij δs,m h`,s

[
hτ,j+1 δj+1,n + hτ,j δj,n + αj+1 hτ,j−1 δj−1,n

]

− a τ

2

N

∑
i=0

N

∑
j=0

i

∑
s=0

λs,i cij σn,r,j,α δs,m h`,s hτ,n − f̄m,n = 0, 0 ≤ m, n ≤ N,

(10)

where

f̄m,n =
∫ τ

0

∫ `

0
f (ũ(x, t), x, t)ψm(x) φn(t)w(x, t) dx dt.

Equation (10) constructs a system of non-linear algebraic equations with unknown
expansion coefficients cij of dimension (N + 1)2, which can be solved using the well-known
Newton’s iterative approach with zero initial approximations, and thus an approximation
of the solution can be obtained.

3.3. Transformation to the Homogeneous Initial and Boundary Conditions

By virtue of the following transformation:

u(x, t) := v(x, t) + v̄(x, t),

where
v̄(x, t) =

(
1− x

`

)
(u(0, t)− u(0, 0)) +

x
`
(u(`, t)− u(`, 0)) + u(x, 0).

the FRSE (1) with non-homogeneous initial and boundary conditions can be transformed
into the following form:

vt(x, t)− Dα
t [ a vxx(x, t) ]− b vxx(x, t) = f̂ (v(x, t), x, t), 0 < α < 1,

with homogeneous initial and boundary conditions

v(x, 0) = 0, 0 < x < `,

v(0, t) = v(`, t) = 0, 0 < t ≤ τ,

where

f̂ (v(x, t), x, t) = f (u(x, t), x, t)− v̄t(x, t) + Dα
t [ a v̄xx(x, t) ] + b v̄xx(x, t).

4. Convergence Analysis

We present an upper estimate for the truncation error as well as the stability of the
proposed approximate solution in this section.

Theorem 5. Consider the function: u(x, t) = γ1(x) γ2(t) ∈ L2
w(x,t), with γ1(x) and γ2(t)

having bounded third derivatives that satisfy the expansion:

u(x, t) =
∞

∑
i=0

∞

∑
j=0

cij ψi(x) φj(t). (11)
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Then, the above series (11) is uniformly convergent to u(x, t) and the expansion coefficients cij
satisfy the inequality:

|cij| /
1

i3 j3
, ∀ i, j > 3, (12)

where / means that a generic constant d exists such that |cij| ≤ d
i3 j3 .

Proof. The orthogonality relations of ψi(x) and φj(t) enable one to write

cij =
1

h`,i hτ,j

∫ τ

0

∫ `

0
u(x, t)ψi(x) φj(t)w(x, t) dx dt.

By the hypotheses of the theorem, we obtain

cij =
1

h`,i hτ,j

(∫ `

0
(2 x− `)2

√
x `− x2 γ1(x)Y∗i (x)d x

)(∫ τ

0
(2 t− τ)2

√
t τ − t2 γ2(t)Y∗j (t)d t

)
.

By virtue of the two substitutions:

x =
`

2
(1 + cos θ1), t =

τ

2
(1 + cos θ2),

the last equation turns into the form

cij =
1

4 hi

∫ π

0
γ1

(
`

2
(1 + cos θ1)

)
Yi(cos θ1) sin2 (2 θ1) dθ1

× 1
4 hj

∫ π

0
γ2

(τ

2
(1 + cos θ2)

)
Yj(cos θ2) sin2 (2 θ2) dθ2.

(13)

Now, we have four cases:

(i) If i, j are even
Integrating Equation (13) by parts three times as followed in Theorem 5 in [21] and
making use of the trigonometric representations (2) leads to the following estimation:

|cij| /
1

i3 j3
, ∀ i, j > 3.

We can also deduce the following estimations in the following cases

(ii) If i, j are odd

|cij| /
1

i3 j3
, ∀ i, j > 3.

(iii) If i is even; j is odd

|cij| /
1

i3 j3
, ∀ i, j > 3.

(iv) If i is odd; j is even

|cij| /
1

i3 j3
, ∀ i, j > 3.

This completes the proof of Theorem 5.
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Theorem 6. If u(x, t) satisfies the hypothesis of Theorem 5 and if uN(x, t) =
N

∑
i=0

N

∑
j=0

cij ψi(x) φj(t),

then the following estimate of truncation error is fulfilled:

‖u(x, t)− uN(x, t)‖L2
w(x,t)

/ N
−3
2 .

Proof. From the definition of u(x, t) and uN(x, t), we obtain

‖u(x, t)− uN(x, t)‖L2
w(x,t)

≤

∥∥∥∥∥∥
N

∑
i=0

∞

∑
j=N+1

cij ψi(x) φj(t)

∥∥∥∥∥∥
L2

w(x,t)

+

∥∥∥∥∥∥
∞

∑
i=N+1

∞

∑
j=0

cij ψi(x) φj(t)

∥∥∥∥∥∥
L2

w(x,t)

=
N

∑
i=0

∞

∑
j=N+1

|cij|
√
(1− αi+1 − αi+2)h`,ihτ,j +

∞

∑
i=N+1

∞

∑
j=0
|cij|

√
(1− αi+1 − αi+2)h`,ihτ,j

=
∞

∑
j=N+1

(
|c0j| b0 + |c1j| b1 + |c2j| b2 + |c3j| b3

)√
hτ,j

+
N

∑
i=4

∞

∑
j=N+1

|cij|
√
(1− αi+1 − αi+2)h`,ihτ,j

+
∞

∑
i=N+1

( |ci0| b4 + |ci1| b5 + |ci2| b6 + |ci3| b7 )
√
(1− αi+1 − αi+2)h`,i

+
∞

∑
i=N+1

∞

∑
j=4
|cij|

√
(1− αi+1 − αi+2)h`,ihτ,j,

(14)

where

br =

{√
(1− αr+1 − αr+2)h`,r, if r = 0, 1, 2, 3,√
hτ,r, if r = 4, 5, 6, 7.

Now, following steps similar to those given in Theorem 5, we obtain

|c0j| /
1
j3

, |c1j| /
1
j3

, |c2j| /
1
j3

, |c3j| /
1
j3

, ∀j > 3, (15)

and
|ci0| /

1
i3

, |ci1| /
1
i3

, |ci2| /
1
i3

, |ci3| /
1
i3

, ∀ i > 3. (16)

Inserting Equations (12), (15) and (16) into Equation (14) and using√
(1− αi+1 − αi+2) < 1, i ≥ 0, and |h`,j| /

1
22 j , j ≥ 0, (17)

we obtain

‖u(x, t)− uN(x, t)‖L2
w(x,t)
≤

∞

∑
j=N+1

b̂0

j3 2j +
N

∑
i=4

∞

∑
j=N+1

b̂1

i3 j3 2i+j +
∞

∑
i=N+1

b̂2

i3 2i

+
∞

∑
i=N+1

∞

∑
j=4

b̂3

i3 j3 2i+j ,

where b̂r, r = 0, 1, 2, 3 are constants.
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However, for all j > 0, we have 1
j3 2j <

1

j
5
2

; thus

‖u(x, t)− uN(x, t)‖L2
w(x,t)
≤

∞

∑
j=N+1

b̂0

j
5
2
+

N

∑
i=4

∞

∑
j=N+1

b̂1

i
5
2 j

5
2
+

∞

∑
i=N+1

b̂2

i
5
2

+
∞

∑
i=N+1

∞

∑
j=4

b̂3

i
5
2 j

5
2

.

(18)

and hence, the application of the integral test [30] enables us to write Equation (18) as

‖u(x, t)− uN(x, t)‖L2
w(x,t)

/ N
−3
2 .

Theorem 7. Under the assumptions of Theorem 5, we have

‖uN+1(x, t)− uN(x, t)‖L2
w(x,t)

/ 2−N .

Proof. We have

‖uN+1(x, t)− uN(x, t)‖L2
w(x,t)

=

∥∥∥∥∥ N

∑
i=0

ci,N+1 ψi(x) φN+1(t) +
N+1

∑
j=0

cN+1,j ψN+1(x) φj(t)

∥∥∥∥∥
L2

w(x,t)

≤
∥∥∥∥∥ N

∑
i=0

ci,N+1 ψi(x) φN+1(t))

∥∥∥∥∥
L2

w(x,t)

+

∥∥∥∥∥N+1

∑
j=0

cN+1,j ψN+1(x) φj(t)

∥∥∥∥∥
L2

w(x,t)

<
N

∑
i=0
|ci,N+1|

√
h`,i hτ,N+1 +

N+1

∑
j=0
|cN+1,j|

√
h`,N+1 hτ,j

=
√

hτ,N+1

(
|c0,N+1|

√
h`,0 + |c1,N+1|

√
h`,1 + |c2,N+1|

√
h`,2 + |c3,N+1|

√
h`,3

)
+
√

h`,N+1

(
|cN+1,0|

√
hτ,0 + |cN+1,1|

√
hτ,1 + |cN+1,2|

√
hτ,2 + |cN+1,3|

√
hτ,3

)
+
√

hτ,N+1

N

∑
i=4
|ci,N+1|

√
h`,i +

√
h`,N+1

N+1

∑
j=4
|cN+1,j|

√
hτ,j.

(19)

Based on Equations (15)–(17) and Theorem 5 we obtain

|c0,N+1| /
1

N3 , |c1,N+1| /
1

N3 , |c2,N+1| /
1

N3 , |c3,N+1| /
1

N3 ,

|cN+1,0| /
1

N3 , |cN+1,1| /
1

N3 , |cN+1,2| /
1

N3 , |cN+1,3| /
1

N3 ,

|h`,j| /
1

22 j , |h`,N+1| /
1

22 N , |hτ,j| /
1

22 j , |hτ,N+1| /
1

22 N ,

|ci,N+1| /
1

i3 N3 , |cN+1,i| /
1

i3 N3 .

(20)

Now, inserting Equation (20) into Equation (19) and using the inequality: 1
j3 2j ≤ 1

2j ,
∀j > 0, along with the following approximation

b

∑
i=a+1

f (i) ≤
∫ b

x=a
f (x) dx,
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where f is decreasing function, the desired result can be obtained.

5. Illustrative Examples

In this section, the technique presented in Section 3 is applied to solve the nonlinear
FRSE. Three illustrative examples are used to demonstrate the effectiveness and applicabil-
ity of the proposed technique.

Example 1. Consider the FRSE of the form

ut(x, t)− Dα
t [uxx(x, t) ]− uxx(x, t) = f (u(x, t), x, t), 0 < α < 1,

where

f (u(x, t), x, t) = sin(u) + 2 t x (x− `)

[(
5 x2 − 5 x `+ `2

)( 6
Γ(3− α)

t1−α + 3 t
)
− x2 (x− `)2

]
− sin

(
x3 (`− x)3 t2

)
,

along with the following initial and boundary conditions:

u(x, 0) = 0, 0 < x < `,

u(0, t) = 0, u(`, t) = 0, 0 < t ≤ τ.

The exact solution of this problem is u(x, t) = x3 (`− x)3 t2.
In Table 1, we reported the computational time (CPU time) and compared the L2 errors of the present
method with method in [5] at ` = τ = 1. We see in this table that the results are accurate for small
choices of N. Table 2 lists the L∞ errors for different values of α at N = 6 when ` = 2 and τ = 3
and the CPU time. Figure 1 illustrates the L∞ error for α = 0.3 (left) and α = 0.7 (right) at N = 4
when ` = 5 and τ = 10. We can see from Tables 1 and 2 and Figure 1 that the proposed method is
appropriate and effective. This demonstrates the advantage of our method compared to some other
numerical methods.

Table 1. The L2 errors for Example 1.

Method in [5] Presented Method

α h = 1
5000 , T = 1

128 T = 1
5000 , h = 1

128 N = 6 CPU Time

0.1 1.1552× 10−6 1.4408× 10−6 8.5446× 10−16 35.703
0.5 1.0805× 10−6 1.4007× 10−6 3.0349× 10−15 36.109
0.9 8.1511× 10−7 1.3682× 10−6 7.5113× 10−16 38.594

Table 2. The L∞ errors for Example 1.

α 0.1 0.5 0.9

L∞ error 5.12335 × 10−13 7.70939 × 10−13 9.18376 × 10−13

CPU time 46.029 43.813 44.406

0

2.50×10-10

5.00×10-10

7.50×10-10

1.00×10-9

1.25×10-9

0

2.×10-10

4.×10-10

6.×10-10

8.×10-10

Figure 1. The L∞ error for Example 1.
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Example 2. Consider the FRSE of the form

ut(x, t)− Dα
t [uxx(x, t) ]− uxx(x, t) = f (u(x, t), x, t), 0 < α < 1,

where

f (u(x, t), x, t) = u2 + sin(π x)
[

2 π2

Γ(3− α)
t2−α + π2 t2 + 2 t

]
− t4 sin2(π x),

along with the following initial and boundary conditions:

u(x, 0) = 0, 0 < x < `,

u(0, t) = 0, u(`, t) = 0, 0 < t ≤ τ.

The exact solution of this problem is u(x, t) = t2 sin(π x).
Table 3 presents the CPU time and a comparison of the L2 errors between our proposed method

and the method in [5] at ` = τ = 1. It can be found that the obtained results of the presented
method are more accurate than the method in [5]. Moreover, Figure 2 sketches the L∞ error for
different values of α at N = 16 when ` = 2 and τ = 3. This figure show that the numerical and
exact solutions are almost identical. In Table 4. we list the absolute error for α = 0.5 at N = 18
when ` = 5 and τ = 10. As can be seen, the proposed method presents better accuracy.

Table 3. The L2 errors for Example 2.

Method in [5] Presented Method

α h = 1
5000 , T = 1

128 T = 1
5000 , h = 1

128 N = 12 CPU Time

0.1 9.1909× 10−5 5.1027× 10−5 2.53148× 10−12 94.218
0.5 8.4317× 10−5 4.4651× 10−5 1.25044× 10−12 95.718
0.9 6.2864× 10−5 4.0543× 10−5 8.47489× 10−13 94.78

0

2.×10-9

4.×10-9

6.×10-9

8.×10-9

0

2.50×10-10

5.00×10-10

7.50×10-10

1.00×10-9

1.25×10-9

0

1.×10-9

2.×10-9

3.×10-9

0

5.0×10-10

1.0×10-9

1.5×10-9

Figure 2. The L∞ error for Example 2.

Example 3. Consider the FRSE of the form

ut(x, t)− Dα
t [uxx(x, t) ]− uxx(x, t) = f (u(x, t), x, t), 0 < α < 1,
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where

f (u(x, t), x, t) = u2 + ex
(
(3− α) t2−α − Γ(4− α)

Γ(4− 2α)
t3−2 α − t3−α

)
− e2 x t6−2 α,

along with the following initial and boundary conditions:

u(x, 0) = 0, 0 < x < 1,

u(0, t) = t3−α, u(1, t) = e t3−α, 0 < t ≤ 1.

The exact solution of this problem is u(x, t) = ex t3−α.
In Table 5, the absolute errors for the case corresponding to N = 18, α = 0.1, and α = 0.9

are displayed. This table confirms that the presented method has high performance and produces
accurate results. In addition, Figure 3 illustrates the L∞ error for α = 0.5 at N = 18. The results
show good agreement between the approximate solution and the exact one.

Table 4. The absolute errors for Example 2.

x Absolute Error
(t = 3)

Absolute Error
(t = 6)

Absolute Error
(t = 9)

0.5 0.000459395 0.00202554 0.00477932
1 0.000348895 0.00169837 0.00419428

1.5 0.000275978 0.00147336 0.00378444
2 0.000234718 0.00134231 0.00352795

2.5 0.000221372 0.00129796 0.00323485
3 0.000234709 0.00133006 0.00170189

3.5 0.000275919 0.00139784 0.00634153
4 0.000348564 0.00126173 0.05467222

4.5 0.000457683 0.00007223 0.21660543

Table 5. The absolute errors for Example 3.

α = 0.1 α = 0.9

x t = 1
10 t = 5

10 t = 9
10 t = 1

10 t = 5
10 t = 9

10

0.1 7.51088× 10−9 3.37811× 10−10 1.94761× 10−10 6.06613× 10−7 3.43728× 10−7 2.23961× 10−7

0.2 1.42794× 10−8 6.40815× 10−10 3.11168× 10−10 1.11602× 10−6 6.33681× 10−7 4.13436× 10−7

0.3 1.96572× 10−8 8.81388× 10−10 3.47166× 10−10 1.51426× 10−6 8.60691× 10−7 5.63444× 10−7

0.4 2.31269× 10−8 1.03444× 10−9 1.34724× 10−8 1.78783× 10−6 1.01624× 10−6 6.84415× 10−7

0.5 2.43513× 10−8 1.04202× 10−9 1.32679× 10−7 1.92288× 10−6 1.09187× 10−6 1.04649× 10−6

0.6 2.32053× 10−8 5.93031× 10−10 9.68495× 10−7 1.90517× 10−6 1.07976× 10−6 3.98943× 10−6

0.7 1.97889× 10−8 2.20531× 10−9 5.43109× 10−6 1.72122× 10−6 9.76103× 10−7 2.04777× 10−5

0.8 1.44202× 10−8 1.35044× 10−8 1.94111× 10−5 1.35221× 10−6 7.49924× 10−7 5.23308× 10−5

0.9 7.60732× 10−9 4.18981× 10−8 5.25662× 10−5 7.86145× 10−7 8.31597× 10−7 6.27135× 10−5

0

1.×10-7

2.×10-7

3.×10-7

4.×10-7

5.×10-7

Figure 3. Th L∞ error for Example 3.
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6. Concluding Remarks

The nonlinear FRSE was treated numerically by applying the spectral Galerkin method
using some polynomials related to shifted sixth-kind Chebyshev polynomials as basis
functions. The proposed problem is reduced to a nonlinear system of algebraic equations
that can be solved using Newton’s iterative method. The resulting approximate solutions
using the suggested method are extremely close to the exact ones, indicating that our
proposed algorithm can efficiently solve the problem. To demonstrate the validity and
enormous potential of the algorithm, comparisons are performed between our proposed
approximate solutions and those developed by other methods in the literature. In this paper,
Wolfram Mathematica 11.2 was used for all calculations. In future work, we think that
the theoretical results in this paper will be useful for other types of differential equations.
In addition, we think that we can derive other derivative formulas for some polynomials
related to Chebyshev polynomials of the sixth kind, in order to handle types of fractional
differential equations that involve terms of other high-order derivatives.
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Appendix A. Proofs of Theorem 3 and 4

Proof of Theorem 3:

Proof. From (7), we have
dφi(t)

dt
= t

dY∗i (t)
dt

+ Y∗i (t).

By virtue of Theorem 1, one obtains

dφi(t)
dt

=
i−1

∑
r=0

Mr,i [t Y∗r (t)] + Y∗i (t). (A1)

Based on the recurrence relation (3), we can write

t Y∗i (t) =
τ

2
[
Y∗i+1(t) + Y∗i (t) + αi+1 Y∗i−1(t)

]
. (A2)

Inserting Equation (A2) into the relation (A1), we obtain

dφi(t)
dt

=
τ

2

i−1

∑
r=0

Mr,i
[
Y∗r+1(t) + Y∗r (t) + αr+1 Y∗r−1(t)

]
+ Y∗i (t).

The last formula after expanding and rearranging terms leads to the following formula:

dφi(t)
dt

=
i

∑
r=0

Ar,i Y∗r (t),
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and the coefficients Ar,i are given by

Ar,i =
τ

2



Mr−1,i + Mr,i + αr+2 Mr+1,i, 1 ≤ r ≤ i− 2,

2
τ
+ Mr−1,i, r = i,

Mr,i + Mr−1,i, r = i− 1,

M0,i + α2 M1,i, r = 0.

This finalizes the theorem’s proof.

Proof of Theorem 4:

Proof. If the operator Dα
t is applied to φj(t), then based on Equation (6), we obtain

Dα
t φj(t) =

j

∑
r=0

Br,j
(r + 1)!

(r + 1− α)!
tr+1−α. (A3)

Now, tr+1−α is approximated in terms of Y∗k (t) as

tr+1−α ≈
N

∑
k=0

ρk,r+1−α Y∗k (t). (A4)

to find ρk,r+1−α. Based on the orthogonality relation of Y∗k (t) in (4), we obtain

ρk,r+1−α =
1

hτ,k

∫ τ

0
tr+1−α Y∗k (t)ω(t) dt

=
1

hτ,k

k

∑
m=0

Bm,k

∫ τ

0
tr+m−α+1 (2 t− τ)2

√
t τ − t2

=
1

hτ,k

k

∑
m=0

Bm,k

∫ τ

0

(
4 tr+m−α+ 7

2 + τ2 tr+m−α+ 3
2 − 4 τ tr+m−α+ 5

2

)√
τ − t dt

=
1

hτ,k

k

∑
m=0

Bm,k τr+m−α+5
(

4 β

(
r + m− α +

9
2

,
3
2

)
+ β

(
r + m− α +

5
2

,
3
2

)
− 4 β

(
r + m− α +

7
2

,
3
2

))

=
1

hτ,k

k

∑
m=0

Bm,k τr+m−α+5 Γ(
3
2
)

(
4 Γ(r + m− α + 9

2 )

Γ(r + m− α + 6)
+

Γ(r + m− α + 5
2 )

Γ(r + m− α + 4)
−

4 Γ(r + m− α + 7
2 )

Γ(r + m− α + 5)

)

=
k

∑
m=0

√
π Bm,k τr+m−α+5 (α2 − α (2 m + 2 r + 3) + (m + r)2 + 3 m + 3 r + 5

)
Γ
(
m + r− α + 5

2
)

2 hτ,k Γ(m + r− α + 6)
,

where β(.) and Γ(.) are the well known beta and gamma functions, respectively.
Now, inserting Equation (A4) into Equation (A3), we obtain the result of Theorem 4.
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