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Abstract: Resolution decrease and motion blur are two typical image degradation processes that are
usually addressed by deep networks, specifically convolutional neural networks (CNNs). However,
since real images are usually obtained through multiple degradations, the vast majority of current
CNN methods that employ a single degradation process inevitably need to be improved to account for
multiple degradation effects. In this work, motivated by degradation decoupling and multiple-order
attention drop-out gating, we propose a joint deep recovery model to efficiently address motion blur
and resolution reduction simultaneously. Our degradation decoupling style improves the continence
and the efficiency of model construction and training. Moreover, the proposed multi-order attention
mechanism comprehensively and hierarchically extracts multiple attention features and fuses them
properly by drop-out gating. The proposed approach is evaluated using diverse benchmark datasets
including natural and synthetic images. The experimental results show that our proposed method
can efficiently complete joint motion blur and image super-resolution (SR).

Keywords: motion deblurring; image super-resolution; multi-order attention; gated learning; decoupling
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1. Introduction

Motion blur and resolution decrease are the two dominant forms of image quality
degradation. The former is caused by the relative motion between the camera and the
object, while the latter is generally originated by down-sampling. The inverse processes
of these degradation forms are individual motion deblurring and image SR—recovering
clear images from blurred ones or reconstructing high-resolution (HR) images from low
resolution (LR) ones, respectively, which are the practical main means to deal with image
quality degradation.

Assuming the original sharp image is x, and the blurred image is y; if ignoring the
effect of the non-linear camera response function (CRF), theoretically the motion blur
degradation may be represented as:

y = (x ∗ h) + n , (1)

where h represents the motion blur kernel, ∗ denotes the convolution operation and n
usually indicates the random noise. According to Equation (1), obviously, the inverse
motion deblurring process is a typical ill-conditioned problem because for one clear image
there are possibly many blur images corresponding to it.

Actually, there are two different implementation methods for motion deblurring,
namely, blind deblurring or the non-blind method. The usual non-blind method acquires
the clear image x based on the estimated blur kernel and the observation y. However, the
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major difference in blind deblurring is that no kernel estimation is required. Due to the
end-to-end mapping and the powerful approximation properties, CNNs are particularly
well suited for blind motion deblurring. For example, some recent CNN-based works [1,2]
are presented for blind deblurring duties.

Compared with motion blur degradation, in the process of resolution degeneration, in
addition to the low pass blur filter k and the noise n, there is another degradation down-
sampling operator at work. For an HR image x, a typical resolution degradation model to
acquire the corresponding LR image y is formulated as:

y = (x ∗ k) ↓ s + n· (2)

where k denotes a low pass blur filter, ∗ denotes the convolution operation, ↓ s indicates
a s× down-sampling (decimating) operation, and n represents the noise. Obviously, the
inverse problem of Equation (2)—image SR—is also a typical ill-posed one as there is
usually a non-unique solution.

Motion blur degradation is superficially seen to be a simpler problem than resolution
degeneration due to there being no down-sampling operation. However, motion blur is
most likely to be non-linear or non-uniform, which is usually more complex than resolution
degradation (the blur kernel is generally linear and uniform). This makes it a difficult
challenge to directly estimate the blur kernel used for non-blind deblurring.

In recent years, deep learning-based networks, especially CNN-based methods, have
been the mainstream of image SR and motion deblurring research, such as [3–5]. Although
CNN-based image SR and deblurring methods have reported fairly good results, CNN-
based image restoration is far from simple when the resolution and motion blur are reduced
simultaneously. In this case, either image SR or motion deblurring does not work well due
to degraded convolution or the blur kernels not being equivalent, and the two degradation
processes are not complementary with each other when they occur simultaneously.

Recently, there have been some CNN works [6–8] that have addressed simultaneous
image SR and motion deblurring. All of these methods explicitly or implicitly adopt a
global or local feature coupling structure—a deblurring part and an SR part are involved or
intervene with each other, to recover the resolution and the motion details at the same time.
Actually, these recovery methods only construct different comprehensive CNN mapping
networks from the degraded images to the corresponding sharp and high-resolution
ones, but do not fully utilize the characteristics of motion deblurring and image SR to
achieve decoupling. Therefore, even if the results of these methods are good, they lack an
explanation and have low efficiency.

On the other hand, typical deep image recovery models always use the residual con-
nection to convey features. However, due to a lack of ability to mine the feature information
across different layers, some complex residual variants are proposed, such as DRRN [9] and
RDN [10], etc. Among them, RDN (Residual Dense Network) is representative, which uses
not only local dense residual learning but also global residual learning, to extract and adap-
tively fuse the local and global features from all the observed layers. Since RDN makes full
use of multiple hierarchical features, it is very beneficial to construct an image restoration
model. In addition to the work on feature learning across different layers, recent attention
mechanism-based methods, for example, RCAN [11] and SAN [12], select and enhance
useful and important channel feature maps of the same layer through weighting for image
or video restoration. In fact, these channel feature attention methods utilize the first- or
second-order statistics of the channel maps of certain layers to calculate the dependence of
channel features, and then select and weigh the important features. However, single first-
or second-order feature statistics cannot make full use of the relationship between different
channel feature maps.

In order to overcome the limitations of coupling recovery and single-order attention
feature weighting, in this work, we first analyze the compound multiple degradation model
of motion blur and resolution reduction and discuss the maximum likelihood (ML) solution
of the degradation model. Then, based on the analysis, we discuss decoupling induction
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multi-task learning and the CNN model construction method for multiple degradation
image restoration. In addition, we obtain the first-order and second-order attention features
of the decoupled structures for motion deblurring and SR, respectively, and obtain the
third-order attention features by combining local series and parallel features. On this basis,
for the sake of improving the feature redundancy and generalization ability of multi-order
attention fusion, we utilize the drop-out gating integration method, which enhances the
robustness and stability of the proposed multi-order attention mechanism.

An example result of the proposed method to deal with compound degeneration
(motion blur as well as 4× down-sampling) is shown in Figure 1, where the comparisons
to those results of RCAN [11] and SCGAN [6] are also demonstrated. The dominant
contributions of the work are summed up as follows:

• We propose a novel joint motion deblurring and image SR model based on decoupling
induction and multi-order attention drop-out gating. The proposed method can
overcome the limitation of the single type degeneration assumption to achieve joint
recovery with the aid of decoupling induction multi-task learning.

• We propose the use of decoupling dual-branch multi-order attention features for clear
HR image reconstruction and select the drop-out gating learning method to enhance
the robustness and the generalization of features’ fusion.

• We validate and compare the presented model, not only with the publicly available
and widely used natural image datasets, but also with synthetic images completely
different from the training images. We show that, through decoupling induction and
multi-order attention drop-out gating learning, our method can produce visual results
of a quality that competes with the most advanced motion deblurring and image SR
methods for LR and blurred images.
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Figure 1. An example result of the presented decoupling induction and multi-order attention gating
model for joint deblurring and 4× super-resolution. The details in the recovered image of our
proposed method (d) are much clearer than those of RCAN [11] (b) and SCGAN [6] (c); the LR and
blurred image is shown (a).
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2. Related Work
2.1. Joint Image Deblur and SR

Compared with the traditional image SR methods, the first CNN-based image SR
method, SRCNN [3,4], proposed by Dong et al., can generate more accurate HR details
owing to powerful non-linear mapping. To extend three convolutional layers of SRCNN
to a deeper level, Kim et al. [13] presented a true deep image SR model called VDSR
via residual connection [14]. Recently, Liu et al. [15] also proposed a multi-scale deep
encoder–decoder network called MSDEPC to super resolve LR images with the edge maps’
prior information. In addition, Ledig et al. [16] proposed the application of a generative
adversarial network (GAN) [17] for image SR, called SRGAN. SRGAN takes the perceptual
loss and the adversarial loss to supervise the reconstruction of super-resolved images and
can obtain more realistic SR results.

CNNs also play an effective role in motion deblurring. Xu et al. [18] and Sun et al. [1]
developed some CNN-based methods to recover blurred images based on blur kernel
estimation. Besides these non-blind deep methods, some deep blind deblurring meth-
ods [2,5] are also proposed. Nah et al. [2] applied a multiple scales CNN to recover clear
images directly. Motivated by the work, Tao et al. [5] designed a simple structure motion
deblurring network characterized by scale recursion. Moreover, inspired by the work of
image translation [19], Ramakrishnan et al. [20] first applied GAN for motion deblurring.
Then, Kupyn et al. [21] proposed DeblurGAN for blind motion deblurring, which utilizes
the WGAN [22] with a gradient penalty to avoid the mode collapse issue in the classical
GAN. Subsequently, Kupyn et al. [23] presented a new and very efficient GAN-based
model for single image motion deblurring, named DeblurGAN-v2, which is based on a
relativistic conditional GAN with a double-scale discriminator. Furthermore, for meteoro-
logical prediction application, Manzo et al. [24] adopted a pretrained deep network-based
architecture for clouds’ image description and classification. Recently, in order to address
the problem that blurred images suffer from other degradation such as down-scaling and
compression, Xu et al. [25] proposed the enhanced deep pyramid network (EDPN) model
for blurry image restoration, by fully exploiting the self-scale and cross-scale similarities.

Few works can use CNNs for simultaneous motion deblurring and SISR. Xu et al. [6]
solve the problem of super-resolving blurred facial images by SCGAN. However, their
method is restricted to facial images, and it is not easy to obtain a good performance in
real scenarios. Zhang et al. [7] proposed using a deep encoder–decoder model to perform
joint motion deblurring and image SR. Zhang et al. [8] once again proposed a gated fu-
sion method for concurrent motion deblurring and image SR. Recently, Liang et al. [26]
utilized the dual supervised network to address this issue. However, they did not achieve
satisfactory results. In addition, for plug-and-play image SR, Zhang et al. [27] proposed
a new blind SR framework to achieve the processing of arbitrary blur kernels. In addi-
tion, Zhang et al. [28] proposed a dual supervised learning strategy to fully exploit the
representation capacity of their deep model, which imposes constraints between LR and
HR images.

2.2. Attention

In addition to feature transfer by residual connection, the attention mechanism is
another widely used method for feature preservation and enhancement used in many
image SR models [11,12,29,30]. Zhang et al. presented the RCAN [11] (residual channel
attention network) model that utilizes channel attention with residual blocks to adjust
the task adaptability of channel features and to strengthen their expression ability. Since
RCAN only uses the first-order statistical information of channel features, Dai et al. [12]
presented the so-called SAN (second-order attention network) model, which replaces the
global average pooling with the global covariance pooling (second-order statistics) to obtain
a better effect of channel features’ selection and enhancement. Very recently, Niu et al. [31]
designed a novel pixel-guided dual-branch attention network (PDAN) to jointly restore
image details and the spatial scale.
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In addition, Wang et al. [29] proposed the extraction and fusion of temporal and
spatial attention features for video restoration. Furthermore, Fu et al. [30] introduced a
dual attention network—containing one spatial branch and one channel branch for scene
segmentation, which can adaptively extract and integrate the local and non-local features
of spatial and channel attention.

3. Methodology
3.1. Multiple Degradation Decoupling Induction

For motion deblurring and image SR, we used the following equations to describe the
corresponding degradation models, which are used to generate the LR and blur images
for training.

y =
(
∑N

i=1 xi

)
/N + n (3)

y = (x ↓ s) + n, (4)

where Equation (3) represents one typical motion degradation of a certain image sequence-
averaging blur and Equation (4) denotes the process of image resolution reduction. Here, xi
and y in Equation (3) represent a sharp image of one clear HR image sequence (the image
number of the sequence is N) and the corresponding blur image, respectively; and x and y
in Equation (4) are the HR image and the corresponding LR image, respectively. N in the
equation denotes the additional noise (normally it is Gaussian white noise). ↓ s is s× the
down-sampling operator (can be bicubic sub-sampling).

Based on Equations (3) and (4), the motion blur and the resolution reduction compound
degeneration may be formulated as

y =
((

∑N
i=1 xi

)
/N
)
↓ s + n (5)

Obviously, averaging N frame images lead to blurring degradation and the subsequent
down-sampling operation also reduces the resolution of the generated blur image.

Theoretically, if the frame averaging blur kernel and the spatial down-sampling kernel
are denoted as h and k, respectively, Equation (5) can be generalized as the following:

y = (x ∗ h) ∗ k + n, y = (x ∗ S) + n (6)

Here the kernel convolution h ∗ k is defined as a new kernel S. This equation means
the comprehensive function of multi-degradation basically equals one blur operation.
Moreover, according to Equation (6), the residual r between the sharp HR image x and the
degraded observation y is easily calculated. Assuming the image data obey the Gaussian
distribution, a solution of maximum likelihood estimation (MLE) for Equation (6) can be
obtained by x̃ = y + r. Naturally, if the residual r is looked upon as the high-frequency
details of x, the observation y becomes its approximation component. Here, if assuming
the details r can be decoupled into the deblurring details rdb and the SR details rsr that is
r = rdb + rsr, the MLE solution is further expressed as

x̃ = y + rdb + rsr (7)

According to Equation (7), if we can obtain the deblurring and the SR details individu-
ally through deep decoupling induction learning, then the original clear and HR image can
be recovered. Moreover, although changing the sequence between motion blur and resolu-
tion reduction will lead to the multiple degraded models being different from Equation (5),
the MLE solution with decoupling details (Equation (7)) remains the same. This indicates
that our proposed decoupling induction method is robust to different sequences of multiple
degenerated images.
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3.2. Multi-Order Attention Gating

The decoupled deblurring features and SR features were then exploited to calculate
the first-order channel attention (FOCA) and the second-order channel attention (SOCA),
respectively. Meanwhile, their SOCAs were concatenated to calculate the FOCA again,
which acquires the so-called third-order channel attention (TOCA). Then, all the acquired
multiple order attentions were fused with multi-routes gating. Closing a route means
that the corresponding feature attention is blocked and cannot be used for subsequent
reconstruction. In fact, we used the drop-out mechanism—a probability of 0.5 was used
to turn off some feature attentions randomly. The above processes are called multi-order
attention drop-out gating. We used a similar method to calculate the FOCA and the SOCA,
as explored in RCAN [11] and SAN [12]. Based on the principles of the SOCA and FOCA,
we give the mathematical description of the third-order channel attention (TOCA) and
multi-order attention drop-out gating learning in the following.

Given the deblurring feature maps xdb and the SR feature maps xsr, assume they are
with C feature channels and size H×W. Note that the channel size of xdb and xsr does not
need to be equal and in the following we just take xdb as an example. We reshape the feature
map xdb to a matrix X with the size H×W; each element of which is C dimension. Here, if
we treat the feature elements as samples, then the covariance matrix may be calculated and
decomposed by the eigenvalue decomposition (EIG) as:

∑ XIXT = UΛUT (8)

where I = 1
s

(
I− 1

s 1
)

, s = H×W, and I and 1 are the identity matrix and the all-ones
matrix, respectively. In addition, U is an orthogonal matrix and Λ = diag(λ1, . . . , λC) is a
diagonal matrix with eigenvalues in decreasing order. Then, the normalized covariance
matrix can be acquired as Ŷ = ∑α = UΛαUT; α is a positive real number. Obviously, the nor-
malized covariance contains the correlations of channel-wise features. Let Ŷ = y1, . . . , yC;
the c-th channel-wise statistics zc can be obtained by global pooling Ŷ as:

zc =
1
C ∑C

i=1 yc(i) (9)

Based on the equation, the feature weighting coefficient can be obtained through a
simple sigmoid gating function [32] as:

ωc = f(WUδ(WDzc)) (10)

where WD and WU are usually the convolution layers to adjust the number of feature
channels to C/r and C, respectively. f(·) and δ(·) are individually the sigmoid functions
and RELU function. Thus, for deblurring feature xdb the second-order channel attention
(SOCA) weighting is represented as:

xdb = ωc·xdb,c (11)

Based on the equation, the SOCA weighting for image SR features xsr, can be similarly
described as xsr = ωc·xsr,c. Then, xdb,c and xsr,c are concatenated and passed through
the FOCA to obtain the final TOCA. Let xcat = concat(xdb, xsr) = [xcat,1, . . . , xcat,2C]; we
calculate the global average pooling along each channel dimension and then transform the
statistics with channel scaling convolution layers and proper activation functions to obtain
the FOCA weighting, which can be described as:

ztoa,c =
1

H×W
= ∑H

i=1 ∑W
j=1 concat(xdb, xsr)c(i, j), (12)

Stoa,c = f(WSδ(WIztoa,c)) (13)
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where xcat,c(i, j) is the value at the position (i, j) of the c-th concatenated SOCA features
xcat, and WS and WI are the channel up-scaling and down-scaling convolution layers,
similar to WU and WD in Equation (10). Finally, the third-order channel attention (TOCA)
weighting can be denoted as:

x̂toa,c = Stoa,c·xccat (14)

If the FOCA of the deblurring features and SR features are denoted as
.
xdb and

.
xsr,

respectively, then all the multi-order attention features,
.
xdb, xdb,

.
xsr, xsr, and x̂toa, are sent to

one five-routes gate for fusion. The gate works with the drop-out mechanism. Let the j-th
route switch be a random variable rj and obey the Bernoulli distribution with the parameter
p (which is set to 0.5 in our practice)—that is rj ~ Bernoulli(p)—and then, all the attention
that can pass through will be fused by concatenation as:

x̃ = concat
(
r1

.
xdb, r2xdb, r3

.
xsr, r4xsr, r5x̂toa

)
(15)

3.3. Network Architecture

Based on Equation (7), we can design two CNN branches to learn the deblurring
details rdb and the SR details rsr separately. This step is called decoupling induction
learning. Moreover, we can individually calculate their multiple orders attention features,
and utilize the drop-out gating method to fuse them. Here the step is named multi-order
attention drop-out gating. The fused attention features concatenated with the LR and blur
input images are then sent to the subsequent reconstruction module to obtain the final
SR result.

The overall architecture of the proposed model is illustrated in Figure 2. Our model
contains four dominant modules: the first one is the deblurring features extraction module,
which can be used to predict the sharp LR image; the second one is the SR features extraction
module, which can be utilized to obtain the super-resolved blur images; the third is the
proposed multi-order attention drop-out gating module, which calculates different order
attentions and fuses them with the drop-out gating mechanism; and the fourth one is
the reconstruction module to recover the final clear and SR result. In the figure, the four
modules mentioned are indicated by dashed boxes of different colors.
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ules—deblurring feature extraction, SR feature extraction, multi-order attention drop-out gating, 
and reconstruction. An LR and blur input image is first passed through the separate SR and 
deblurring branches to obtain the decoupled features; then, they go through a multi-order atten-

Figure 2. The overall architecture of the proposed model. Our model mainly contains four modules—
deblurring feature extraction, SR feature extraction, multi-order attention drop-out gating, and
reconstruction. An LR and blur input image is first passed through the separate SR and deblurring
branches to obtain the decoupled features; then, they go through a multi-order attention drop-out
gating fusion, before being reconstructed to output a super-resolved and clear image.
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3.3.1. Deblurring Feature Extraction

This module aims to acquire the decoupled deblurring features, and henceforth, sharp
LR images from blurry LR images ILR+blur. Inspired by [21], we adopted a residual encoder–
decoder structure in this module. The encoder part is composed of several convolution
layers which reduce the size of feature maps to a quarter of the input image size. We
then added nine residual blocks between the encoder and decoder to refine the deblurring
features. Then, the decoder exploits two deconvolutional upscaling layers to raise the
resolution of the deblurring feature maps. Additionally, based on the deblurring features,
we can use another two convolution operations to obtain a deblur LR image ILR+deblur (see
Figure 2).

Here, we denote the output deblurring features of the decoder as xdb, which were later
sent to the multi-order attention gating module. All the used activation layers are the leaky
rectified linear units (LeakyReLU), and we used IN (instance normalization) operations in
the residual blocks instead of the BN (batch normalization) ones, because the BN layer may
reduce the flexibility of the network and undermine the scale information by normalizing
the features and increasing computation. The mapping relationship learned from this
module between the input ILR+blur and the output xdb can be described as:

xdb = H↑2
(
H↑1

(
RB
(
H↓2

(
H↓1(Hc(ILR+blur))

))))
(16)

where H↓2 and H↓1 are the down-scaling convolution layers of an encoder, H↑1 and H↓1 are
the deconvolution layers of a decoder, RB represents the nine residual blocks, and Hc is
the first convolution layer acting on the input ILR+blur. The activation and normalization
operations are included in the layers by default.

3.3.2. SR Feature Extraction

The purpose of this module is to obtain decoupled SR image details. We utilized
eight residual dense blocks [10] (each block contains five convolution operations with four
LeakyReLU layers; see Figure 2 for reference) and one convolution layer to construct the
deep structure to extract the high-frequency spatial detail features. From this, the super-
resolved blur image ILR+blur can also be acquired through two consecutive pixel shuffle
layers and several convolution layers. To maintain the spatial information, neither the
pooling layer nor stride operation is used in the module. At the same time, no normalization
operations are applied. If denoting the extracted SR features as xsr, then the mapping
relationship learned from the module between the input ILR+blur and the output xsr can be
described as:

xsr = RDB8(Hc(ILR+blur)) (17)

where RDB8 represents the eight consecutive residual dense blocks.

3.3.3. Multi-Order Attention Drop-Out Gating

This module summarizes the multiple orders attention of the learned deblurring
features xdb and the SR features xsr to obtain high-frequency image recovering details.
xdb and xsr are the inputs of the module and their first-order, second-order, and common
third-order feature attention maps are calculated, respectively. Then, all these attention
features are concatenated and sent to the drop-out layer to obtain the final feature maps x̃.
The mapping relationship of this module and its processing details can be referred to in the
previous Section 3.3.2 and Figure 2.

3.3.4. Reconstruction Module

In this module, the gated attention features x̃ and the blur LR image are sent into
16 residual dense blocks [10] and the result is further fed to two-pixel shuffle layers to
improve the spatial resolution to 4×. After that, two convolution layers are used to acquire
the final SR and clear image ISR+clear. Since most operations of our model are performed in
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the LR low dimension functional space, the computation cost both in training and in the
testing stages is quite low. The mapping relationship of the module is described as:

ISR+clear = H2c(P2(P1(RDB16(concat(x̃, ILR+blur))))) (18)

where RDB16 is the 16 consecutive residual dense blocks, P1 and P2 are the two-pixel
shuffle layers, and H2c represents two convolution operations.

3.4. Loss Functions

Our proposed model has three outputs: the LR deblurring image ILR+db, the SR blur
image ISR+blur, and the clear SR image ISR+clear. Then, the total loss of our model contains
three parts: the LR but clear image loss, the HR but blur image loss, and the final HR and
clear image loss. In our case, we usually calculate the difference between a certain output
and its expectation with the `1 norm and treat it as the loss. The three losses of our model
can be described as:

`1 = ∑N
i=1 ‖yHR+clear,i − ISR+clear,i‖1 (19)

`2 = ∑N
i=1 ‖yLR+clear,i − ILR+db,i‖1 (20)

`3 = ∑N
i=1 ‖yHR+blur,i − ISR+blur,i‖1 (21)

where yHR+clear,i, yLR+clear,i, and yHR+blur,i are the expectations of the three outputs, re-
spectively. N is the number of training samples. Thus, the total loss is the sum of the above
three losses:

L = `1 + α`2 + (1− α) `3 (22)

where α is the loss balance factor, which is set to be 0.5 in our experiments.
In addition, sometimes in order to generate a more realistic image, we also consider in-

troducing an SSIM [33] measure into the loss `1. At this time, the loss `1 can be modified as:

`1 = ∑N
i=1(βSSIM

(
yHR+clear,i, ISR+clear,i

)
+ (1− β)‖yHR+clear,i − ISR+clear,i‖2 (23)

where the β is used to balance these two terms, which is set to 0.84.

4. Experimental Results
4.1. Datasets and Training Details

Many experiments and performance comparisons are performed on the well-known
public blur datasets: the GOPRO dataset [2] and the dataset developed by Lai et al. [34].
Originated from some natural video sequences, the GOPRO [2] dataset contains 2103 high-
resolution training pairs (the sharp image and the blurry image) and 1111 test images. The
size of every image in the dataset is 1280 × 720. The motion-blurred image is obtained
by averaging several neighboring frame images and the LR image can be acquired by
bicubic down-sampling on the corresponding HR image. In contrast to GOPRO, the
dataset of Lai et al. [34] is composed of many man-made generated blur images, in which
each degenerated image is the convolution result of the sharp image with a blur kernel.
Here, the size of the degraded kernel may range from 21 × 21 to 75 × 75. Note that
Lai et al.’s dataset [34] contains both uniform and non-uniform blurred images. The main
characteristics of the two datasets are summarized in Table 1.

The training of the proposed model can be divided into two steps. In the first step,
the model is trained by supervision with the LR blurry patches ILR+blur, the sharp LR
patches ILR+clear, and the clear HR patches IHR+clear. During training, the loss of our
model (Equation (22)) is minimized. In the second step, the trained model is finetuned by
using Equation (23) to replace the original `1 in Equation (22). The training procedure is
implemented by the SGD solver from Pytorch [35] and the learning rate decreases from
0.01 to 0.00001 and the decay is set to be 0.5. In addition, the moment of the used solver
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is 0.9 and the batch size of the training samples is 12. It takes about two days to train the
proposed model if using an Nvidia Titan GTX1080ti GPU.

Table 1. Basic dataset characteristics of GOPRO [2] and Lai et al. [34].

Dataset Lai et al. [34] GOPRO [2]

Synthetic/Real Synthetic and Real Real

Blur type Uniform and Non-uniform Uniform

Ground-truth images 125 3214

Blurred images 300 3214

Depth variation Yes No

4.2. Experiments and Comparisons

Based on numerous LR and blurry input images on different test datasets, we per-
formed lots of joint image deblurring and SR experiments and made comparisons with
some recent SOTA (state-of-the-art) image SR models [10–12], the deblurring method [5],
and the multiple degradations recovery approaches [6–8,36]. We also compared the com-
bination method of the SR algorithm [10] and the deblurring method [5]. For fair play,
all the comparisons were made by using the public codes provided by these methods.
For those ones which cannot be publicly acquired (such as ED-DSRN [7]), we used our
dataset to retrain the original networks. The comparisons with these related methods using
the datasets of GOPRO [2] and Lai et al. [34], in terms of the PSNR, the SSIM, the model
parameters, and the test time, are demonstrated in Tables 2 and 3. The visual results of
these methods are also compared in Figures 3–5.
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Figure 3. The details in the deblurred and super-resolved (4×) images generated by the presented
decoupled induction and multi-attention drop-out gating model on GOPRO [2] and Lai et al. [34];
using our method, the image details are clearer than the ones acquired from RCAN [11], SCGAN [6],
and GFN [8].
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Table 2. The comparisons with SOTA methods of the quantitative performance on GOPRO dataset [2].
Best results are marked in bold.

Measures RDN [10] SRN [5] SCG-AN [6] RCAN [11] RDN [10] +
SRN [5]

ED-DSRN
[7]

Zhang
et al. [33] GFN [8] Our

Proposed

PSNR 24.370 25.829 22.791 25.328 26.211 26.331 25.80 27.81 27.82

SSIM 0.739 0.782 0.783 0.804 0.792 0.810 0.768 0.83 0.848

Parameters 178 M 28.8 M 15 M 1.5 M 305 M 25 M 7 M 11 M 27 M

Training/Inference
time

1.0
day/2.8 s

3
days/0.4 s

1.5
days/0.68 s

1.5
day/0.55 s

3.8
days/4 s

1.5
days/0.22 s

2
days/1.3 s

2
days/0.07 s

2
day/0.33 s

Table 3. The comparisons with SOTA methods of the quantitative performance on Lai et al.
dataset [34]. Best results are marked in bold.

Measures RDN [10] SRN [5] SCG-AN [6] RCAN [11] RDN [10] +
SRN [5]

ED-DSRN
[7]

Zhang
et al. [33] GFN [8] Our

Proposed

PSNR 17.780 17.444 18.572 17.729 18.861 18.791 19.003 19.12 19.17
SSIM 0.416 0.408 0.460 0.471 0.423 0.473 0.466 0.574 0.59

Inference time 2.3 s 0.3 s 0.50 s 0.9 s 2.2 s 0.20 s 1.1 s 0.42 s 0.5 s
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According to Tables 2 and 3, it is clear that in most cases our model achieves the
best multi-degradation recovery effects, and only in certain special scenarios, it is slightly
inferior to GFN [8] (see Figure 3d,e), which seems to be the best joint image SR and the
deblurring algorithm available at present. In Figure 3d,e and Figure 4, although the PSNR
is slightly lower, the image we recovered looks better than the image generated by GFN [8].
Such contradictions may stem from the fact that the calculation of PSNR or SSIM only
requires the neighborhood operations of certain image pixels and cannot reflect the true
perception of human vision. In light of the quantitative metrics in Tables 2 and 3, it is
easy to see that, compared to the other methods, even under multiple different blurs and
LR datasets, the proposed method can achieve the best or the second best PSNR and
SSIM performance.

According to Figure 5, we can easily see that on the Lai et al. [34] dataset, our approach
shows a significant improvement. Although adjustments have been made to RCAN by
fine-tuning the dataset, it still cannot compete with our trained network (see Figure 5b,g).
It is clear that Figure 5b,g contains less texture detail than Figure 5e,j. This performance gap
is mainly due to the lack of an encoder–decoder structure, which is a key architecture when
designing a blind deblurring network. Although the performance of the retrained SCGAN
is better than its pre-trained model, because of its small model capacity, this method cannot
handle complex non-uniform blurs well.

In general, compared with other methods, especially GFN, the superiority of our
method lies in (1) our two branches (super-resolution and motion deblurring), which
are fully disentangled, whereas GFN’s are not; and (2) we use multi-order attention to
obtain the attention features of the two branches at different orders separately, and perform
gated fusion through the drop-out mechanism, whereas GFN computes the correlation of
different branches for fusion. Due to the simpler structure, the GFN method has fewer
parameters and a faster computation speed than our approach. However, in practical
applications, assuming no particular requirements for machine memory or computing
speed, our method can be used in preference if the scene is rich in significant textures and
the objects have multi-scale variations. Benefiting from joint attention learning, our method
produces clearer and higher resolution images with good perceptual quality.

5. Ablation Study

For the sake of dissecting the role of the key components of the proposed decoupling
induction and multi-order attention gating model, several variants were developed and
tested: (1) deblurring alone, (2) SR alone, (3) without TOCA, and (4) no drop-out gating.
These variants were trained with almost the same hyper-parameters as our original model.
For the variants of deblurring alone and SR alone, the FOCA and SOCA features were
concatenated and pushed to the reconstruction module. For the variant without TOCA,
there were only four attention routes (

.
xdb, xdb,

.
xsr, xsr) for drop-out gating. The final variant

used direct concatenating to replace drop-out gating. The results are shown in Table 4.

Table 4. Ablation study on GOPRO [2] dataset. The best results are indicated in bold.

Methods
GOPRO [2]

PSNR SSIM

Deblurring alone 26.97 0.815

SR alone 25.84 0.791

Without TOCA 27.51 0.833

No drop-out gating 27.20 0.827

Ours 27.82 0.848

From Table 4, it is clear that without drop-out gating, the performance of the proposed
approach is much suppressed. At the same time, the high-order attention TOCA really can
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help to improve the reconstruction effects. In addition, it seems that the deblurring branch
contributes more than the SR forking in multiple degradation decoupling reconstruction.
Thus, we can conclude that the proposed mechanism of multi-order attention and drop-out
gating is very effective for joint deblurring and super-resolution.

6. Conclusions

In this work, we proposed an effective end-to-end deep model which can deal with
multiple degeneration problems for concurrent motion deblurring and image SR. Inspired
by the idea of decoupled learning and multi-order attention features selection, our model
firstly manages to construct the discrete network structures of motion deblurring and image
SR respectively, and then realizes selective features’ enhancement and fusion through multi-
order attention drop-out gating. Many experimental results and comparisons to other
SOTA methods were carried out to demonstrate the superior performance of our method
in compound degradation recovery and generalization power.

Future work will focus on two aspects. The first one is to investigate why the de-
blurring branch matters more than SR forking in the proposed multiple degradation
reconstruction approaches. Secondly, based on blur and resolution reduction, if more
degeneration action (such as noise interference) is also introduced, a way to obtain a good
image recovery effect will be investigated.
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