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Abstract: Clustering ensemble is a research hotspot of data mining that aggregates several base
clustering results to generate a single output clustering with improved robustness and stability.
However, the validity of the ensemble result is usually affected by unreliability in the generation
and integration of base clusterings. In order to address this issue, we develop a clustering ensemble
framework viewed from graph neural networks that generates an ensemble result by integrating data
characteristics and structure information. In this framework, we extract structure information from
base clustering results of the data set by using a coupling affinity measure After that, we combine
structure information with data characteristics by using a graph neural network (GNN) to learn their
joint embeddings in latent space. Then, we employ a Gaussian mixture model (GMM) to predict the
final cluster assignment in the latent space. Finally, we construct the GNN and GMM as a unified
optimization model to integrate the objectives of graph embedding and consensus clustering. Our
framework can not only elegantly combine information in feature space and structure space, but can
also achieve suitable representations for final cluster partitioning. Thus, it can produce an outstanding
result. Experimental results on six synthetic benchmark data sets and six real world data sets show
that the proposed framework yields a better performance compared to 12 reference algorithms that
are developed based on either clustering ensemble architecture or a deep clustering strategy.

Keywords: clustering ensemble; graph neural networks; graph embedding; structure information
extraction; information integration; generative model

MSC: 68T10

1. Introduction

Data clustering, also known as cluster analysis, is the process of partitioning a set of
data objects into some clusters based on a similarity measure without any prior knowledge.
The objects in each cluster are similar to each other, and different from data objects in
other clusters [1]. All of these clusters are usually referred to as a clustering result. The
core of data clustering is to discover the inherent structure from the unlabeled data. Thus,
it is usually employed as an effective tool to understand raw data in the initial phase of
processing, particularly for the problems where prior knowledge is absent or expensive
to obtain. Driven by the demand of acquiring knowledge from various complicated
data, clustering analysis has become a research hotspot. Over the past decades, many
studies have focused on the solution of data clustering from diverse perspectives, such
as clustering algorithms with different similarity criteria [2], extensions and modification
for particular data types [3], identifying the optimal number of clusters [4], subspace
clustering and multiview clustering [5,6], clustering results evaluation [7], and applications
of data clustering [8].

Unlike supervised learning methods, data clustering is essentially an ill-posed prob-
lem [9] because the results of different clustering algorithms can be equally accepted
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without prior knowledge. In other words, any clustering result may be superior to others
in a particular pattern distribution. This problem results in a dilemma: users need to select
an appropriate clustering algorithm according to the inherent characteristics of data and
domain knowledge. The clustering ensemble appears in this background, and it can gener-
ate an excellent and stable cluster assignment by combining multiple clustering results [10].
Clustering ensemble outperforms the single clustering algorithm in several aspects [11,12]:
(i) the average performance of clustering ensemble on different data types and pattern
distributions is superior to its optimal ensemble member; (ii) it can obtain a consistent
result that cannot be achieved by any single clustering algorithm; (iii) it is more robust to
noises, outliers, and sampling changes than single clustering algorithm; (iv) it outperforms
the single clustering algorithm in terms of parallelizability and scalability; and (v) it can
integrate multiple clustering results generated from distributed data sources or features.
Generally, clustering ensemble comprises two main phases. In the first phase, a group of
base clustering results is produced. In the second phase, a consensus function is designed to
generate a final cluster assignment by combing base clustering results. The base clustering
members can be produced in many ways, such as by using different clustering algorithms,
employing one clustering algorithm with different parameters, and utilizing subsets of
data or features [13]. The typical methods used to design a consensus function include
a relabeling strategy [14], feature-based methods [15,16], pairwise-similarity-based algo-
rithms [17,18], and graph-based approaches [19,20]. In general, three ensemble-information
matrices [11] can be acquired from the base clustering results: the label-assignment matrix,
pairwise similarity matrix, and binary cluster association matrix. Each ensemble strategy
mentioned above utilizes one of these matrices to combine base clustering results. That is to
say, the clustering ensemble results of these methods are derived either from a reorganized
data description in feature space or from the relationships between data objects in structure
space. In reality, the data characteristics that are expressed by features or attributes and the
structure information manifested as relationships between objects are two presentations of
the data from different perspectives. Therefore, both of them provide valuable guidance on
producing the final ensemble result. However, the existing clustering ensemble algorithms,
according to our knowledge, seldom consider combining these two data descriptions in the
design of the consensus function.

Data characteristics and structure information focus on different aspects of data de-
scription. Thus, their combination can potentially improve thereliability of clustering
ensemble. With this motivation, we develop a novel clustering ensemble framework to
integrate data characteristics with structure information. To serve this purpose, our work is
focused on addressing the following two key issues: (i) What structural information should
be employed to construct the consensus function? Many local relationships are commonly
used to describe structure information, such as the label-assignment information originally
obtained from an ensemble, co-association matrix, or associations between data objects or
those among clusters [13]. In general, the structural information represents the implicit
relationships between data objects. It includes not only the local similarity between objects,
but also a global structure implying the intrinsic pattern of the data. Therefore, using
only the local structure to design the clustering consensus function is far from sufficient,
and determining how to effectively extract and utilize suitable structure information is an
important problem. (ii) How can we integrate data characteristics and structure information
to produce the consensus clustering result? If only concentrating on data characteristics,
the deep clustering algorithms [21–23] provide an effective data partitioning strategy using
the powerful representation learning ability of deep learning. For example, an autoencoder
(AE) [24] is a commonly used framework with multiple layers, in which, each layer cap-
tures specific latent information from data characteristics, while in a clustering ensemble
context, one can acquire various forms of structure information from the data and its base
clusterings. Therefore, what is the interaction relationship between data characteristics and
structure information in the generation of the final clustering result? Furthermore, how
can these two different types of information be combined elegantly, and how can they be
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represented in a suitable form for clustering ensemble? These problems constitute the other
key issue of our work.

To address the first problem, we intend to capture the structural information of the
data from a set of base clusterings. All of the base clusterings are produced on the same
data; thus, some forms of relationships certainly exist between base clusterings, between
clusters, and between objects. Viewed from this aspect, the intrinsic structure information
can be captured from a set of base clustering results by explicating and coupling the
above relationships.

We employ a variational graph autoencoder (VGAE) module [25] to cope with the
second key issue by learning the joint representations of data characteristics and structure
information suitable for the clustering objective. On this basis, we derive a joint optimiza-
tion model that incorporates representation learning and consensus cluster partitioning
into a unified framework.

In this study, we propose a novel framework, namely clustering ensemble viewed from
graph embedding (CEvGE), to integrate data characteristics with structure information by
employing the powerful representation ability of GNNs. Our work can be viewed as an
improvement on a clustering ensemble model by learning appropriate representations in the
latent space. In addition, it can be viewed as an improvement on a deep clustering method
by imposing a global structure constraint. Our main contributions can be summarized
as follows:

(i) We develop a novel clustering ensemble framework viewed from GNNs that produces
the ensemble result by exploiting both data characteristics and structure information.

(ii) We reconstruct raw data as an object similarity graph, and integrate data charac-
teristics and structure information elegantly by learning their joint representations
in a variational GNN. We employ a Gaussian mixture model (GMM) to predict the
consensus cluster assignment for the latent embeddings, which is a natural model
for clustering.

(iii) We construct a unified optimization model to integrate the objectives of joint embed-
ding learning and final cluster assignment, in which, clustering can provide a correct
guidance for embedding learning.

(iv) We conduct extensive experiments on synthetic and real-world data sets. The results
demonstrate the validity and superiority of our framework against reference algorithms.

The remainder of this paper is organized as follows. Section 2 introduces some closely
related works. In Section 3, we discuss the construction and implementation of our CEvGE
framework in detail. In Section 4, we compare the CEvGE with several state-of-the-art
clustering ensemble models and deep clustering algorithms in a series of experiments
Finally, we conclude this work in Section 5.

2. Related Work

In this section, we introduce works related to the AE and variational autoencoder
(VAE), deep clustering, and graph embedding.

2.1. AE and VAE

The AE can be regarded as a nonlinear generalization of PCA used to reduce data
dimensionality, in the form of a multilayer neural network with a small middle layer [24].
It consists of three basic elements: an adaptive, multilayer encoder network that transforms
the high-dimensional data into low-dimensional codes; a decoder network with a similar
structure that recovers data from the codes; and a loss function that measures the lost
information caused by dimensionality reduction. Driven by the popularity of various deep
learning models, especially the generative adversarial networks (GANs), the AE has been
regarded as at the forefront of generative modeling. Various extended AE models have been
developed successively. In general, these extended models fall into three categories [26]:
(i) instantiation-based models trained by combining them with other learning schemes,
such as the convolutional autoencoder (CAE) and extreme learning machine autoencoder
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(ELMAE), etc.; (ii) regularization-based models implemented by introducing regularization
constraints into the loss function, including the sparse autoencoder, contractive autoencoder,
and information theoretic-learning autoencoder, etc.; and (iii) variational inference-based
models, such as the VAE and adversarial autoencoder (AAE).

Using a similar encoder–decoder structure, the VAE is in fact deeply rooted in the
variational Bayesian methods [27], which map input data into a distribution in latent space
rather than a fixed vector In the VAE, the decoder network can be viewed as a generative
module that generate new samples similar to but not identical to input data. The necessary
assumptions for the VAE are relatively weak, and it can be trained fast by backpropagation.
Furthermore, the error introduced by approximation in the VAE is arguably small. These
merits make the VAE a very popular generative model. To improve the performance of
the VAE for data with a complex distribution, some works attempt to enhance the prior
assumption for latent variables by introducing a Bayesian probabilistic mixture model.
For example, Jiang et al. [28] approximated the prior distribution of latent variables by a
mixture of Gaussians, and develped an improved VAE model, namely variational deep
embedding (VaDE). Nalisnick et al. [29] also enhanced the prior description in the VAE
using a GMM, and proposed a deep latent Gaussian mixture model (DLGMM) that employs
multiple inference networks to generate variational posterior distribution. Another similar
work is the DGG developed by Yang et al. [30], which constructs a single generative model
with an isotropic Gaussian mixture prior description.

2.2. Deep Clustering with the Encoder–Decoder Schema

Recently, driven by the powerful representation ability of the deep neural network
(DNN), some works attempted to improve the clustering performance by introducing
the DNN to learn effective data representations for the clustering objective. Tian et al.
constructed a two-stage deep clustering framework that utilized a DNN to acquire feature
representations in subspace, and then divided clusters using these learned features. To
guide the DNN to learn suitable representations for cluster assignment, some later works
tried to incorporate a clustering objective into the deep learning framework. For example,
Xie et al. employed an incomplete AE to learn data embeddings, and designed an assistant
distribution to estimate cluster assignment for the learned embeddings. In that model,
called deep embedded clustering (DEC), the cluster assignment and model training are
achieved simultaneously in a self-learning schema. Guo et al. [31] introduced a complete
autoencoder to improve DEC by overcoming the misguiding problem in embedding learn-
ing. In this way, the clustering loss can provide a positive guidance for embedding learning
on maintaining the original distribution pattern. Similarly, another deep learning model
proposed by Guo et al., namely deep convolutional embedded clustering (DCEC), utilized
a convolutional AE and a single-layer classifier to learn the data representations and the
cluster distributions, respectively. In this model, the DNN is trained by minimizing the
reconstruction loss and the estimation error measured by relative entropy. In [32], the
authors elected some representative data objects as landmarks and measured the similarity
of landmarks between all data objects as the input of the autoencoder. They combined
embedding learning and cluster assignment to further enhance the clustering performance.
They also employed clustering loss to update the cluster centers and parameters of AE si-
multaneously. Bo et al. [33]. proposed a structural deep clustering network (SDCN) model
to integrate the structural information into deep clustering, in which a delivery operator
was designed to transfer the representations learned by autoencoder to the corresponding
GCN layer. On this basis, they also developed a dual self-supervised mechanism to unify
the two different deep neural architectures and guide the update of the whole model. Wang
et al. [34] designed a dual-stacked autoencoder feature embedded clustering (DSAFEC)
for human activity recognition (HAR) that uses dual-stacked autoencoder features (DSAF)
to learn new representations for the original input and then predicts cluster assignment
probabilities for the learned representations by employing a softmax regression.
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In the above deep clustering algorithms, embeddings are learned effectively by the
AE with a strict one-to-one correlation to input data. However, the pattern of learned
embedding depends on the training data; as a result, the distribution in latent space is
discontinuous. That is to say, the clustering performance would degrade due to the decoded
data possibly losing some characteristics implied in the original data. To address this issue,
some later works apply VAE as the embedding learning network for deep clustering,
rather than AE. In VAE, the latent variables sampled from the learned distributions can
effectively capture the statistics of original data. In addition, the decoder can generate
data objects that help the clustering process acquire more information about the inherent
distribution of original data. For example, Jiang et al. [28] developed an unsupervised
generative deep clustering model called VaDE, in which, the latent embeddings are learned
by a DNN and the cluster distributions are predicted by a GMM. In the optimization
of VaDE, the SGVB estimator and the reparameterization trick are introduced. For the
clustering problem of high-dimensional data, Li et al. [35] proposed a VAE-based model
named the latent tree variational autoencoder (LTVAE)that produces several clustering
results for high-dimensional data using distinct portions of features. They described latent
embeddings in a tree structure, and used the location of each cluster in the tree to organize
the data relationships. Hwang et al. [36] addressed the issue of the clustering complex and
high-dimensional wafer maps in semiconductor manufacturing by proposing a variational
deep clustering algorithm, namely one-step VAE+DPGMM. In this algorithm, a GMM is
implemented into a VAE framework to extract more suitable features for the clustering
environment, and a Dirichlet process is further applied in the variational autoencoder
mixture framework for automated one-step clustering. Compared with conventional two-
step clustering methods, the model can considerably increase the chance to distinguish
small differences in wafer map patterns.

All of the deep clustering algorithms mentioned above introduce the powerful rep-
resentational ability of DNNs for clustering tasks based on an AE or VAE framework.
However, they all focus on improving the conventional clustering approaches rather than
the clustering ensemble context. Additionally, they only explore data relationships in
feature space and neglect the information in structure space, which is also an important
description of the data pattern. In a clustering ensemble context, the overlooked structure
information is just hidden in the set of base clustering results. This fact motivates us to
introduce the powerful representation learning ability of DNNs to clustering ensemble, and
to exploit data characteristics and structure information together to produce the consensus
clustering result.

2.3. Graph Embedding

As a ubiquitous form of data organization, a graph provides a natural tool to express
structure information of data, as it can record relationships between data objects effec-
tively. To incorporate the non-Euclidean graph data into machine learning models, graph
embedding is always used to encode the graph from high-dimensional, sparse space into
a low-dimensional, compact, and continuous feature space, where characteristics in the
original graph are preserved as much as possible. Various graph embedding models can be
abstracted to an encoder–decoder framework, in which, the encoder maps each vertex to
a low-dimensional embedding and the decoder reconstructs the graph from the learned
embeddings [37]. In general, the objective of the encoder–decoder graph embedding model
is optimized by minimizing a certain reconstruction loss. Graph embedding models can
be divided into two categories: (i) shallow embedding models, which are largely inspired
by classic matrix factorization techniques [38] or random walks [39], and always utilize
an “embedding lookup” encoder function; and (ii) generalized encoder–decoder architec-
tures, which construct highly complex encoders often using GNNs to map topology and
vertex attributes together into a low-dimensional latent space [40,41]. In the latter category,
some works aggregate local topology to learn graph embedding in a VAE framework. For
example, the model in [25] constructs a VAE-based learning framework, where a graph
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convolutional network (GCN) and an inner product function are employed as the encoder
and the decoder, respectively. To overcome the inferior embedding problem in real-world
graph data, Pan et al. [42] proposed an adversarially regularized VGAE, in which, the
embedding learned by the encoder is forced to match a prior distribution by using an
adversarial training scheme. To solve the data corruption issue, Kang et al. [43] proposed a
graph learning scheme to learn reliable graphs from the real-world noisy data by adaptively
removing noise and errors in the raw data. The model can also be viewed as a robust
version of manifold regularized robust principle component analysis (RPCA), where the
quality of the graph plays a critical role.

3. The Proposed Framework

For a set of N data objects X = {xi}N
i=1 in the D-dimensional space, let Π = {πt}T

t=1

represent a set of T base clusterings for X, where πt =
{

Ct
γ

}kt

γ=1
is the tth clustering

member, kt denotes the number of clusters in πt, and Ct
γ is the γth cluster. For the object

xi, λt
i denotes its cluster label in the tth base clustering. The label set, including all of the

different labels in πt, is denoted by Λt, and the objects assigned with label λt
i in πt are

marked as st
(
λt

i
)
. The task of clustering ensemble is to produce a consensus partition

π∗ =
{

C∗k
}K

k=1 for X by combining all of the base clusterings, where K is the number of
clusters in π∗, and C∗k denotes the kth cluster in the consensus result.

3.1. Overview of the Framework

The integral construction of the CEvGE framework is illustrated in Figure 1. In the
CEvGE, the structure information of data is firstly extracted from a set of base clusterings.
With the help of the structure information, the data set can be reorganized as an an object
similarity graph. Then, the data characteristics and structure information are integrated in
a VGAE module viewed from graph embedding perspective. In the latent space, a GMM is
applied to predict the consensus cluster assignment for the joint embedding. Finally, the
VGAE module and the GMM are trained jointly in a unified optimization model, which
integrates objectives of graph embedding and consensus cluster assignment.

Figure 1. Integral construction of the proposed CEvGE framework. The CEvGE consists of three com-
ponents: (i) the structure extraction component is used to explore the global structure of data from
a set of base clusterings; (ii) the inference model is realized by a GCN module to encode the data
characteristics and information jointly; (iii) the generative model reconstructs input data from latent
space and produces the final cluster assignment by a GMM. The whole framework can be optimized
jointly by maximizing the ELBO, which is calculated and backpropagated to the latent embedding.

3.2. Extraction of Structure Information

An affinity matrix is always constructed to describe the data structure, where each
element represents relationships between two data objects evaluated by a certain simi-
larity measure. Thus, an adequate similarity measure that can express the inherent data
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relationships comprehensively is very important when describing structure information.
In the original data space before clustering, the data structure can be directly captured
by calculating pairwise similarity. However, this form of structure information can only
describe presentational relationships from a local perspective. In the clustering ensemble
context, we can explore extra structure information from a set of base clusterings. On the
one hand, data relationships are reflected in the inner-dependence within a base clustering,
and, on the other hand, they are also implied in the inter-dependence among different base
clusterings. As a result, the global structure information that reveals an intrinsic pattern of
data can be acquired by uncovering the coupling relationships between base clusterings,
between clusters, and between data objects. In this work, the coupling relationships are in
terms of two elements: interactions between base clusterings and between data objects [17].
We propose capturing and incorporating them to tease out the implicit global relationships
in the data, which will be used subsequently to construct the affinity matrix.

3.2.1. Coupling of Base Clusterings

All base clustering results are different partitionings on the same data; as a result, there
must be some relationships among these base results. From intra and inner perspectives, the
coupling of base clusterings comprises two components: the intra-coupling impresses the
interaction between cluster labels within one base clustering, whereas the inner-coupling
indicates the interaction between two base clusterings. According to this idea, we use the
coupled clustering similarity for clusters (CCSC) between two cluster labels to describe the
coupling relationship of base clusterings:

Simπ
t

(
λt

i , λt
j |{Λo}T

o=1

)
= Simπ−Ia

t

(
λt

i , λt
j

)
Simπ−Ie

t

(
λt

i , λt
j |{Λo}o 6=t

)
, (1)

where Simπ
t

(
λt

i , λt
j |{Λo}T

o=1

)
is the CCSC between two cluster labels λt

i and λt
j. Simπ−Ia

t(
λt

i , λt
j

)
is the intra-coupled clustering similarity (IaCS) between λt

i and λt
j , used to describe

the intra-coupling of base clusterings by calculating the frequency of cluster labels within
a base clustering. Simπ−Ie

t

(
λt

i , λt
j |{Λo}o 6=t

)
is the inter-coupled relative similarity (IeRS)

between λt
i and λt

j based on another base clustering πo, used to characterize the intra-
coupling of base clusterings by comparing the co-occurrence of the cluster labels among
different base clusterings, where Λo is the label set of πo. The IaCS is defined as:

Simπ−Ia
t

(
λt

i , λt
j

)
=

∣∣st
(
λt

i
)∣∣∣∣∣st

(
λt

j

)∣∣∣∣∣st
(
λt

i
)∣∣+ ∣∣∣st

(
λt

j

)∣∣∣+ ∣∣st
(
λt

i
)∣∣∣∣∣st

(
λt

j

)∣∣∣ . (2)

The IeRS is defined as:

Simπ−Ie
t

(
λt

i , λt
j |{Λo}o 6=t

)
=

T

∑
o=1,o 6=t

ωoSimt|o

(
λt

i , λt
j |Λo

)
, (3)

where ωo ∈ [0, 1] is the weight of the base clustering πo,
T
∑

o=1,o 6=t
ωo = 1, and Simt|o

(
λt

i , λt
j |Λo

)
is defined as:

Simt|o

(
λt

i , λt
j |Λo

)
= ∑

λo∈ Ω
min


∣∣so(λo) ∩ st

(
λt

i
)∣∣∣∣st

(
λt

i
)∣∣ ,

∣∣∣so(λo) ∩ st

(
λt

j

)∣∣∣∣∣∣st

(
λt

j

)∣∣∣
. (4)

In Equation (4), Ω denotes the set Lo
(
st
(
λt

i
))
∩ Lo

(
st

(
λt

j

))
, where Lo

(
st
(
λt

i
))

is the

label set of st
(
λt

i
)

in πo.
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3.2.2. Coupling of Data Objects

Similarly, the coupling relationships between objects can also be described from the
following two perspectives. In terms of the intra-perspective, we use the intra-coupled
object similarity (IaOS) to measure the similarity between two objects, which is defined as
the average sum of the CCSC between the associated cluster labels ranging over all of the
base clusterings. The IaOS between xi and xj can be calculated as

SimIaOS(xi, xj
)
=

1
T

T

∑
t=1

Simπ
t

(
λt

i , λt
j |{Λo}T

o=1

)
. (5)

whereas, from the inter-perspective, we reflect the interaction between data objects by
mining their neighbors’ correlation. Accordingly, we utilize the common neighbors between
two objects to mesure the inter-coupled object similarity (IeOS), which is defined as

SimIeOS(xi, xj
)
=

1
N

∣∣∣{xn ∈ X|xn ∈ Nxi ∩ Nxj

}∣∣∣. (6)

In Equation (6) where SimIeOS(xi, xj
)

denotes the IeOS between objects xi and xj. Nxi

represents the neighbor set of xi, and is defined as

Nxi = {xn|κ(xi, xn) ≥ θ}. (7)

κ(·, ·) is a Gaussian kernel function with a threshold θ ∈ [0, 1], which is defined as

κ(xi, xn) =
1
αi

exp

(
− ϕ(xi, xn)

2

2ϑ2

)
, (8)

where αi > 0 and ϑ > 0 are the normalizer and width of the kernel function, respectively,
and ϕ(·) denotes a certain similarity measure for data objects.

The location of a data object in a clustering is determined by the cluster it belongs
to. Accordingly, we can integrate the relationships from the inner-perspectives and inter-
perspectives together through the associated clusters. In particular, we induce the coupled
similarity of objects by specifying the similarity measure employed in Equation (8) to be
IaOS, and we have

κ(xi, xn)
IaOS=

1
αi

exp

(
−SimIaOS(xi, xn)

2

2ϑ2

)
. (9)

Then, the IeOS can be converted to a new similarity measure for objects, namely
coupled clustering and object similarity (CCOS). The CCOS between xi and xj can be
calculated as

SimCCOS(xi, xj
)
=

1
N

∣∣∣{xn ∈ X|xn ∈ N IaOS
xi
∩ N IaOS

xj

}∣∣∣, (10)

where the neighbor sets are defined as N IaOS
xi

=
{

xn|κ IaOS(xi, xn) ≥ θ
}

and N IaOS
xj

=

{xn|κ IaOS (xj, xn
)
≥ θ}, respectively. In this manner, both the intra-coupled and inter-

coupled relationships between data objects are considered in the CCOS. In the meantime,
the intra-coupled and inter-coupled interactions between base clusterings are also taken
into account by the new similarity measure.

3.2.3. Structure Information Organized by a Affinity Matrix

According to the above discussion, a global structure description can be extracted from
a set of base clusterings, i.e., CCOS. Compared with previous local similarity measurements,
the CCOS expresses comprehensive relationships between data objects from multiple
perspectives by exploiting base clusterings. Thus, we use the CCOS to construct an affinity
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matrix AN×N that organizes the structure information of the data. The element Ai,j in the
matrix is denoted as

Ai,j = SimCCOS(xi, xj
)
. (11)

3.3. Clustering Ensemble Viewed from Graph Embedding Perspective

The affinity matrix of structure information can be seen as geometric constraints of
the data. As a result, we can reorganize the input data X as an objects similarity graph
G(X, A), which includes both the characteristics and structure of the data. In this way, the
clustering ensemble task on X is transformed into a clustering problem on the reorganized
graph G(X, A). To this end, we develop a joint model within the VGAE framework. In
this model, data characteristics and structure information are integrated by learning their
joint embeddings in latent space, and, subsequently, a GMM is utilized to predict the final
cluster assignments for the latent embeddings.

3.3.1. Inference Model

The inference model is used to integrate data characteristics and structure information
jointly by mapping the graph-reorganized data to latent embeddings, which are parameter-
ized by a two-layer GCN as

q(Z|X,A) =
N

∑
i=1

q(zi|X, A). (12)

In Equation (12), Z = {zi}N
i=1 denotes the embedding of the data in latent space.

For a certain data object x, the corresponding embedding can be acquired from the
following distribution:

q(z|x, a) = N (z|µz, diag(σ2
z )), (13)

where a denotes the associated row in the affinity matrix. The vectors µz = GCNµ(X, A)
and log σz = GCNσ(X, A) are the mean and variance of the latent distribution, respectively.
They are all learned by the GCN, whose structure is defined as

GCN(X, A) = Gconv(ReLU(Gconv(A, X; W0)); W1), (14)

where the function Gconv(·) is a graph convolutional layer [39], and W0 and W1 are learn-
able weight matrices of the first and second layers, respectively. W0 is shared between
GCNµ(X, A) and GCNσ(X, A).

3.3.2. Generative Model

In our framework, the generative model functions are used to reconstruct input data
from the learned embeddings, as well as to predict the consensus cluster assignment. Specif-
ically, we assume the input data are generated from a mixture of Gaussian distributions.
Thus, we approximate the clustering ensemble result

{
C∗k
}K

k=1 by a GMM, and introduce a
K-dimensional vector c to indicate the prior probabilities of each cluster in the consensus
cluster assignment. The generative process can be modeled as follows:

• Sample a cluster C∗k ∼ Cat(c) from the consensus clustering result π∗, where Cat(c) is
the categorical distribution of π∗ parameterized by c.

• Sample a vector z ∼ N
(

z|µc,k, diag
(

σ2
c,k

))
from the picked cluster, where µc,k and σ2

c,k
denote the mean and variance of the kth Gaussian component, respectively.

• Sample a vector a from the reconstructed data X̃ = {x̃i}N
i=1. For binary data, the

vector can be sampled from a multivariate Bernoulli distribution as a ∼ Ber(µx̃),
where µx̃ is computed by µx̃ = g(z; φ), whereas, for real-value data, the vector can
be sampled from a multivariate Gaussian distribution, where µx̃ and σ2

x are learned
by
[
µx̃; log σ2

x̃
]
= g(z; φ). g(z; φ) is a nonlinear function parameterized by φ. In our

framework, the inner product decoder is employed.
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g(z; φ) = σ
(

zT
i zj

)
. (15)

According to the above generative process, the joint probability p
(
a, z, C∗k

)
can be

factorized as
p(a, z, C∗k ) = p(a|z)p(z|C∗k )p(C∗k ). (16)

Since a and C∗k are independently conditioned on z, we have

p(a|z) = Ber(µx̃) or N
(

µx̃, diag
(

σ2
x̃

))
, (17)

p(z|C∗k ) = N
(

z|µc,k, diag
(

σ2
c,k

))
, (18)

p(C∗k ) = Cat(C∗k |c). (19)

3.4. Learning Algorithm

Our CEvGE framework can be tuned by maximizing the log-likelihood of the input
data as

max
W,φ,C∗

∑
x

log pφ(x) = max
W,φ,C∗

∑
x

log
∫
z

∑
C∗

pφ(x, z, C∗k ). (20)

Using the Jensen’s inequality, we have

log pφ(x) ≥ LELBO(x) = Eq(z,C∗ |x,a)

[
log

p
(
a, z, C∗k

)
q
(
z, C∗k |x, a

)], (21)

where LELBO(x) denotes the ELBO of x, and q
(
z, C∗k |x, a

)
is the variational approximation

of the true posterior p
(
z, C∗k |x, a

)
. By using a mean-field distribution, q(z, C∗k |x, a) can be

factorized as
q(z, C∗k |x, a) = q(z|x, a)q(C∗k |x, a). (22)

According to Equations (16) and (22), LELBO(x) can be rewritten as

LELBO(x) = Eq(z,C∗k |x,a)

[
log

p(a|z)p(z|C∗k )p(C∗k )
q(z|x,a)q(C∗k |x,a)

]
= Eq(z,C∗k |x,a)[log p(a|z) + log p

(
z|C∗k

)
+ log p

(
C∗k
)

− log q(z|x, a)− log q
(
C∗k |x, a

)
]

. (23)

Substituting Equations (13), (17), (18) and (19), into Equation (23), and using the Monte
Carlo SGVB estimator, we can further transform LELBO(x) into

LELBO(x) = 1
M

M
∑

m=1

D
∑

d=1
xd log µ

(m)
x̃ |d + (1− xd) log

(
1− µ

(m)
x̃ |d

)
− 1

2

K
∑

k=1
q
(
C∗k |x, a

) R
∑

r=1

(
log σ2

c |r +
σ2

z |r
σc,k |r

+ (µz |r−µc |r)2

σ2
c,k |r

)
+

K
∑

k=1
q
(
C∗k |x, a

)
log

p(C∗k )
q(C∗k |x,a)

+ 1
2

R
∑

r=1

(
1 + log σ2

z |r
) , (24)

where M is the total number of samples in the SGVB estimator, D and R are the dimension-
alities of the input data and latent embedding, respectively, xd is the dth feature of x, and
the operators •|i and •|r denote the ith and rth component of the vector •, respectively. µ

(m)
x̃

is calculated by µ
(m)
x̃ = g

(
z(m); φ

)
, in which, z(m) is the mth Monte Carlo sample picked

from q(z|x, a). The reparameterization trick is used to employ gradient backpropagation
on the stochastic layer, and z(m) is calculated as

z(m) = µz + σz ∗ ρ(m), (25)
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In Equation (25), the learning rate ρ(m) is sampled from N (0, I) and the symbol
∗ denotes the element-wise multiplication operator. µz and σz are learned by the GCN
formulated in Equation (14).

In the proposed CEvGE framework, the posterior distribution q
(
C∗k |x, a

)
that max-

imizes the ELBO must be found to obtain the final clustering result. LELBO(x) can be
rewritten by regrouping Equation (23) as

LELBO(x) = Eq(z,C∗k |x,a)

[
log

p(a,z,C∗k )
q(z,C∗k |x,a)

]
=
∫
z

∑
C∗

q(z|x, a)q
(
C∗k |x, a

)[
log p(x,a|z)p(z)

q(z|x,a) + log
p(C∗k |z)

q(C∗k |x,a)

]
dz

=
∫
z

q(z|x, a) log p(x,a|z)p(z)
q(z|x,a) dz −

∫
z

q(z|x, a)KL
[
p
(
C∗k |z

)
‖ q
(
C∗k |x, a

)]
dz

, (26)

where KL(·) is the Kullback–Leibler (KL) divergence function used for the divergence
between two distributions, and p(z) = N (z|0, I) is the Gaussian prior distribution for the
latent embedding. The first term in Equation (26) is independent of C∗k , and the second
term is non-negative according to the definition of KL divergence. Thus, LELBO(x) can
achieve the maximum value when KL

[
p
(
C∗k |z

)
‖ q
(
C∗k |x, a

)]
≡ 0 holds. Accordingly, the

optimal cluster assignment q
(
C∗k |x, a

)
can be estimated by

q(C∗k |x, a) = p(C∗k |z) =
p
(
C∗k
)

p
(
z|C∗k

)
∑K

k′=1 p
(
C∗k′
)

p
(
z|C∗k′

) . (27)

The latent embedding z will be an appropriate representation for clustering ensemble
as the embedding learning and the cluster assignment are incorporated into the joint
framework. The information loss caused by the mean-field assumption in Equation (22)
can be preserved by the relationship between C∗k and z implied in p

(
C∗k |z

)
.

To further explore how our optimization model can work, we rewrite the ELBO in
Equation (21) as

LELBO(x) = Eq(z,C∗k |x,a)

[
log

p(a,z,C∗k )
q(z,C∗k |x,a)

]
= Eq(z,C∗k |x,a)

[
log p

(
a, z, C∗k

)
− log q

(
z, C∗k |x, a

)]
= Eq(z,C∗k |x,a)

[
log

p(a,z,C∗k )
p(z,C∗k )

+ log p
(
z, C∗k

)
− log q

(
z, C∗k |x, a

)]
= Eq(z,C∗k |x,a)

[
log p

(
a|z, C∗k

)
− log

q(z,C∗k |x,a)
p(z,C∗k )

]
= Eq(z,C∗k |x,a)

[
log p

(
a|z, C∗k

)]
−KL

[
q
(
z, C∗k |x, a

)
‖ p
(
z, C∗k

)]
. (28)

In Equation (28), the first term is obviously a reconstruction component, which helps
our framework to explain the relationships between data objects well by employing latent
embeddings and their cluster assignments, whereas the second term represents the diver-
gence between the variational posterior distritution q

(
z, C∗k |x, a

)
and the prior distribution

p
(
z, C∗k

)
modeled by a GMM. This divergence can be considered as a regularization term in

our optimization model, which makes the learned embedding z lie on a Gaussian mixture
manifold. Accordingly, we can draw the following conclusions: (i) the data characteristics
and structure information of data are integrated elegantly in a generative graph embedding
framework; (ii) the joint embeddings are learned with the guidance of the process of cluster-
ing, and, meanwhile, the prediction of cluster assignments is enhanced by the appropriate
representations; (iii) the validity and reliability of the clustering ensemble result produced
by the CEvGE framework can be improved.

3.5. Overall Implementation

The implementation of the developed CEvGE framework is formally summarized in
Algorithm 1.
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Algorithm 1 The implementation of CEvGE framework
Input : Data objects X, learning rate ρ, number of Monte Carlo samples in SGVB estimator

M, epochs L.
Output : Consistent clustering result q

(
C∗k |xi, ai

)
.

1: Produce an ensemble of base clusterings for X;
2: From Equation (11), construct affinity matrix A to represent structure information for X
3: Choose c ∼ U(0, 1)
4: for l = 1, · · · , L do
5: for i = 1, · · · , N do
6: µz,i = GCN¯(xi, ai);
7: log σz,i = GCNœ(xi, ai);
8: Sample C∗k ∼ Cat

(
C∗k |c

)
9: Sample zi ∼ N (z|µc,k, diag(σ2

c,k))

10: Generate reconstructed ãi = σ
(
zT

i zj
)

11: From Equation (24), compute LELBO(xi)
12: Backpropagate gradients
13: end for
14: end for
15: From Equation (27), obtain the category assignment q(C∗k |xi, ai)

16: return q
(
C∗k |xi, ai

)
4. Experiments and Analysis

In this section, extensive experiments are conducted on several synthetic and real data
sets to evaluate the validity and superiority of the proposed algorithm.

4.1. Data Sets and Evaluation Metrics

The distributions of synthetic data sets used in the experiments are shown in Figure 2.
Several widely known real data sets, namely, Iris, Breast, KDD’99, MNIST, STL-10, and
HHAR, were also employed for testing. Iris, Breast, and KDD’99 are data sets consisting of
different attributes; MNIST and STL-10 are image data sets; and HHAR is a sensor signal
data set. Since KDD’99 and MNIST are very large, implementing complex algorithms on
the entire data set is very difficult. Thus, subsets sampled from the large data sets were
utilized in the experiments. For KDD’99, we drew 4000 samples from each class of network-
connected records; for MNIST, we drew 2000 samples from each class. Preprocessing
is also required for some real data sets to simplify computing. For instance, the images
in MNIST were vectorized, and features in STL-10 were subtracted using the pretrained
ResNet-50 [44]. The details of all data sets we used are listed in Table 1.
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Figure 2. Distributions of synthetic data sets. (a) Rings. (b) Zigzag. (c) Parabolic. (d) Complex.
(e) Atom. (f) Chainlink.

Table 1. Details of data sets: number of data samples (N), number of dimensions (D), and number of
clusters (k).

Data Set N D k

Synthetic data

Rings 1500 2 3
Zigzag 1602 2 3
Parabolic 1000 2 2
Complex 3031 2 9
Atom 800 3 2
Chainlink 1000 3 2

Real data

Iris 150 4 3
Breast 569 30 2
KDD’99 20,000 41 5
MNIST 20,000 786 10
STL-10 13,000 2048 10
HHAR 10,299 561 6

In the experiments, several external and internal indexes were used to evaluate the
clustering results. External indexes measure the similarity between the clustering result
and the true partition on a data set, whereas internal indexes assess the performance of
algorithms based on the inherent feature and measurement of a data set itself. The external
indexes employed in the experiments included clustering accuracy (CA), adjusted rand
index (ARI), and normalized mutual information (NMI). For any object xn in a data set X
with N data objects, we used ln and cn to denote the real label and the cluster label of the
object, respectively. The CA can be calculated as

CA = ∑n
max(cn|ln)

N
(29)
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Given two partitions of data set X, namely the true partition P =
{

p1, p2, · · · , pk̂
}

and the cluster assignment on the data C = {c1, c2, · · · , ck}, respectively, the interaction
relationships between these two partitions can be described by a contingency table (Table 2),
where nij is defined as nij =

∣∣ci ∩ pj
∣∣. Based on the contingency table, the ARI of the

clustering result C can be calculated by Equation (30).

ARI =
∑ij

(
nij
2

)
−
[

∑i

(
bi
2

)
∑j

(
dj
2

)]/(
N
2

)
1
2 [∑i

(
bi
2

)
+ ∑j

(
dj
2

)
]−
[

∑i

(
bi
2

)
∑j

(
dj
2

)]/(
N
2

) (30)

The NMI between two partitions can be measured as

NMI =
2 ∑i ∑j nij log

nij N
bidj

−∑i bi log bi
N −∑j dj log

dj
N

. (31)

The definitions of CA, ARI, and NMI indicate that, the closer a cluster partition result
is to the true partition, the higher its CA, ARI, and NMI values become.

Table 2. The contingency table for two partitions on the same data set.

C\P p1 p2 · · · pk̂ Sums

c1 n11 n12 · · · n1k̂ b1
c2 n21 n22 · · · n2k̂ b2
...

...
...

. . .
...

...
ck nk1 nk2 · · · nkk̂ bk
Sums d1 d2 · · · dk̂

Two internal indexes were also applied to compare the clustering results of different
algorithms. They were Davies–Bouldin index (DBI) and Dunn validity index (DVI). The
DBI measures the average similarity of each cluster between another closest cluster, which
is calculated as

DBI =
1
k

max
1≤i 6=j≤k

∑i

avg(ci) + avg(cj)

distctr(ci, cj)
, (32)

where distctr(ci, cj) denotes the squared Euclidean distance between the centroids of the
clusters ci and cj, and avg(ci) represents the average distance between each object and
the center in cluster ci. A small DBI value means good inner-cluster cohesiveness and
inter-cluster separation. DVI is a metric that measures the stability of a cluster assignment,
and is defined as

DVI =
min

1≤i≤k
min

1≤j≤k,i 6=j
distmin(ci, cj)

max
1≤r≤k

diam(cr)
, (33)

where diam(cr) denotes the diameter of the cluster cr. The higher a clustering result’s DVI
value, the more stable its structure.

4.2. Competitive Algorithms

To evaluate the performance of our CEvGE model comprehensively, four types of
clustering ensemble algorithms were employed in the comparison:

• One relabeling-based approach that employs a voting strategy was chosen, i.e., active
density peak clustering ensemble algorithm (A1) proposed in [14].
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• Two feature-based algorithms were selected. They derive the final clustering result
using the nominal information obtained from basic clusterings. They are the multiple
k-means clustering ensemble algorithm (A2) [15] and the extended fuzzy k-means-
based algorithm (A3) [16].

• Two pairwise similarity approaches. One is the coupled clustering ensemble (CCE)
algorithm (A4) developed by Wang et al. [17], which extracts coupling relationships
from base clusterings similar to our framework, and the other is the reliability-based
weighted fuzzy clustering ensemble framework (A5) designed by Bagherinia et al. [45].

• Two graph-based approaches were chosen. They are the hypergraph partitioning algo-
rithm (A6) [11], and the ultra-scalable ensemble clustering algorithm (A7) [20], respectively.

Our framework can be considered as a modified deep clustering model that incorpo-
rates structure information in the prediction of cluster assignment. As a result, in the exper-
iments, we also compared it with five deep clustering methods: DEC (A8) [22], DSAFEC
(A9) [34], IDEC (A10) [31], VaDE (A11) [28], and one-step VAE+DPGMM (A12) [36].

4.3. Experimental Setting

In the experiments, parameters in all reference algorithms were set according to their
authors’ recommendations. In addition, some settings were predefined as follows:

• For all of the algorithms in the experiments, base clusterings are produced by k-means.
On each given data set, we set the value of K to be the true number of categories, and
conducted the k-means T times independently with random initializations. On each
data set, each algorithm was executed with T = 10, 20, 30, 40, 50, and the best result
was selected for comparison.

• For the reference deep clustering algorithms, all of the layers are fully connected, and
ReLU is utilized as the activation function. Adam optimizer was employed to improve
the computational efficiency, and the size of mini-batch was 100. The learning rate
was initialized to be 0.02, which decreased every 10 epochs with a decay factor of
0.9. On all of the synthetic data sets and two of the real data sets (Iris and Breast),
the network structures of the encoder and decoder were set as D− 30− 30− 2 and
2− 30− 30− D, respectively, where D is the dimensionality of the input data. On
the rest of the real data sets, the network structures of the encoder and decoder were
set as D − 500− 500− 2000− 10 and 10− 2000− 500− 500− D, respectively. The
AE network pretraining method that was used in DEC was also adopted by other
AE/VAE-based algorithms to prevent the model falling into saddle points or local
minima at the beginning of training.

• The kernel width of the Gaussian kernel function used in the CEvGE framework was
set within the interval θ ∈ [0.1, 2] for different data sets with a step size of 0.1. We also
sampled the hyperparameter θ from the interval [0.1, 0.9] with a step size of 0.1.

Under these settings, we chose the optimal parameters of each algorithm for fur-
ther analysis.

4.4. Experimental Results
4.4.1. Performance analysis

First, we ran all of the algorithms 50 times on both of the synthetic and real data
sets, and used the average results to evaluate their clustering performances. The values of
external and internal indexes for different algorithms are presented in Tables 3–6. From
these tables, we can find that the CEvGE generally outperforms other algorithms in terms
of external and internal indexes on most data sets. Subsequently, by further comparing and
analyzing, we can draw the following conclusions:

(i) In Tables 3 and 4, the contrastive clustering ensemble algorithms do not work
well on most of the synthetic data sets. This is mainly because these ensemble algorithms
that produce the final clustering results totally depend on the base clusterings. However,
each data set is composed of several linearly inseparable categories; consequently, the
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base clusterings generated by k-means contain some unreliable partitions. These poor
base results have a negative impact on the performances of the contrastive ensemble
algorithms. The deep clustering algorithms intend to find good representations for the
clustering objective. However, they learn latent embeddings or distributions for each
data object independently, and overlook the relationships between data objects, which is
fundamental to capturing the data pattern. As a result, they do not yield perfect outcomes.
In comparison, in the CEvGE framework, comprehensive structure information is extracted
from base clusterings and incorporated with data characteristics in a VGAE module. The
learned latent embeddings not only facilitate the prediction of cluster assignments, but also
preserve structural relationships existing in the original data space. With the assistance
of structural information, the capacity of handling data with complex distributions is
improved in our framework.

(ii) In Tables 5 and 6, the clustering performances of our framework on the real data
sets are also superior or close to the best results of other approaches. It is worth noting
that the results of A11 and A12 on the KDD’99 are very close to the best result achieved
by the CEvGE. The main reason is that A11 and A12 are both designed within a VAE
framework, which gives them a generative ability. Therefore, the clustering result can be
enhanced to some extent when the input data objects are insufficient for expressing the
true pattern of the original data. In addition, the GMM used as their classifier is a tractable
parametric model that can smoothly approximate an arbitrarily shaped distribution. Unlike
A11 and A12, the CEvGE extracts and incorporates the structure information that provides
assistance for the depiction of the cluster formation of the data. Thus, it outperforms other
deep clustering algorithms. On image data sets MNIST and STL-10, the deep clustering
algorithms can obtain suitable representations for the clustering objective aided by the pow-
erful learning capability of DNN, and they outperform the reference ensemble algorithms.
In the CEvGE, the embeddings learned by a GNN integrate both the characteristics from
the original data space and the structure information, taking full advantage of the base
clusterings; simultaneously, the process of embedding learning is guided by the prediction
of consensus clustering in a unified optimization model. Thus, the CEvGE achieves a
superior clustering performance.

(iii) It is worth noting that the algorithm A4, which extracts coupling relationships
from base clusterings in the same way as our framework, produces unsatisfactory results on
both synthetic and real data sets. The major reason for this is that the coupling relationships
extracted from the poor base clusterings are inadequate in reflecting the intrinsic structure
of the data.

Table 3. External indexes of different algorithms on synthetic data sets.

Algorithm
Ring Zigzag Parabolic Complex Atom Chainlink

CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI

A1 0.5237 0.3128 0.2886 0.5102 0.3751 0.4001 0.5772 0.3026 0.4220 0.4168 0.2693 0.2350 0.5806 0.2258 0.3118 0.4152 0.1996 0.1797
A2 0.7876 0.6371 0.7024 0.7043 0.5661 0.6042 0.6992 0.5893 0.6158 0.6439 0.5106 0.6050 0.5817 0.4344 0.3839 0.6881 0.5508 0.4673
A3 0.4331 0.1563 0.4832 0.4157 0.2668 0.3120 0.5063 0.2117 0.2352 0.3712 0.1609 0.3554 0.6007 0.4116 0.3860 0.5788 0.3735 0.2961
A4 0.7302 0.6388 0.4735 0.6738 0.4507 0.4861 0.7329 0.5814 0.5103 0.6072 0.5228 0.5391 0.6736 0.4611 0.3770 0.5822 0.4104 0.3847
A5 0.6244 0.2368 0.2855 0.6077 0.3042 0.3711 0.6442 0.3532 0.2994 0.4723 0.2147 0.3063 0.6308 0.4105 0.3507 0.5256 0.3114 0.2831
A6 0.2643 0.0026 0.0257 0.4205 0.3834 0.1447 0.2163 0.0035 0.0105 0.3740 0.1966 0.3656 0.2895 −0.0013 0.0030 0.3381 −0.0013 0.0020
A7 0.7966 0.6113 0.4809 0.7441 0.5744 0.5175 0.7961 0.5306 0.5008 0.7392 0.6170 0.6288 0.8529 0.6581 0.5104 0.8049 0.6887 0.6231
A8 0.8135 0.3895 0.3417 0.7463 0.4762 0.5266 0.8131 0.4427 0.4559 0.7054 0.5160 0.5988 0.7382 0.2655 0.3652 0.7143 0.2179 0.4261
A9 0.8502 0.5577 0.4370 0.7704 0.6139 0.5012 0.8357 0.6242 0.6508 0.7245 0.4468 0.5319 0.7882 0.4703 0.4335 0.6724 0.5472 0.4337

A10 0.8382 0.4618 0.3886 0.7617 0.5116 0.5541 0.8243 0.4822 0.4906 0.7588 0.4882 0.6179 0.8257 0.3733 0.4231 0.7550 0.4008 0.4238
A11 0.8357 0.5326 0.5063 0.7403 0.5283 0.5720 0.8232 0.6707 0.6277 0.7635 0.5266 0.6792 0.8296 0.5931 0.4179 0.7588 0.5775 0.4561
A12 0.8514 0.5067 0.4725 0.7853 0.4925 0.5447 0.8196 0.6682 0.5983 0.7809 0.5571 0.5669 0.8555 0.6008 0.4634 0.7647 0.5538 0.4829

CEvGE 0.9548 0.7838 0.6553 0.8766 0.7554 0.7934 0.9221 0.7521 0.8154 0.8363 0.7334 0.7590 0.9135 0.8278 0.7246 0.7946 0.7250 0.6533
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Table 4. Internal indexes of different algorithms on synthetic data sets.

Algorithm
Ring Zigzag Parabolic Complex Atom Chainlink

DBI DVI DBI DVI DBI DVI DBI DVI DBI DVI DBI DVI

A1 1.3509 0.1553 1.7114 0.1863 0.9617 0.1475 1.0563 0.1613 1.7132 0.1205 1.3008 0.1582
A2 0.5762 0.1607 1.2558 0.1746 0.5014 0.1480 1.2263 0.1846 1.2684 0.1265 1.1435 0.1488
A3 1.7422 0.1588 3.5201 0.1703 2.1366 0.1338 4.3028 0.1772 3.4105 0.1230 2.3371 0.1461
A4 1.0352 0.1517 1.2240 0.1671 1.2145 0.1423 1.1573 0.1720 1.5801 0.1244 1.3639 0.1428
A5 1.4762 0.1706 1.2048 0.1729 0.9920 0.1441 1.3046 0.1809 2.0449 0.1307 2.1617 0.1554
A6 2.3852 0.1519 3.0752 0.1704 1.5266 0.1364 2.7814 0.1663 1.5729 0.1215 1.4270 0.1403
A7 0.7881 0.1683 0.8548 0.1665 1.4085 0.1501 0.9952 0.1736 0.8241 0.1237 0.8480 0.1481
A8 0.8725 0.1650 1.4522 0.1642 0.8153 0.1461 1.7003 0.1713 1.2831 0.1209 0.9057 0.1442
A9 0.5227 0.1652 0.8164 0.1763 1.1204 0.1506 1.3882 0.1816 1.5108 0.0976 0.9372 0.1519

A10 0.8124 0.1710 1.2613 0.1826 1.1077 0.1422 1.5091 0.1794 1.4058 0.1255 1.1683 0.1471
A11 0.6537 0.1683 0.8574 0.1855 1.4602 0.1403 1.2331 0.1984 1.3716 0.1294 0.9074 0.1552
A12 0.7521 0.1762 0.7809 0.1886 1.2153 0.1476 1.3327 0.2157 1.2883 0.1321 1.1210 0.1486

CEvGE 0.4308 0.1853 0.5583 0.1903 0.5148 0.1541 0.8677 0.2104 0.8472 0.1381 0.5716 0.1662
TRUE 0.3952 0.2477 0.5306 0.1974 0.4973 0.1652 0.8473 0.2243 0.8038 0.1421 0.5309 0.1758

Table 5. External indexes of different algorithms on real data sets.

Algorithm
Iris Breast KDD’99 MNIST STL-10 HHAR

CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI AC ARI NMI

A1 0.8233 0.6403 0.6225 0.8571 0.5945 0.4308 0.8269 0.7881 0.7664 0.8240 0.7638 0.7205 0.8155 0.7629 0.5828 0.7894 0.6508 0.6043
A2 0.9387 0.7433 0.7763 0.8854 0.7712 0.7260 0.8307 0.8801 0.8244 0.9001 0.8549 0.7563 0.7842 0.7368 0.6572 0.8595 0.7460 0.6889
A3 0.7863 0.6581 0.5822 0.7428 0.7087 0.7385 0.7603 0.6772 0.8447 0.8293 0.7325 0.6904 0.7301 0.6052 0.7006 0.8166 0.7133 0.6527
A4 0.8245 0.6829 0.6217 0.7192 0.6773 0.6240 0.8153 0.8271 0.8255 0.8253 0.7874 0.7660 0.8002 0.7841 0.6825 0.8103 0.7351 0.6423
A5 0.8014 0.6310 0.6291 0.7753 0.6894 0.6742 0.7249 0.6007 0.5509 0.8061 0.6581 0.5719 0.6842 0.4726 0.4410 0.7633 0.5399 0.4937
A6 0.5480 0.1026 0.1609 0.4752 -0.0007 0.0007 0.5829 -0.0005 0.3502 0.6004 0.2114 0.4772 0.7241 0.5842 0.5270 0.8253 0.7192 0.6035
A7 0.9136 0.7338 0.6828 0.9062 0.7862 0.6630 0.8579 0.8591 0.7432 0.8963 0.8645 0.7886 0.8415 0.7208 0.7194 0.8550 0.6678 0.6877
A8 0.8637 0.6255 0.6507 0.7825 0.6864 0.5584 0.8846 0.8525 0.8575 0.8591 0.8269 0.8372 0.8554 0.7885 0.7371 0.8106 0.7542 0.6558
A9 0.8972 0.7260 0.7132 0.8243 0.7110 0.6256 0.8514 0.7963 0.8144 0.8226 0.7988 0.8173 0.8341 0.7807 0.7258 0.9288 0.8511 0.7094

A10 0.8528 0.6541 0.6235 0.7792 0.7235 0.5771 0.8115 0.8539 0.8520 0.8332 0.8520 0.8672 0.8119 0.8204 0.7004 0.8095 0.7826 0.6894
A11 0.8842 0.7226 0.7004 0.8034 0.7443 0.6552 0.9272 0.9033 0.8661 0.8896 0.9014 0.8677 0.8437 0.8328 0.7532 0.8546 0.8210 0.6782
A12 0.8779 0.7348 0.7214 0.8223 0.6713 0.6238 0.9103 0.8807 0.8635 0.8722 0.8835 0.8642 0.8871 0.7604 0.7604 0.8332 0.7096 0.7033

CEvGE 0.9335 0.7567 0.7567 0.9176 0.7708 0.7141 0.9527 0.9224 0.9024 0.9562 0.9203 0.8834 0.9174 0.8542 0.7887 0.9208 0.8564 0.7246

Table 6. Internal indexes of different algorithms on real data sets.

Algorithm
Iris Breast KDD’99 MNIST STL-10 HHAR

DBI DVI DBI DVI DBI DVI DBI DVI DBI DVI DBI DVI

A1 0.7125 0.1569 0.7443 0.1702 0.8208 0.1371 0.8453 0.0986 1.1062 0.1476 1.0513 0.1538
A2 0.6183 0.1547 0.7708 0.1810 0.7742 0.1320 0.8664 0.1172 1.0855 0.1553 1.1796 0.1829
A3 0.6370 0.1556 0.6139 0.1463 0.8226 0.1429 0.8251 0.1228 0.9943 0.1362 0.9274 0.1772
A4 0.9157 0.1645 0.7283 0.1391 0.8416 0.1238 1.1276 0.1159 1.3701 0.1247 1.2260 0.1578
A5 0.7865 0.1548 0.8934 0.1357 0.8135 0.1109 1.0352 0.1179 1.3856 0.1315 2.1869 0.1680
A6 3.5516 0.0961 4.2194 0.1146 2.2405 0.1107 3.7341 0.0842 4.5561 0.1204 3.7478 0.1477
A7 0.4576 0.2035 0.5842 0.1867 0.6713 0.1523 0.7875 0.1155 1.1147 0.1514 0.8157 0.1692
A8 1.1827 0.1251 1.5377 0.1682 0.9874 0.1205 1.2633 0.1041 1.5514 0.1368 0.9705 0.1618
A9 0.7348 0.1766 0.7731 0.1526 1.1369 0.1037 1.3004 0.0934 1.2338 0.1318 0.8320 0.2073

A10 1.0492 0.1316 1.4483 0.1664 1.0768 0.1241 1.3155 0.0948 1.4236 0.1329 0.9643 0.1671
A11 0.8519 0.1649 1.1894 0.1750 0.9663 0.1446 1.0862 0.1159 1.2107 0.1247 1.0883 0.1523
A12 0.8848 0.1573 0.9442 0.1744 0.8967 0.1465 0.9477 0.1171 1.2248 0.1259 0.8932 0.1596

CEvGE 0.4322 0.2307 0.5941 0.2067 0.5568 0.1689 0.7005 0.1405 0.8403 0.1594 0.7069 0.2009
TRUE 0.4153 0.2763 0.5618 0.2157 0.5224 0.1764 0.6536 0.1745 0.8174 0.1741 0.6842 0.2136



Mathematics 2022, 10, 1834 18 of 23

To eliminate the adverse impact on the evaluation of the results caused by randomness,
we conducted a pairwise Student’s t-test (CEvGE vs. each contrastive algorithm) for
external (CA) and internal (DBI) indexes. The p-values of all pairs of the test result on
both synthetic and real world data sets are recorded in Tables 7 and 8. It can be found
that, in most test results, the p-values are smaller than 0.05, and only a few p-values are
slightly bigger than 0.5. That is to say, the superior performance of the proposed model is
statistically significant in general.

Table 7. The p-values of Student’s t-test of CEvGE vs. contrastive algorithms on synthetic data sets
(p > 0.05 are underlined).

Pairs
Ring Zigzag Parabolic Complex Atom Chainlink

CA DBI CA DBI CA DBI CA DBI CA DBI CA DBI

CEvGE vs. A1 0.0127 0.0150 0.0065 0.0114 0.0327 0.0295 0.0130 0.0143 0.0225 0.0207 0.0144 0.0186
CEvGE vs. A2 0.0433 0.0352 0.0315 0.0228 0.0531 0.0430 0.0201 0.0177 0.0174 0.0211 0.0049 0.0041
CEvGE vs. A3 0.0087 0.0105 0.0166 0.0147 0.0304 0.0266 0.0139 0.0245 0.0157 0.0188 0.0074 0.0043
CEvGE vs. A4 0.0068 0.0074 0.0110 0.0126 0.0198 0.0183 0.0078 0.0062 0.0146 0.0144 0.0130 0.0114
CEvGE vs. A5 0.0277 0.0219 0.0078 0.0183 0.0211 0.0327 0.0076 0.0085 0.0218 0.0092 0.0209 0.0231
CEvGE vs. A6 0.0062 0.0055 0.0074 0.0063 0.0136 0.0190 0.0035 0.0032 0.0106 0.0126 0.0302 0.0269
CEvGE vs. A7 0.0133 0.0173 0.0231 0.0196 0.0427 0.0328 0.0447 0.0316 0.0419 0.0524 0.0517 0.0389
CEvGE vs. A8 0.0264 0.0223 0.0184 0.0262 0.0062 0.0055 0.0081 0.0043 0.0054 0.0075 0.0275 0.0239
CEvGE vs. A9 0.0178 0.0079 0.0146 0.0203 0.0275 0.0247 0.0188 0.0217 0.0158 0.0094 0.0075 0.0042

CEvGE vs. A10 0.0186 0.0164 0.0118 0.0105 0.0031 0.0054 0.0049 0.0058 0.0068 0.0054 0.0133 0.0097
CEvGE vs. A11 0.0083 0.0088 0.0100 0.0165 0.0109 0.0093 0.0062 0.0050 0.0066 0.0059 0.0093 0.0124
CEvGE vs. A12 0.0075 0.0091 0.0077 0.0049 0.0061 0.0040 0.0023 0.0038 0.0062 0.0044 0.0042 0.0040

Table 8. The p-values of Student’s t-test of CEvGE vs. contrastive algorithms on real data sets (p > 0.05
are underlined).

Pairs
Iris Breast KDD’99 MNIST STL-10 HHAR

CA DBI CA DBI CA DBI CA DBI CA DBI CA DBI

CEvGE vs. A1 0.0172 0.0086 0.0273 0.0189 0.0250 0.0309 0.0115 0.0082 0.0241 0.0186 0.0178 0.0153
CEvGE vs. A2 0.0054 0.0077 0.0166 0.0140 0.0133 0.0152 0.0408 0.0518 0.0077 0.0082 0.0188 0.0209
CEvGE vs. A3 0.0179 0.0156 0.0206 0.0217 0.0158 0.0174 0.0027 0.0055 0.0288 0.0522 0.0254 0.0213
CEvGE vs. A4 0.0245 0.0300 0.0212 0.0226 0.0155 0.0135 0.0048 0.0055 0.0139 0.0146 0.0276 0.0331
CEvGE vs. A5 0.0109 0.0122 0.0114 0.0152 0.0260 0.0428 0.0132 0.0146 0.0151 0.0132 0.0184 0.0189
CEvGE vs. A6 0.0165 0.0147 0.0527 0.0353 0.0071 0.0105 0.0084 0.0077 0.0244 0.0207 0.0176 0.0160
CEvGE vs. A7 0.0255 0.0230 0.0377 0.0415 0.0017 0.0009 0.0061 0.0039 0.0406 0.0279 0.0318 0.0341
CEvGE vs. A8 0.0084 0.0124 0.0183 0.0197 0.0014 0.0031 0.0103 0.0128 0.0130 0.0147 0.0530 0.0317
CEvGE vs. A9 0.0126 0.0108 0.0072 0.0042 0.0278 0.0325 0.0062 0.0070 0.0145 0.0128 0.0465 0.0387
CEvGE vs. A10 0.0075 0.0091 0.0063 0.0046 0.0021 00050 0.0133 0.0109 0.0194 0.0173 0.0155 0.0097
CEvGE vs. A11 0.0103 0.0095 0.0019 0.0027 0.0102 0.0067 0.0204 0.0173 0.0144 0.0140 0.0127 0.0109
CEvGE vs. A12 0.0138 0.0121 0.0030 0.0023 0.0131 0.0105 0.0055 0.0037 0.0083 0.0100 0.0093 0.0120

To test the generative ability of the CEvGE framework, we replaced the VAE module
in the framework with an AE, and marked this framework as CEvGE/AE. Then, we
randomly sampled various proportions (10% to 100%) of objects from KDD’99 and MNIST
to construct two new data sets. The clustering results (ARI) of CEvGE and CEvGE/AE
performed on these sampled data sets are illustrated in Figure 3. The results show that
the performances of these two algorithms reveal a downward trend as the sample size
decreases. This finding is largely due to the fact that randomly sampling destroys the
intrinsic structure of each category. In particular, under small sample sizes, the sampled
objects cannot reflect the original category distributions. It is worth noting that the CEvGE
keeps its ARI at a constantly high level, as the sample size is larger than 60%, and it
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outperforms the comparative algorithm under all of the different sample sizes. The only
difference between the proposed algorithm and CEvGE/AE is the generative capacity.
Thus, we can conclude that our framework can create some new samples similar to, but
not identical to, the input data, and that the generative capacity plays a positive role in the
prediction of clustering assignment.
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Figure 3. Test of generative ability on randomly sampled data sets. (a) ARI metrics on KDD’99.
(b) ARI metrics on MNIST.

4.4.2. Hyperparameter Analysis

In this section, the influence of the hyperparameter θ on the clustering performance of
the CEvGE framework is analyzed. θ is used to control the size of the neighbor set during
structure information extraction, and it is directly related to the construction of the affinity
matrix. A smaller θ takes more objects into a neighbor set, and consequently involves
considerable information that assists the clustering. However, inconsistent neighbors also
tend to be included, which may lead to additional computations and may misguide cluster
partitioning. In the experiments, we ran the CEvGE 50 times on all of the real data sets with
different values of θ. The average results are presented in Table 9. The CEvGE achieves
the best result when hyperparameter θ takes a certain value, and its performance degrades
if θ is too large or too small. The reason for this is that taking excessive or insufficient
objects into the neighborhood may lead to a performance degradation on the structure
information extraction. Furthermore, our model generally achieves relatively sound results
regardless of the value of θ, as long as the structure information is introduced. This finding
indicates that the structure information can enhance the model’s ability to recognize the
cluster pattern.

Table 9. Ensemble results of the CEvGE algorithm with different values of hyperparameter θ.

θ
Iris Breast KDD’99 MNIST STL-10 HHAR

CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI CA ARI NMI AC ARI NMI

0.1 0.8720 0.7702 0.7291 0.8995 0.7553 0.6744 0.9352 0.9142 0.8774 0.9260 0.9172 0.8819 0.8893 0.8441 0.7760 0.8869 0.8386 0.7185
0.2 0.8902 0.7787 0.7332 0.9031 0.7597 0.7029 0.9391 0.9188 0.8903 0.9434 0.9203 0.8821 0.8964 0.8508 0.7804 0.8942 0.8477 0.7207
0.3 0.9273 0.7834 0.7386 0.9176 0.7708 0.7141 0.9456 0.9203 0.8925 0.9562 0.9193 0.8834 0.9103 0.8542 0.7887 0.9036 0.8505 0.7246
0.4 0.9335 0.7692 0.7567 0.9073 0.7642 0.7084 0.9527 0.9224 0.9024 0.9519 0.9157 0.8815 0.9157 0.8519 0.7795 0.9166 0.8564 0.7210
0.5 0.9110 0.7637 0.7528 0.9014 0.7575 0.6955 0.9506 0.9194 0.8886 0.9487 0.9138 0.8808 0.9174 0.8511 0.7736 0.9208 0.8533 0.7202
0.6 0.8853 0.7623 0.7402 0.8860 0.7532 0.6802 0.9377 0.9172 0.8817 0.9415 0.9130 0.8762 0.8922 0.8487 0.7724 0.9181 0.8527 0.7163
0.7 0.8818 0.7602 0.7337 0.8725 0.7526 0.6775 0.9308 0.9166 0.8755 0.9376 0.9121 0.8755 0.8871 0.8446 0.7706 0.8994 0.8507 0.7152
0.8 0.8734 0.7596 0.7316 0.8706 0.7509 0.6733 0.9227 0.9144 0.8681 0.9332 0.9096 0.8731 0.8837 0.8438 0.7555 0.8923 0.8386 0.7084
0.9 0.8630 0.7559 0.7223 0.8680 0.7504 0.6672 0.9203 0.9138 0.8679 0.9188 0.9065 0.8704 0.8659 0.8395 0.7537 0.8705 0.8331 0.6941

4.4.3. Ablation Study

To investigate the behavior of the proposed CEvGE framework, we conducted several
ablation studies. By removing or substituting certain components, we derived four models
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from CEvGE: (i) CEvGE_del_GE, in which, the graph embedding is removed, and the
consensus clustering assignment is obtained by spectral clustering on the object-similarity
graph; (ii) CEvGE_del_GR, which constructs structure information using pairwise sim-
ilarity in the original data space rather than extracting global relationships from base
clusterings; (iii) CEvGE_del_DC, in which, the ensemble result is produced purely relying
on base clusterings, and the data charateristics are replaced by an all-one matrix; and (iv)
CEvGE/AE, which replaces the VAE with an AE. In the ablation experiments, we compared
these four models with the CEvGE on KDD’99 and MNIST data sets, and report the results
in Tables 10 and 11, respectively.

(i) Effectiveness of embedding. We first discuss the role of joint embedding learning in
our framework by comparing it with the CEvGE_del_GE. Without the embedding learning,
the CEvGE_del_GE suffers from a certain performance degradation. These results strongly
demonstrate that our joint embedding learning mechanism is capable of acquiring suitable
embeddings for the clustering task, consequently enhancing the clustering performance.

(ii) Effectiveness of global structure information. Next, we aim to explore the impact of
global structure relationships on clustering assignment. From the results, we can recognize
that the structure information extracted from base clusterings helps our framework to cap-
ture the intrinsic pattern of the data more accurately compared with the local relationship
in the CEvGE_del_GR.

(iii) Integration of data characteristics and structure information. From Tables 10 and 11,
the integration of data characteristics can clearly improve the clustering performance,
while the CEvGE_del_DC achieves relatively poor results by being totally reliant on base
clusterings when producing the final clustering. It verifies that the integration of two types
of information in our framework can eliminate the adverse impacts caused by unreliability
in base clusterings.

(iv) Effect of generative model. We also show the effect of generative ability in our
CEvGE by replacing the VAE network with an AE. It is obvious that the CEvGE/AE is
inferior to the CEvGE in both the aspects of external and internal indexes. The results
demonstrate that the generative ability in our framework is beneficial to the preserva-
tion of the inherent distribution of original data in latent embedding when training data
are insufficient.

Table 10. Ablation studies on KDD’99 data set.

Model CA ARI NMI DBI DVI

CEvGE 0.9527 0.9224 0.9024 0.5568 0.1689
CEvGE_del_GE 0.9355 0.9082 0.8761 0.6480 0.1566
CEvGE_del_GR 0.9307 0.9053 0.8693 0.9352 0.1477
CEvGE_del_DC 0.8547 0.8303 0.8310 0.8204 0.1273
CEvGE/AE 0.9251 0.8952 0.8526 0.7735 0.1482

Table 11. Ablation studies on MNIST data set.

Model CA ARI NMI DBI DVI

CEvGE 0.9562 0.9203 0.8834 0.7005 0.1405
CEvGE_del_GE 0.9194 0.8852 0.8663 0.8317 0.1288
CEvGE_del_GR 0.8981 0.9035 0.8706 0.9924 0.1214
CEvGE_del_DC 0.8426 0.7988 0.7930 1.1036 0.1164
CEvGE/AE 0.9233 0.8836 0.8724 0.8265 0.1236

5. Conclusions and Future Work

Data characteristics and structure information play different roles in describing the
intrinsic pattern of the data. A GNN-based clustering ensemble framework, namely CEvGE,
was developed to utilize these two types of information effectively for the production of
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a consensus clustering result. In this framework, the structure information of data was
extracted from base clusterings and used to reorganize the data as an object similarity graph.
Subsequently, the data characteristics and structure information were combined elegantly
in the form of graph embedding. Lastly, a joint optimization model was constructed to
unify the objectives of graph embedding and cluster partitioning, which makes the final
clustering result that is produced by appropriate data representations enhanced by structure
information. In the experimental analysis, we compared our framework with several state-
of-the-art clustering ensemble and deep clustering algorithms on both synthetic and real
data sets. The results reflect the validity of the proposed framework.

This work mainly focuses on a general issue of how to enhance clustering ensemble
by integrating data characteristics and structure information. It provides a novel research
perspective for the clustering ensemble problem. Meanwhile, some specific problems are
yet to be solved. For example, the scalability issue of the proposed framework cannot be
overlooked, which potentially impedes its usage on large scale data. Concerning this issue,
we plan to improve the computational efficiency by optimizing its calculation mode and
execution mechanism in the coming research. In addition, extending the availability of
the framework for different data types and application contexts is another focus of our
future plan.
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