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Abstract: In this work, we introduce a similarity-network-based approach to explore the role of
interacting single-cell histone modification signals in haematopoiesis—the process of differentiation
of blood cells. Histones are proteins that provide structural support to chromosomes. They are subject
to chemical modifications—acetylation or methylation—that affect the degree of accessibility of genes
and, in turn, the formation of different phenotypes. The concentration of histone modifications can
be modelled as a continuous signal, which can be used to build single-cell profiles. In the present
work, the profiles of cell types involved in haematopoiesis are built based on all the major histone
modifications (i.e., H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3) by counting
the number of peaks in the modification signals; then, the profiles are used to compute modification-
specific similarity networks among the considered phenotypes. As histone modifications come as
interacting signals, we applied a similarity network fusion technique to integrate these networks
in a unique graph, with the aim of studying the simultaneous effect of all the modifications for the
determination of different phenotypes. The networks permit defining of a graph-cut-based separation
score for evaluating the homogeneity of subgroups of cell types corresponding to the myeloid and
lymphoid phenotypes in the classical representation of the haematopoietic tree. Resulting scores show
that separation into myeloid and lymphoid phenotypes reflects the actual process of haematopoiesis.

Keywords: histone modifications; omics integration; graph cut; haematopoiesis

MSC: 92-08

1. Introduction

Histones are basic proteins which bind tightly to DNA in the nuclei of eukaryotic
cells. According to the ‘beads-on-a-string’ model [1], they combine into octamers to form
nucleosomes, the basic units around which DNA wraps to form chromatin. The nucleo-
somes, in turn, bind together to form a chain structure that constitutes the backbone of the
three-dimensional arrangement of chromosomes.

Some residues of histone proteins, namely lysines and arginines, represent possible
targets for post-translational modifications, such as methylation and acetylation [2]. More-
over, particular patterns of histone modifications are interpreted as a code specifying for
genetic functions [3,4]. Although parts of the working principles of this code are being
investigated, most of it still represents a puzzle for biologists, as well as a computational
challenge for bioinformaticians. However, the existence of an intrinsic relationship between
the three-dimensional structure of chromosomes, gene accessibility and gene expression
has been highlighted [5]. Consequently, histone modifications emerge as fundamental
epigenetic agents for the development of different cell phenotypes. The advent of the
cost-effective ChIP-seq technology [6] that combines chromatin immunoprecipitation and
massively parallel sequencing, and the consequent large availability of data, have made it
possible to read the traces of all the histone modifications of the genome [7]. Accordingly,
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several institutions—which came together to form the International Human Epigenome
Consortium (IHEC) (https://ihec-epigenomes.org/) [8]—have teamed up to generate huge
databases of such epigenetic markers.

In this paper, we show how histone modification traces can be turned into whole-
genome profiles. This is achieved by identifying and counting high-resolution peaks (steep
local maxima with sizes as small as a hundred bps) in the histone modification signal.
The obtained profiles show behaviour that resembles that of gene expression, with only a
small fraction of genes exhibiting relevant activity (relatively high peak counts), and the
vast majority being silent. Indeed, the existence of a tight relationship between histone
modifications and transcription has been deeply investigated, and quantitative models to
predict the expression level of genes from histone modification levels have been derived.
It is well-known, in fact, that histone modification levels and gene expression are highly
correlated, while only a small number of histone modifications are necessary to accurately
predict gene expression [5,9,10]. Consequently, it is possible to borrow methods from
differential expression analysis to extract knowledge from histone modification profiles (see,
for example, [11]). In particular, the proposed model integrates the information contained
in all the histone modification signals involved in haematopoiesis (see https://epigenom
esportal.ca/ihec/grid.html?build=2020-10&assembly=4&cellTypeCategories=1, accessed
on 23 March 2022). This choice is based on the observation that a single modification
may not be able to capture the complexity of epigenetics, since a phenotype is the result
of the combination of contrasting contributions—promotion or repression—of several
modifications [12].

Initially, the information contained in each histone modification is treated separately,
constructing a dissimilarity network of cell types; then, all the networks are integrated using
a similarity network fusion technique [13,14]. This integration model is suitable for several
applications, including that of clustering a population of cell types into homogeneous
groups. Nevertheless, if the sought sub-populations are unknown, it could be useful to
compare alternative partitions of the population into subgroups rather than performing
clustering. Following this idea, we define a score to quantitatively evaluate the plausibility
of a graph bipartition into two subgroups of vertices. The combination of the integration
model with the evaluation score for graph bipartitions is then tested by considering a
hypothesis on the biological process of haematopoiesis, i.e., the process of the formation of
all blood cells from a common progenitor. Specifically, we tested the classical hypothesis
on the existence of two main subpopulations of cell types in haematopoiesis, namely the
lymphoid and myeloid cells [15]. Figure 1 depicts an outline of the proposed methodology.

The paper is organised as follows. In Section 2, the adopted method is described.
In Section 3, the experimental analysis and the obtained results are presented. A discussion
of the methodology and the results is offered in Section 4. Finally, some conclusions are
given in Section 5.

https://ihec-epigenomes.org/
https://epigenomesportal.ca/ihec/grid.html?build=2020-10&assembly=4&cellTypeCategories=1
https://epigenomesportal.ca/ihec/grid.html?build=2020-10&assembly=4&cellTypeCategories=1
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Figure 1. Scheme of the proposed methodology. In Phase 1, histone modification profiles of cell
types are built by counting peaks in the modification signal. In Phase 2, a similarity network of cell
types is computed for each histone modification; the networks are then fused by using a similarity
network [14]. In Phase 3, a graph-cut-based approach is introduced to evaluate the bipartition of the
networks into myeloid and lymphoid cell types.

2. Materials and Methods

A histone modification track has the form of a continuous signal. The signal is obtained
after a first phase of ChIP-sequencing by associating each nucleotide of the DNA sequence
with the number of reads of the modifier covering it [7]. In this section, we first show how to
detect and count peaks in these signals in order to build the histone modification profiles of
a cell. Moreover, we describe how cell-type profiles from different histone modifications can
be organised into a network-based setup and then integrated into a unique, comprehensive
graph. Finally, we propose a graph-cut-based hypothesis testing scheme for evaluating
graph bipartitions.

2.1. Peak Calling

Let X = {x1, . . . , xn} be the histone modification track of a sample cell X, where
the value xi corresponds to the number of supporting reads covering genomic position
i. Intuitively, a peak is a contiguous region around a local maximum in track X. More
specifically, the peak region consists of two monotone curves leading to a point whose
value is the highest within a neighbourhood of points. From this informal definition,
two free parameters can be derived to define a peak: (i) its height and (ii) its width.
Despite being simple in principle, these two parameters make finding peaks complicated.
Indeed, different settings, as well as appropriate algorithms, may be required for specific
applications. For instance, setting large surrounding areas is equivalent to seeking large
peaks (low-resolution peaks), which are suitable for the identification of genomic sites
involved in histone modification. This is the case, for example, of Sole-Search [16], the peak
detection algorithm used at IHEC [8]. On the other hand, searching for small peaks (high-
resolution peaks) is more appropriate for quantification. Since the first step of this analysis
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aims at quantifying the number of peaks in a histone modification track, we design an
algorithm to identify high resolution peaks (with resolution on the order of a few bps).

Let Xh = {x̂1, . . . , x̂n/h} be a transformation of profile X at resolution h, where
x̂i = mean([xhi, . . . , x(h+1)i−1]). Let R(Xh) = {r1, . . . , rm} (m ≤ n/h) be a compact rep-
resentation of Xh, where consecutive pairs x̂i and x̂i+1 are merged if x̂i = x̂i+1. An element
ri is eligible as a peak if it satisfies, at least, the conditions ri > ri−1 and ri > ri+1. The rep-
resentation of a histone modification track Xh with R(Xh) allows us to consider all the
maxima as candidate peaks independent of their width. Thence, in order for a point ri to be
a real peak, two additional features are required. First, the signal increase has to be steep
enough. Second, the candidate ri has to be compared with its background. To this end, as a
background we use the interval I(ri) = [α, β], where α and β are integer numbers such that
α < i < β and rα−1 = 0, rβ+1 = 0, and rj 6= 0 ∀j ∈ [α < i < β], while the peak intensity is
computed as the Z-score of ri, where:

z(ri) =
ri − µ(I(ri))

σ(I(ri))
, (1)

µ() denotes the mean, and σ() is the standard deviation of the signal distribution over the
interval I(). The Z-score defined in Equation (1) does not depend on the scale of the histone
modification signal and has the advantage of being interpretable as a sort of fold change.
Consequently, a peak can be defined as a genomic locus where the score z() is higher than
a user-defined threshold (set to 2 in our experiments).

2.2. Normalisation

After the peak-calling step, we proceed by counting the number of peaks for each
gene. Peak counting, as many other quantification tasks from NGS data, is influenced by
sequencing depth. Indeed, in order for a peak to be individuated, it has to be endowed with
a consistent number of supporting reads. This generally happens easily with strong signals,
while it requires high coverage for weaker signals. Counts per million (CPM) and reads per
kilobase per million [17] (RPKM) are two widespread normalisation methods used in the
field of RNA-seq to mitigate the effect of sequencing productivity. Both methods leverage
on the acceptable assumption that the overall amount of signals (in this case, peaks) per
sample is roughly constant. The main difference between CPM and RPKM is that the latter
is based on the additional assumption that the molar concentration of RNA is constant.
Consequently, the number of reads per gene is proportional to gene length. In the context
of this work, CPM and RPKM assume slightly different semantics. CPM is based on the
hypothesis that a cell phenotype is determined only by the presence of a high concentration
of a histone modification signals. It is therefore an absolute measure of concentration of
histone modification peaks inside a gene. In contrast, RPKM is a relative measure, as it
relies on the idea that the determination of a cell phenotype depends on the distribution
of the number of peaks along the gene. Hence, in the latter case, it is assumed that a high
concentration of histone modifications is not sufficient in itself to produce a phenotype,
but rather must be spread along the gene.

Due to the lack of evidence to support a model based on the absolute concentration
of histone modifications or relative concentration, both CPM and RPKM are tested in
our experiments.

2.3. Cell-Type Expression Profiles

The IHEC data portal [8] makes a variable number of different samples available for
a given cell type. Such redundant information can be exploited to build a unique profile
for each phenotype, which, in turn, has the effect of mitigating possible bias due to the
intrinsic variability of samples. In this work, this is achieved by taking the average of the
per-gene contributions of profiles of the same cell type.
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Similarly to gene expression, it is reasonable to assume that most genes do not con-
tribute to a phenotype of interest because they are expressed constantly or not at all. In
a framework where the computation of similarity/distance between phenotypes is re-
quired, the effect of these genes would be that of pushing the ratio between the two nearest
and the two furthest elements towards 1. Consequently, it would be complicated to look
for differentiated subgroups of phenotypes. Since we are interested in computing simi-
larities/distances between different cell types, a strategy for filtering out those genes is
required. Nevertheless, it is difficult to establish a priori a cutoff threshold to filter out
infrequently expressed genes, as genes with similar profiles could be excluded only on the
basis of a negligible distance from the threshold. In order to solve this issue, we choose to
cluster genes, and to interpret each cluster centroid as representing all the group members.
In this way, a whole cluster is either retained or filtered out based on the profile of its
centroid. In this work, the clustering of genes is performed using the k-means algorithm,
and the centroids are initialised using the Lloyd procedure [18] (the implementation is
available via the R [19] function kmeans). The number of clusters k is set to 50 (thanks to a
raw grid search based on the elbow method [20]) to ensure high within-cluster homogeneity,
which is required for removing or retaining genes with similar profiles. Finally, we set a
conservative threshold for filtering out clusters of genes with constant or no expression [21].
More precisely, a cluster is retained only if the maximum value of its centroid is higher than
the lowest 10% of the expression interval.

2.4. Profile Integration

Histone modifications exert their effects directly by influencing the overall structure of
chromatin, promoting or inhibiting gene accessibility. As a result, a phenotype can be seen
as a combination of all the contributions of the single modifications. Based on this observa-
tion, we present a strategy that integrates the information of similarities/dissimilarities
between profiles of cell types coming from several modifications into a unique similar-
ity/dissimilarity network. In order to perform profile integration, the Similarity Network
Fusion (SNF) [14] algorithm (the software can be downloaded in R or MATLAB versions at
http://compbio.cs.toronto.edu/SNF/SNF/Software.html, accessed on 23 March 2022) is
exploited. The input to SNF consists of a set of similarity networks, one for each histone
modification, characterised by the same set of vertices (cell types). Then, by applying a
cross-diffusion process (CrDP) [13], SNF outputs a unique weighted similarity graph with
the same set of nodes as the original networks. In brief, the algorithm iteratively updates
the single similarity networks by promoting (i) strong links, which are not necessarily
present in all the networks, and (ii) weak links that are shared by all the networks. Then,
at the final iteration step, the contributions of the single networks are averaged to define
a unique similarity graph. The resulting network can therefore give information on how
multiple variables determine similarities among cell types.

2.5. Hypothesis Testing

The model described in Section 2.4 is applied to graphs where nodes are cell types,
and edges are weighted with a similarity value between pairs of cell types. With the aim
of studying how to divide the nodes of these graphs into two homogeneous groups, we
define a notion of separation by using graph cuts. A sensible bipartition of a similarity
network should have low-weighted edges between the two distinct sets and relatively
higher-weighted edges within the groups. Thus, the cost of a cut constitutes quantitative in-
formation on the level of separation of the graph components. In line with this observation,
it is possible to define a score that is proportional to the degree of separation between two
groups, a task easier to carry out with dissimilarity graphs. Dissimilarities can be easily
computed starting from similarities. For example, a dissimilarity weight can be obtained by
first converting similarities into Z-scores and then inverting them with respect to the mean.

http://compbio.cs.toronto.edu/SNF/SNF/Software.html
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Applying a cut to a dissimilarity network is not in itself sufficient to determine the
goodness of a network bipartition. In fact, a lower and an upper bound on the cost of
a cut induced by a partition must be introduced. In principle, setting the lower and the
upper bound as the costs, respectively, of the minimum and the maximum cut might be a
reasonable choice. However, the two scores are highly dependent on the weight values and
the graph topology. Therefore, they do not represent a good solution when scores obtained
for different graphs have to be compared. In order to get rid of these scaling problems,
the separation measure can be converted into a scale-free score as follows:

S(h) =
λ(h)−minc∈C(G) λ(c)

maxc∈C(G) λ(c)−minc∈C(G) λ(c)
, (2)

where C(G) denotes the set of all possible graph cuts of graph G, λ() denotes the cost
function of a cut, and h is the cut induced by the bipartition to be evaluated (referred to as the
hypothesis cut). The score S(h) takes on values in the range [0, 1] and reaches its maximum
when the cost of the hypothesis cut reaches that of the maximum cut on G (the similarities
between vertices of the same group are high and those among vertices of different groups
are low). Computation of the maximum cut represents a major issue for computing S(h).
Indeed, while exact algorithms for computing the minimum cut exist [22,23], computation
of the maximum cut is known to be an NP-complete [24] problem. However, heuristic
solutions can be adopted to find the solution.

In this work, the maximum cut approach is implemented in the R environment fol-
lowing the Greedy Cut Algorithm proposed in [25]. As for the min-cut, we use the R
function min_cut from the igraph package, which is an implementation of the algorithm
proposed in [26].

In our experiments, the score is tested on dissimilarity networks of cell types with the
aim of studying if two subpopulations appear to have substantially different phenotypes.

3. Results
3.1. Dataset

The experimental analysis is conducted by using whole-genome histone modifica-
tion profiles from a collection of cell samples involved in haematopoiesis (the complex
differentiation process that starts from stem cells and gives origin to all types of blood cells).

The data come from the 2020-10 release by the Blueprint project (https://www.bl
ueprint-epigenome.eu/), and are available at the International Human Epigenome Con-
sortium (IHEC) [8] data portal (https://epigenomesportal.ca/ihec/). The dataset con-
sists of 1254 samples of 35 distinct cell types, each registering six modification marks
on histone H3. The marks are identified by the Roadmap Epigenome Mapping Centers
(http://www.roadmapepigenomics.org/). More specifically, the histone modifications
include mono and tri-methylation of lysine 4 (H3K4me1 and H3K4me3), tri-methylation of
lysine 9, 27 and 36 (H3K9me3, H3K27me3 and H3K36me3), and acetylation of lysine 27
(H3K27ac). The pre-processed data and the code to perform the analysis are available at
https://gitlab.com/gbi1/gbi-of-histone-modifications/, accessed on 23 March 2022.

Since the similarity network fusion method requires all the single modification net-
works to have the same nodes, we limit our tests to the subset of cell types for which all
the histone modification marks are available. Moreover, profiles associated with unhealthy
samples are removed, because a pathological state could alter a cell phenotype and would
introduce some bias into our analysis. With this filtering, the dataset considered consists of
810 samples partitioned in 24 distinct cell types involved in haematopoiesis (see Table 1,
which collects the number of samples of each cell type showing a particular histone modifi-
cation, for details). As we are interested in studying the plausibility of the distinction into
myeloid and lymphoid lineages in haematopoiesis (see Figure 2), where all the cell types
are labelled according to their corresponding lineage. As shown in Table 1, 13 cell types
belong to the myeloid lineage, and the remaining 11 belong to the lymphoid one.

https://www.blueprint-epigenome.eu/
https://www.blueprint-epigenome.eu/
https://epigenomesportal.ca/ihec/
http://www.roadmapepigenomics.org/
https://gitlab.com/gbi1/gbi-of-histone-modifications/
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Table 1. Origin, lineage and number of samples for each cell type and histone modification. The whole dataset consists of 810 samples from the 24 cell types involved
in haematopoiesis.

Cell Type Origin Lineage H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H4K9me3

Alternatively activated macrophage Blood Myeloid 7 7 7 7 7 7
Band-form neutrophil Bone marrow Myeloid 3 3 3 3 4 3
CD14-positive, CD16-negative classical monocyte Blood Myeloid 14 9 6 10 9 8
CD34-negative, CD41-positive, CD42-positive megakaryocyte cell Blood Myeloid 2 2 3 3 3 2
CD38-negative naive B cell Blood Lymphoid 4 5 6 5 7 7
CD4-positive, alpha-beta T cell Blood Lymphoid 9 9 9 9 9 9
CD8-positive, alpha-beta T cell Blood Lymphoid 6 5 5 5 5 5
Central memory CD4-positive, alpha-beta T cell Blood Lymphoid 1 1 1 1 2 1
Class switched memory B cell Blood Lymphoid 3 3 2 3 3 3
Cytotoxic CD56-dim natural killer cell Blood Lymphoid 4 4 4 5 6 5
Effector memory CD8-positive, alpha-beta T cell Blood Lymphoid 2 1 2 2 3 3
Endothelial cell of umbilical vein (proliferating) Blood Lymphoid 2 2 2 2 2 2
Endothelial cell of umbilical vein (resting) Blood Lymphoid 1 2 2 2 2 2
Erythroblast Blood Myeloid 2 2 2 2 2 2
Inflammatory macrophage Blood Myeloid 8 8 9 7 8 9
Macrophage Blood Myeloid 14 7 7 13 14 8
Mature eosinophil Blood Myeloid 2 2 2 2 2 2
Mature neutrophil Blood Myeloid 15 13 13 13 13 13
Monocyte Blood Myeloid 36 22 3 28 28 15
Naive B cell Blood Lymphoid 8 8 9 7 8 8
Neutrophilic metamyelocyte Bone marrow Myeloid 3 3 3 3 4 3
Neutrophilic myelocyte Bone marrow Myeloid 3 3 3 3 4 3
Plasma cell Bone marrow Lymphoid 3 3 3 3 3 3
Segmented neutrophil of bone marrow Bone marrow Myeloid 3 3 3 3 4 3

Total 155 127 109 141 152 126
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Figure 2. A simplified representation of the classical model of the haematopoietic tree, where the
lymphoid and myeloid lineages are highlighted in blue and orange, respectively.

3.2. Histone Signal Distribution

The first step of the experiments is dedicated to the analysis of histone modification
signals along the genome. As stated in Section 2.3, whole-genome profiles of cell types are
built by quantifying the number of peaks for each gene in the histone modification signal.
In this phase, we investigate the possibility that a (relatively) high signal intensity of a
histone modification is registered only in a fraction of genes. This hypothesis arises from
the observation that in gene expression profiles, most genes are either constantly expressed
or not expressed at all [27,28]. Consequently, if whole-genome histone modification pro-
files follow this behaviour, classical differential expression analysis techniques could be
borrowed for processing histone signals.

We experimentally verify this hypothesis by comparing the distribution of the number
of peaks per gene (see Figure 3 for a graphical representation) of the profiles of different
cell types for each histone modification with the expected distributions of gene expression
counts derived from the literature [27,28]. Figure 3 highlights that, as happens in RNA-seq
experiments, very low or no signal is registered for the large majority of genes. Indeed,
the vast majority of genes have counts equal to 0 or lower than 5. Interestingly, this
behaviour appears to be independent of the type of modification.

Therefore, observation of the signal distribution opens up the use of standard differ-
ential gene expression normalisation methods for processing histone modification marks.
These methods, in turn, can be exploited to perform feature selection in the experiments.
Following this idea, each cell type profile is normalised using CPM and RPKM normal-
isation. Experiments are conducted in the R environment [19] by using the R functions
cpm and rpkm from the edgeR package. Subsequently, a feature selection procedure is
performed following the strategy described in Section 2.3. Feature selection is applied
to both normalisations of the data, with the effect of retaining (i) genes with a consistent
number of peaks and (ii) genes with well-differentiated values across samples. In Table 2,
the number of features (genes) retained after feature selection is reported. Table 2 shows
that out of 21,987 quantified genes, only a fraction are active. In particular, by using RPKM,
thus requiring the signal intensity to be proportional to the gene length, the number of
active genes is rather small (independent of the histone modification mark). Moreover,
RPKM filters many more genes than CPM. This result suggests that there are a number of
long genes with enough histone modification marks to be retained after CPM, but with a
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sufficient concentration of marks to also be retained after RPKM. Finally, by inspecting the
number of genes retained after the application of both normalisation methods (see the last
column of Table 2), we observe that few genes are retained after RPKM and filtered out
by CPM. This suggests that such genes have small peaks, which emerge because of their
short length.
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Figure 3. Distribution of the signal intensity of the histone modification profiles. The histograms
show that most of the genes have no or poorly detectable signal intensity (i.e., lower than 10) while
the signal is remarkably high only in a fraction of genes along each sample.

Table 2. The number of genes retained after feature selection using CPM and RPKM normalisation,
respectively. In the last column, the number of genes retained by both normalisation methods are
reported, showing that almost all the genes retained by RPKM are also maintained by CPM.

Modification CPM RPKM INTERSECTION

H3K27ac 5655 481 340
H3K27me3 5294 235 184
H3K36me3 6062 369 264
H3K4me1 7309 248 206
H3K4me3 5627 235 189
H3K9me3 5295 383 280
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3.3. Phenotype Separation Evaluation

In view of evaluating the network integration and the hypothesis testing scheme
presented in Sections 2.4 and 2.5, the profiles from the six histone modifications are used
to define similarity networks among cell types. The similarity measure is defined as
in [14]. Then, the six resulting similarity networks are integrated into a unique graph using
Similarity Network Fusion [14] (SNF). The application of SNF requires three parameters:
K, T and µ. K denotes the number of neighbours to consider in the K-Nearest Neighbours
algorithm exploited by SNF, T is the number of iteration of the Cross Diffusion Process,
and µ is a scaling parameter used in the iterative computation of the similarity matrices.
In our experiments, we set their values to 5, 10 and 0.3, respectively.

Subsequently, the six similarity networks (corresponding to the six histone modifi-
cations analysed) and the results from SNF are turned into dissimilarity networks to test
the hypothesis evaluation model described in Section 2.5. For the single-modification
networks, edges between cell types are weighted with the normalised squared Euclidean
distance between pairs of cell types (in the range [0, 1]). For the network resulting from
fusion, dissimilarities are computed as follows: First, the Z-score of each similarity weight
is computed. Then, the Z-scores are inverted with respect to the mean to obtain a dissimi-
larity weight.

We choose to test the model for evaluating the separation of each graph into two
subgroups of cell types belonging to two distinct lineages in the classic haematopoietic
tree [15]. Figure 2 shows a simplified representation of a classical scheme of haematopoiesis,
which imposes a strict binary distinction between the myeloid and lymphoid lineages at the
first differentiation step. However, recent studies [29,30] have highlighted that this model
is a simplification of the real haematopoietic process. Indeed, they admit the existence of
some mechanisms allowing myeloid progenitor cells to differentiate into cells belonging
to the lymphoid component and vice versa. Consequently, it is interesting to exploit our
hypothesis testing model for quantitatively evaluating the separation of the networks of
cell types into the components induced by the two lineages.

If the graphical model fits the hypothesis, a cut separating myeloid and lymphoid
cell types in each dissimilarity graph would tend to mostly remove edges with a high
dissimilarity score. If we allow the possibility that some lower-weighted edges can also be
removed, the separation score is expected to be close to (but less than) 1.

Indeed, the results depicted in Figure 4 report a score near 1 for all the networks. In
addition, Figure 4 shows that scores obtained using CPM-based normalisation are higher
than those obtained using RPKM, even if the gap is not remarkable. This suggests that
in order to trigger a certain phenotype, histone modification signals do not have to be
spread uniformly along a gene, but it is enough to have them in sufficient concentration.
However, although the scores are high, there is still margin to believe that the model shown
in Figure 2 may not be the only mechanism describing haematopoiesis.

Finally, from the results of the single-histone modification networks (Figure 4), it
emerges that the six histone modifications almost equally contribute to the haematopoi-
etic branch at the first level. This result is enforced by the high score obtained in the
SNF network.
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Figure 4. Barplot of the results of hypothesis testing for each modification network and for the
network resulting from the fusion process (denoted SNF). The x-axis is labelled according to the
different similarity networks. “SNF” refers to the network obtained after the fusion process. The
y-axis contains the value of the separation score obtained after applying the graph cuts to the networks.
For each network, the separation score is described by two coloured bars, distinguishing results
obtained after CPM- or RPKM-based normalisation.

4. Discussion

Histone modifications are complex signals that are not yet fully understood. It is
known that an increase/decrease in the concentration of such signals has an impact on
gene expression. Furthermore, we know that the presence of large peaks in the signal
wave is associated with loci involved in a histone modification [16]. In our experiments,
the possibility of using high-resolution peaks to quantify per-gene histone modifications
was investigated. In this framework, we studied the distribution of high-resolution peaks
across the genome, showing that they behave similarly to gene expression profiles. More
specifically, it can be observed, analogous to what happens for gene expression, that only
a small fraction of genes have a significant signal intensity. Following this idea, we nor-
malised the histone modification profiles of cells by using CPM and RPKM normalisations.
Both methods were tested on our data since the use of a specific normalisation requires
different interpretation of signal behaviour. Indeed, CPM measures signal concentration.
Accordingly, differences in phenotypes are activated with a sufficient change in the amount
of signal in a gene, regardless of the signal distribution. This is consistent with the idea
that histone modifications merely have the role of starting/stopping transcription. On the
contrary, RPKM is a measure of signal distribution. It is based on the assumption that a sig-
nificant change in the phenotype is triggered only when a high quantification of the signal is
uniformly spread along the genome. In this case, histone modifications would have the role
of making the entire gene sequence accessible/hidden to facilitate/prevent transcription.

The results reported in Figure 3 and Table 2 show that, similar to gene expression,
in most cases the signal (the number of peaks) is almost absent. This is especially evident
using RPKM normalisation. Indeed, after feature selection only a few genes are retained.
This indicates the presence of long genes having a high enough number of peaks to pass
the filtering threshold for CPM but not RPKM. However, as the intersections of the genes
retained with CPM and RPKM show, the opposite phenomenon is also present. In fact,
there are short genes whose peak concentration is not sufficient to pass CPM filtering but
that have signal distribution exceeding that of RPKM. A further inspection of Table 2 also
reveals that the number of active genes is quite constant for all the histone modification
types. Although further investigation is required for a correct biological interpretation of
this result, no histone modification signal appears to play a dominant role in the regulation
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of gene expression. Accordingly, the displayed phenotype comes from the combination
of the single modifications. As an example, in the imprinted genes, both the H3K4me3
open chromatin mark and the H3K9me3 compact chromatin mark are present at the
promoter site [31].

Based on this observation, we used the SNF method [14] to integrate all the histone
modification signals into a unified similarity network among phenotypes. The resulting
network, shown in Figure 5, is a graph in which the nodes correspond to cell types and
edges are weighted with a similarity score between pairs of cell types. Edge thickness is
proportional to the similarity score between connected cell types, so that thicker edges
connect cells with similar profiles. The similarity networks of the single histone modi-
fications can be found in the Supplementary Material (Figures S1–S6). Supplementary
Material are numbered according to the order in which the modifications are reported in
Table 2. All the networks are plotted with the Gephi software [32] using the ForceAtlas2
visualisation algorithm [32]. From observation of the single-modification networks and
the fused network, it emerges that strong and common links are promoted by similarity
network fusion, as expected. As an example, in Figure 5 cells of the innate immune system
(neutrophils, monocytes, macrophages, eosinophils) are tightly linked. This is coherent with
the presence of strong links (high similarity scores) among those cells in most of the single
modification networks. Another observation regards the strong link in Figure 5 between
the “endothelial cell of umbilical vein (proliferating)” and “effector memory CD8-positive,
alpha-beta T cell”. The similarity score between these two cell types is not very high in the
single-modification networks (it is slightly higher in Supplementary Figure S4, representing
H3K4me1), but it has a similar value in all the networks. This common link is therefore
enhanced by the fusion procedure. Overall, the fused network is a good representation of
the combination of the single networks, thus giving an overview of the simultaneous effect
of histone modifications in haematopoietic cell differentiation.

Figure 5. Similarity network of cell types obtained after applying the SNF method. Nodes are
coloured according to the classical hypothesis on haematopoiesis: pink nodes correspond to cells
labelled as “myeloid”; blue nodes correspond to cells labelled as “lymphoid”. Edge thickness is
proportional to the similarity score between connected cell types.
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The SNF network and the similarity networks of the single histone modifications are
exploited for the application of the proposed hypothesis testing model. In order to apply
this model, the similarity scores were turned into dissimilarities. The hypothesis testing
scheme was then applied to the resulting networks for testing a hypothesis on the biological
process of haematopoiesis. More specifically, we evaluated the separation induced on the
graphs by differentiation into myeloid and lymphoid lineages, i.e., the first split in the
classical haematopoietic tree (see Figure 2). In the ideal case, the cost of the graph cut that
partitions the SNF network into the two groups corresponding to the two lineages should
be maximum. Indeed, the weights of edges between cell types of the same lineage should
be stronger (equivalently, the dissimilarity score should be lower) than those between
cell types of different lineages. The results reported in Figure 4 show that the partition
separating myeloid and lymphoid cell types is nearly best-case. This indicates that the
classic myeloid/lymphoid differentiation branching is a reasonable approximation of the
haematopoietic process. However, the same results leave room for concluding that this
model in not accurate enough to capture the complexity of haematopoiesis. Interestingly,
by applying the hypothesis testing model to the single histone modification graphs, we
found that all the signals approximate the classical model with comparable scores. This,
once again, can be considered confirmation of the hypothesis that all histone modification
marks cooperate for the development of the displayed phenotype.

Overall, the experiments have proven that histone modification marks can be quanti-
fied using high resolution peaks. This quantification behaves similarly to gene expression,
with only a few genes containing a noticeable number of peaks. Moreover, the analysis
of dissimilarity networks between 24 cell types belonging to the haematopoietic tree has
shown a close relationship between a given phenotype and a profile of the modification
marks. This opens for exploitation differential analysis tools to identify genes involved in a
phenotype of interest.

5. Conclusions

Histone modifications are complex signals which regulate gene expression by modi-
fying the three-dimensional structure of chromatin. By consequence, genes become more
or less accessible for transcription. The complexity of these signals makes their mining
very difficult.

In this paper, we have shown that high-resolution peak counting (down to a few bps) is
a reasonable approach to build per-gene profiles of histone modification marks. Experimen-
tal analysis of the signals of six histone modifications belonging to 24 cell types highlights
that these profiles follow a similar distribution to that of gene expression. The relevance
of the peak-based analysis of histone profiles was validated by computationally assess-
ing the classic lymphoid/myeloid differentiation at the first level of the haematopoietic
tree. Indeed, our experiments confirm that the classic haematopoietic model fairly ap-
proximates the biological process, although suggesting that it does not completely capture
its complexity.

In addition to the contribution on the specific topic of haematopoiesis, our work
constitutes an advance in epigenetics by providing a framework for analysing histone
modification data. Indeed, the signal distribution of histone modification profiles allows
the use of standard differential expression techniques to identify genes whose modifications
are involved in a given phenotype.

Finally, the proposed graph-based methodology can be easily applied to other applica-
tion domains where hypotheses on the separation of a population into subgroups must
be evaluated.
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