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Abstract: Analytical paradigms have limited conventional form-finding methods of tensegrities;
therefore, an innovative approach is urgently needed. This paper proposes a new form-finding
method based on state-of-the-art deep learning techniques. One of the statical paradigms, a force
density method, is substituted for trained deep neural networks to obtain necessary information of
tensegrities. It is based on the differential evolution algorithm, where the eigenvalue decomposition
process of the force density matrix and the process of the equilibrium matrix are not needed to find the
feasible sets of nodal coordinates. Three well-known tensegrity examples including a 2D two-strut, a
3D-truncated tetrahedron and an icosahedron tensegrity are presented for numerical verifications.
The cases of the ReLU and Leaky ReLU activation functions show better results than those of the ELU
and SELU. Moreover, the results of the proposed method are in good agreement with the analytical
super-stable lines. Three examples show that the proposed method exhibits more uniform final
shapes of tensegrity, and much faster convergence history than those of the conventional one.

Keywords: tensegrity; form-finding; differential evolution; deep neural network; force density method
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1. Introduction

A tensegrity consists of a discontinuous set of compressive elements inside a continu-
ous set of tensile elements to stabilize the entire structure [1]. Many structural engineers
have been fascinated by tensegrity systems ever since the new structure was introduced
and patented in the USA [2], because their tension elements in the form of cables provide
the tensegrity a lightweight appearance. The tensegrities are categorized as self-supporting
structures which can keep their self-equilibrium positions without any costly anchorages [3].
They have many benefits, such as efficiency, deployability, redundant and scalability [4].

The design of tensegrity structures requires finding their self-stressed equilibrium
configuration, which is known as the form-finding method [5]. This method can be classi-
fied into two broad families, namely the kinematical and the statical approach [6]. For the
kinematical approach, the lengths of the cables are kept constant, while the strut lengths
are increased until a maximum is reached. Moreover, analytical solutions, the force density
method (FDM) and the energy method as well as reduced coordinate methods are used to
set up a relationship between equilibrium configurations of a structure and the forces in its
members. It should be mentioned that in the typical FDM, the eigenvalue decomposition
(EVD) process of the force density matrix and the singular value decomposition (SVD)
process of the equilibrium matrix are needed to find the feasible sets of nodal coordinates
and force densities.
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Figure 1 shows results of the total number of papers on the Web of Science homepage
using two topics, “Tensegrity” and ‘“Tensegrity + Form-finding’, from 2001 to 2020. While
the total number of articles and papers about the tensegrity have steadily increased for
two decades, the results of the form-finding for tensegrity systems show that there are
limitations to the methods. The primary reasons for the limitations are the lack of tensegrity
examples and the limit of analytical paradigms. In particular, in the statical form-finding
processes, optimization methods are needed to support the analytical methods and to find
the equilibrium configurations and forces of elements. Meta-heuristic algorithms have been
used to solve the form-finding problems of tensegrities. However, because the analytical
methods are still limited, new techniques are needed to substitute for the conventional ones.
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Figure 1. The total number of articles and papers on the Web of Science homepage. Results using
subjects, “Tensegrity” and ‘Tensegrity + Form-finding’.

Machine learning (ML) has recently been applied to various engineering fields [7-9]. It
can be an alternative approach which helps obtain a solution faster than conventional form-
finding methods. Several ML attempts have been made to design a tensegrity structure, and
most papers are based on an artificial neural network (ANN) with simple and traditional
techniques.The authors in [10] combined the dynamic relaxation method with a NN to
improve the accuracy of the form-finding method. In [11], the authors applied an ANN
to the FDM for the form-finding process of tensegrity structures. The authors in [12] used
ML including feature extraction and regression of form finding for a tensegrity structure.
Although the ANNSs have been improved by innovative techniques such as deep learning,
including a deep belief network (DBN) [13], the rectified linear unit (ReLU) activation
function [14] and a dropout algorithm for overfitting problems [15], only a few studies have
attempted to apply them to the form-finding process. One research project team applied
deep learning methods to a tensegrity robot locomotion topic [16-18]. However, the studies
are restricted to the technologies for tensegrity robots despite the papers’ aim to fill the gap
between computer science and structural engineering and employ a deep neural network
(DNN) for tensegrity systems.

In this paper, a new form-finding method for tensegrity systems using a DNN is
proposed. Two complicated computational procedures in the typical FDM, which are EVD
and SVD, can be eliminated in the whole form-finding process. A differential evolution (DE)
algorithm is used as an analytical method of the statical form-finding paradigm. The DE
algorithm is one of the meta-heuristic and population-based optimization algorithms [19].
It produces the force densities of the elements of tensegrities and trains the DNN. It then
predicts coordinates that correspond to the sets of force densities. To accelerate the bulk-
processing of data for a DNN, a Graphics Processing Unit (GPU) is used. Three tensegrity
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examples are considered to build a dataset, and then the performance of the proposed
DNN-based form-finding model is investigated.

2. Form-Finding Process Using the Force Density Method (FDM)

In this section, the procedure of a conventional FDM is briefly described. More details
can be found in previous studies [20,21]. A two-dimensional (2D) two-strut tensegrity in
which cables and struts are denoted by the thin and thick lines in Figure 2 is used to explain
the FDM. It is composed of six elements and four nodes.

2.1. Connectivity and Force Density Matrices
This method uses a linear equation in the nodal coordinates (Equation (1)), which is
known as force density [22]:

7= @
k

where any member k with corresponding force f; and length Iy (k =1,2,3,---,b).

Total members (b) and free nodes (1) of a tensegrity structure can be expressed via a
connectivity matrix C (€ RP*") [23]. If member k connects nodes i and j (i < j), then the
ith and jth elements of the kth row of this matrix are set to 1 and —1, as follows:

1 forp=i
Chp =9 —1 forp=j 2)
0 otherwise

For a 2D two-strut tensegrity structure, connectivity matrix C (€ R®*%) is provided
in Table 1. A force density matrix, D (€ R"*"), is needed to define an equilibrium equa-

tion [24].
D = CTdiag(q)C ©)
If the initial force density is q = {1,1,1,1,—1, —1}7, the force density matrix can be
calculated by
1000 0 O 1 -1 0 0
1 0 0 1 1 O 0100 0 O 0 1 -1 0
D— -1 1 0 0 o0 1 0010 0 O 0o 0 1 -1 @)
N o -1 1 0 -1 © 0001 0 O 1 0 0 -1
o 0 -1 -1 0 -1 0000 -1 0 1 0 -1 ©
0000 0 -1 0 1 0 -1

Finally, the force density matrix in Equation (4) can be obtained as:

1 -1 1 -1
-1 1 -1 1
D= 1 -1 1 -1 ®)

-1 1 -1 1

Consider a Cartesian coordinate system (O-xyz), x,y, z (€ R") are denoted as the nodal
coordinate vectors of the free node, in x-, y- and z-directions. For a 3D tensegrity system, when
the external load and self-weight are ignored, an equilibrium equation is defined such that

D 0 O0Of(x 0
0 D 0f|y| = 0 (6)
0 0 D |z 0
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Table 1. The incidence matrix of the 2D two-strut tensegrity structure.

Nodes

Elements

1 2 4
1 1 -1 0
2 0 1 -1 0
3 0 0 1 -1
4 1 0 0 -1
5 1 0 -1 0
6 0 1 0 -1

1 2

Figure 2. A 2D two-strut tensegrity structure in which cables and struts are denoted by the thin and
thick lines.

The force density matrix, D, is then square and symmetric. In linear algebra, a sufficient
condition for a symmetric matrix to be invertible is that the matrix is positive definite.
The positive definite means that the scalar a’ Da is strictly positive for every non-zero
column vector a. The nodal coordinate vectors, x,y and z, of the free node can be then
obtained. However, because of the existence of struts (g; < 0) in the tensegrity structure,
the force density matrix of the tensegrity structure is positive semi-definite. The sum of the
elements of a row or a column of the force density matrix, D, is always equal to zero for a
free-standing tensegrity without fixed nodes. It is obvious that a vector I = {1,1,---,1}T
(€ R™*1) is a solution of Equation (6).

When the rank of a matrix is smaller than its dimensions, the matrix is called rank-
deficient or singular. Here, the rank of the force density matrix of the two-strut tensegrity
(Equation (5)), rank(D), equals one. The rank deficiency, hp, of the force density matrix is
defined as

hp = n — rank(D) (7)

Because the dimensions of the D matrix (Equation (5)) equals four, the rank deficiency
of the matrix is then three. Only full rank matrices have an inverse [25]. The force density
matrices of tensegrity structures have at least d particular solutions except for the above
vector I. Hence, the minimum rank deficiency of the D matrix must be (d + 1). Because the
force density matrix is positive semi-definite, the D matrix can be factorized as follows by
an eigenvalue decomposition (EVD) [26]:

D = ®ADT 8)



Mathematics 2022, 10, 1822

5of 27

where @ (€ R" ") is the orthogonal matrix (®®7 = I,,, in which I, € R"*" is the
unit matrix) whose ith column is the eigenvector basis ¢; (¢ R") of D. The notation
A (€ R"™") is the diagonal matrix whose diagonal elements are the corresponding eigen-
values, i.e.,, A;; = A;. The eigenvector ¢; of @ corresponds to eigenvalue A; of A. The eigen-
values are in increasing order as

A SAy < - S Ay )

For a 2D two-strut tensegrity structure, the diagonal matrix, A, is obtained as follows:

0 0 0O
0 0 0O

A= 0 0 0O (10)
0 0 0 4

where the diagonal elements are the corresponding eigenvalues, namely {0,0,0,4}. In the
@ matrix of Equation (8), the first (d + 1) columns of ® are directly taken as potential nodal
coordinates as follows:

xyzle @ =[P ¢2 -+ ¢at] (11)
For a 2D structure (d = 2), the first three columns are chosen as the candidates.

2.2. Selection of Nodal Coordinates

If the number of zero and negative eigenvalues of the force density matrix is greater or
equal to the minimum rank deficiency of the D matrix, minimal length and non-zero length
conditions can be used to select nodal coordinates from the candidates. For 3D system,
the total squared length of the entire structure can be calculated by

b
Y. 15 = [IC¢1 + Coa + Cos || (12)
p=1
except for
C¢1:O(l:1,2,/d) or lp:()(p:1,2,,b) (13)

2.3. New Set of Force Densities from Equilibrium Matrix

The force density matrix D can be rewritten using a connectivity matrix C as discussed
in [23]. By substituting the rewritten force density matrix from Equation (3), the second
equilibrium equation can be obtained as follows.

Aq = 0 (14)
where A (€ R%"*?) is known as the equilibrium matrix, defined by

C'diag(Cx)
A = CTdiag(Cy) (15)
C'diag(Cz)

For the 2D two-strut tensegrity structure, the equilibrium matrix A is given in Table 2.

Equation (3) shows the relationship between the force density matrix D and nodal
coordinates, and Equation (14) illustrates the relationship between the equilibrium matrix
A and force densities. Here the EVD process is needed to obtain the set of force densities.
However, because the equilibrium matrix A is not square, another decomposition method
is required. A singular value decomposition (SVD) makes it possible to solve the prob-
lem [22]. An SVD is a factorization of a real or complex matrix that generalizes the eigen
decomposition of a square or any rectangular matrices.
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Table 2. The equilibrium matrix of the 2D two-strut tensegrity structure.
Total Number of Elements (b)
nXxd
1 2 3 4 5 6
1 X1 — X 0 0 X1 — X4 X1 — X3 0
2 -y 0 0 Y1—Ya Y1—Ys3 0
3 —(x1 — x2) Xy — X3 0 0 0 Xo — X4
4 —n—w)  v2-us 0 0 0 Y2 — Vs
5 0 —(Xz—JC3) X3 — X4 0 —(X1 —X3) 0
6 0 —(2-y3) Y3 0 —(1—vy3) 0
7 0 0 —(x3—x4)  —(x1—x4) 0 —(x2 — x4)
8 0 0 —(y3—vs) —(11—vya) 0 —(y2 —v4)

The set of all solutions to the homogeneous system of Equation (14) lies in the null
space of the equilibrium matrix A. The rank deficiency, 14, of the equilibrium matrix is
computed by

ha =0b—rank(A) (16)

For a 2D two-strut tensegrity system, the value of the rank deficiency is 14 = 1 which
indicates that the tensegrity has one state of self-stress. It should mentioned that this
study is limited to tensegrity structures with a single state of self-stress, which ensures the
existence of one state of self-stress. To obtain the set of force densities from Equation (14),
the SVD is carried out as follows:

A = UVWT (17)

where U (€ R#>¥4") = [uj up --- ug,] and W (€ RP*P) = [wy wy --- wy] are orthogonal
matrices. V (€ R¥*?) is a diagonal matrix with non-negative singular values of A in
decreasing order as

o >0 > >0 >0 (18)

The matrix W from Equation (17) can be expressed as

W= [Wl W2 - Wignk(A) | ql] 19)

A graphical illustration of the SVD of A is shown in Figure 3, where the notation
m = dn — rank(A) denotes inextensional mechanisms including both possible infinitesimal
mechanisms and rigid body motions.

Rank(A)

b { dxn b { { b

Figure 3. Graphical illustration of the SVD of the equilibrium matrix A.

A flowchart of the conventional form-finding process of tensegrity structures using the
FDM is shown in Figure 4. In the works completed by [26,27] and many other researchers,
two parallel equilibrium equations (Equations (6) and (14)) were iteratively computed to
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obtain self-equilibrium configurations of tensegrity structures. The EVD and SVD processes
are then used to obtain the force densities and nodal coordinates, respectively. Numerous
studies combined the process of the FDM with meta-heuristic algorithms, such as a genetic
algorithm. The form-finding problem is then formulated as a minimization problem by a
special fitness function, which is based on some of the smallest eigenvalues of the force
density matrix. However, the eigenvalue analysis and spectral decomposition are inevitable
for the form-finding process using the FDM. In this paper, a DNN-based form-finding
method of tensegrity systems is proposed to eliminate the complicated computational
procedures in the whole form-finding process.

Initial Input data
: Connectivity

Build connectivity matrix (C)

l 4—4 Set of force densities ‘

Build force density matrix (D) 2 Selection |
l ‘ Crossover ‘
Perform EVD of D matrix t 3
: ‘ Mutation ‘ i
l Initialization

Candidates for coordinates

|

Select nodal coordinates

|

Build equilibrium matrix (A)

|

Perform SVD of A matrix

|

New force densities

|

Evaluate fitness function
with constraints

NO

YES

< Terminate )

Figure 4. Flowchart of the conventional form-finding process of tensegrity structures using the FDM.
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3. DNN-Based Form-Finding Method

The DNN, which is a neural network with multiple hidden layers, is a typical imple-
mentation of a deep architecture [28] as shown in Figure 5. The input and output layers
are for the force densities and lengths of the elements. Figure 6 shows the flowchart of the
DNN-based form-finding model of tensegrity structures. In this model, the linear algebra
calculation, namely the EVD and the SVD, can be substituted by the DNN to obtain the
nodal coordinate information. The trained DNN can then be used to predict the lengths of
all elements. If two end points of one element are fixed by arbitrary locations, other nodal
coordinates are determined automatically. As a result, the feasible set of nodal coordinates
and force densities can be obtained without a process of the FDM.

3.1. Deep Neural Network Architectures for Training

The procedure for building and training a DNN is divided into three major phases,
namely data preparation, training with optimization and prediction [29].

3.1.1. Data Preparation

A total dataset of 50,000 is used to train the DNN. As the set of force density is changed
randomly, the lengths of tensegrity members are collected by using the FDM. All conditions,
such as the connectivity, grouping and cable-strut labeling, are then fixed. For each input
data, namely the set of force densities, the upper and lower bounds of the range [0, 1]
were given. Because the force densities are already normalized by the range, [0, 1], data
normalization processes are not needed to collect the dataset. However, even though the
set of output data, namely length information, is not normalized by a range of meanings,
the original dataset is used to train the DNN. The dataset was randomly split 80/20 into
train vs. test sets.

3.1.2. Training Phase

To find the optimal architectures of the DNN, a set of experiments with various
numbers of hidden layers, where each layer has various total numbers of neurons such
as 128, 256, 512 or 1024, are performed. However, because the cases of two-dimensional
two-strut tensegrity and three-dimensional-truncated tetrahedron have small number of
elements, the number of hidden layers was fixed as three. Instead, various numbers of
hidden layers were implemented to decide the best number in the three-dimensional-
truncated icosahedron tensegrity example.

‘ INPUT ‘
\ \

Hidden layers ‘ OUTPUT (Lengths of tensegrity) ‘

D080l

BN

5
I Y O
N A
Dooooooo

Figure 5. The DNN models with input and output layers denoted for the force densities and lengths
of the elements, respectively.
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Initial Input data
: Connectivity

A 4

Build connectivity matrix (C)

« } Set of force densities ‘
v
Build force density matrix (D) ’ ------------ Selectlon “““““““ ‘
t |
¢ ’ Crossover ‘
( Trained DNN Q T
L ’ Mut?tion ‘
Predict coordinates ’ Initialization ‘

l DE Procedure

Evaluate fitness function
with constraints

NO

YES

( Terminate )

Figure 6. Flowchart of the DNN-based form-finding process of tensegrity structures to eliminate the
calculation of EVD and SVD.

The values of neurons are intimately related with the batch size. Normally, when the
algorithms training is performed, the networks take all the dataset as the input. However,
if the size of the dataset is too large, the DNN is inefficient even if the computer system
has enough memory. To speed-up stochastic convex optimization problems, mini-batch
algorithms are used [30]. Because the mini-batches are vectorized in GPU systems, choosing
a binary mini-batch size can lead to good performances. Several research groups started
with two threads to determine the optimal number of batches or neuron size [31], however,
larger batch sizes allow for better utilization of GPU memory bandwidth and improve
computational throughput [32]. A set of experiments varying the batch size (or neurons) of
128, 256, 512 or 1024 was performed. This study revealed that the case of 512 neurons in
each hidden layer provides the highest accuracy rate. In this study, mean squared error
(MSE) loss is used to verify the neural networks.

Figure 7 is indicative of the DNN for training the 2D two-strut tensegrity structure.
Three hidden layers using 512 neurons are used to perform the training process. Deep
learning techniques such as the rectified linear unit (ReLU) activation function, the dropout
algorithm, and the Adam optimizer are used [33]. The activation functions play a key role
in a DNN to achieve better performances. Here, the dropout probability of 0.2 is fixed for
all experiments. The ReLU activation function [34] is used here with the following form:

relu(x) = max(0, x), (20)

which has the gradient:
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d 0 ifx<0
ﬂrelu(x) = {1 f x>0 (21)

The aim is to solve the vanishing gradient and exploding gradient problems.

nput: | (None, 6)
output: [ (None, 6)

dense 1 mput: InputLayer

'

input: (None, 6)
output: | (None, 512)

dense 1: Dense

mput: | (None, 512)
output: | (None, 512)

dropout_1: Dropout

mput: | (None, 512)
output: | (None, 512)

dense 2: Dense

input: | (None, 512)
output: | (None, 512)

dropout 2: Dropout

mput: | (None, 512)
output: | (None, 512)

dense 3: Dense

mput: | (None, 512)
output: | (None, 512)

'

input: | (None, 512)
output: | (None, 6)

dropout_3: Dropout

dense 4: Dense

Figure 7. Visualization of the DNN for training the 2D two-strut tensegrity structure.

3.2. Optimization Algorithm

Based on our previous work [19], this study used the modified differential evolution
(MDE) algorithm to build a DNN-based surrogate method. The differential evolution (DE)
algorithm [35] is used to find the global minimum of the constrained optimization problems.
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The main procedure of this algorithm is divided into four phases, namely initialization, mu-
tation, crossover and selection. The bounds of variables, values of tolerance, and population
sizes are set to be [0,1], 10~# and 20, respectively. In evolutionary algorithms, the crossover
operator combines features from different parents. Since the mutation operator is based on
a recombination of individuals, a recombination rate is needed to create a new candidate
solution. Here the recombination rate is set to be 0.9. Table 3 shows the values of the main
parameters for the DE algorithm.

Table 3. Main parameters of DE algorithm.

Parameter Value
Bounds of variables [0,1]
Population size 20
Recombination rate 0.9
Tolerance 104

The fitness function consists of a value as follows:

b
Minimize : ) | 1 (22)
i=1 |Qi|
Subjectto: D[xyz] = [000] (23)

As suggested by Koohestani [36], the fitness function is a variable that significantly
increases its value related to the force densities with zero or near-zero values. Moreover,
the constraint, Equation (23), guarantees the equilibrium status.

3.3. Prediction for Lengths and Designation of Coordinates

After fixing the DNN weights, the lengths of whole elements of the tensegrity systems
can be predicted by using the input data of the set of force densities. The force density set
of the input is obtained from the DE algorithm. The algorithm updates the variables of the
force density set in each generation; the information of lengths can then be predicted by
using the trained DNN. By using the length information, the coordinates can be designated
to obtain the final geometry of the tensegrity systems.

4. Numerical Examples

In this section, three well-known tensegrity examples including 2D two-strut, 3D-
truncated tetrahedron and icosahedron tensegrity are investigated to validate the proposed
model and show their performance with a conventional one. Three NVIDIA TITAN V GPU
with 12GB of memory are used, and all experiments are executed on Ubuntu 16.04 OS with
3840 CUDA core. Unless mentioned otherwise, the rectified linear unit (ReLU) and the
Adam method are used as the activation function and optimizer. The dropout probability
is fixed as 0.2, and simulations are based on libraries of Tensorflow [37] and Keras [38].

4.1. Two-Dimensional Two-Strut Tensegrity
4.1.1. Data Preparation and Training Phase

A dataset of 50,000 is obtained for the training of the 2D two-strut tensegrity. The force
densities are randomly produced by using the force density analysis; the set of lengths
is then obtained. The two groups, namely cables and struts, are used for generating the
dataset. Each input data has upper and lower bounds of the range [0,1]. Three hidden
layers using 512 neurons are used to perform the training process (Figure 7). The number of
neurons in the input layer is three, and they represents a set of force densities. The output
layer indicates the element lengths.
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4.1.2. Optimization Algorithm

The DE algorithm is performed to find the global minimum of the constrained opti-
mization problems. Both methods use only one iteration for the DE process. Each iteration
does not analyse FDM. Instead, the trained DNN predicts the set of element lengths. The re-
sults of the conventional FDM and the proposed DNN-based form-finding model with the
DE algorithm are plotted in Figure 8 and given in Table 4. The final configuration by the
conventional FDM seems to be the same as those of the proposed DNN-based form-finding
model. However, their force density results are different. The results of the force density in
Table 4 are identical to those of the previous study [39]. Thus, this proposed model can be
validated. Moreover, the absolute value of | fneqsn —fpess | is lower that of the conventional
FDM method.

1.0 1.0

0.8 0.8

0.6 0.6

0.44 0.4

0.2 0.2

0.0 0.0 e

-0.24 -0.24

-0.44 -0.44

-0.61 -0.61

-0.84 -0.8

-1.0 -1.0
-10 -08 -06 =04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(@) (b)

Figure 8. The final results of 2D two-strut tensegrity structure using the (a) FDM and (b) DNN-based
form-finding model with DE algorithm.

Table 4. The final results of the 2D two-strut tensegrity structure using the FDM and DNN-based
form-finding model with the DE algorithm.

DE + FDM DE + DNN [27]
| fumean—Epest | 0.66 0.56
Solution [cable, strut] [1.00, —0.97] [1.00, —1.00]
Force density * [cable, strut] [1.00, —0.97] [1.00, —1.00] [1.00, —1.00]

* Normalized with respect to the solution of Element 1.

4.1.3. Prediction for Lengths and Designation of Coordinates

Six force density values are updated using the DE algorithm. The new selected set
of force densities is then used to predict the lengths of whole elements of the tensegrity
system. The trained DNN gives a set of element lengths, [1.0,1.0,1.0,1.0,1.4,1.4], as the
prediction results. However, because the nodal coordinates have not yet been obtained,
a designation process is needed to determine its geometry.

Figure 9 shows the designation process of the nodal coordinates of the 2D two-strut
tensegrity structure. The left-hand side of Figure 9 indicates the obtained length conditions.
When the midpoint of the fifth element is fixed at the 0(0,0) point, Nodes 1 and 3 can be
assigned as shown in Figure 9. The last two nodal points, Nodes 2 and 4, can be calculated
by Equation (12), which is reorganized as

6
Y. 1 = lICg1 + Con|? (24)
p=1
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2 (v, 92)

Figure 9. Designation process of the nodal coordinates of the 2D two-strut tensegrity structure.

By using the obtained lengths and the coordinates of Nodes 1 and 3, Equation (24) can

be rewritten as a matrix-form:
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|
=
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N
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<
=N

(25)

The above six simultaneous equations in Equation (25) can be used to draw the final

geometry.

4.2. Three-Dimensional Truncated Tetrahedron

A 3D-truncated tetrahedron tensegrity invented by Buckminster [40] has 12 nodes and
24 members (6 struts and 18 cables) as shown in Figure 10. In geometry, it is constructed by

cutting off the vertices of a tetrahedron.

Figure 10. Connectivity of the 3D-truncated tetrahedron tensegrity.
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4.2.1. Data Preparation and Training Phase

A dataset of 50,000 is obtained for the training of the 3D-truncated tetrahedron tenseg-
rity. The three groups, namely edge cables g,, vertical cables g, and struts gs, are used
for generating the dataset. The DNN for training is the same as those of the 2D two-strut
tensegrity structure. A set of experiments is performed with various numbers of hidden
layers such as 2, 3, 4 or 5 with 128, 256, 512 or 1024 neurons, respectively. Figure 11 shows
the comparison of the test loss for various mini-batch sizes. The results for cases of 128, 256
and 512 show the lowest loss values compared to those for the case of 1024. Because training
with a large batch size is attractive due to its performance benefits, the mini-batch size of
512 is selected to train the architecture. A multilayer perceptron with three hidden layers is
used. Each layer has 512 neurons; the mini-batch size is 512.

—— Batch size, Neuron of hidden layer = 128
W Batch size, Neuron of hidden layer = 256
—— Batch size, Neuron of hidden layer = 512

10—1 o
—— Batch size, Neuron of hidden layer = 1024

Validation loss

epoch

Figure 11. Comparison of the validation loss for various mini-batch sizes with log-scale for 3D-
truncated tetrahedron tensegrity.

4.2.2. Optimization Algorithm

A total number of five iterations is implemented to obtain the final set of force densities.
The final results are given in Table 5 and comparison of the force densities of the 3D-
truncated tetrahedron tensegrity using an FDM, a DNN-based form-finding model and an
analytical solution is plotted in Figure 12. Tibert and Pellegrino [6] found the analytical
solution for this structure. The result of the proposed DNN-based form-finding model,
[1.00,1.00, —0.58], is in good agreement with the analytical solution, which again validates
this approach. However, the result of the conventional FDM, [1.00, 0.73, —0.39], does not
match with the super-stable line. To obtain more accurate results by using the conventional
FDM, more iterations are demanded. Figure 13 indicates the convergence history and their
relation to the iteration and error of the two methods. The proposed method using the
DNN shows a much faster convergence than those of the conventional one.
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Table 5. The final results of the 3D-truncated tetrahedron tensegrity using an FDM and a DNN-based
form-finding model with a DE algorithm.

DE + FDM DE + DNN
Iteration 5 5
| frmean—fpest | 0.22 0.14
Solution [ge, §v, gs] [0.96, 0.70, —0.38] [1.00, 1.00, —0.58]
Force density * [ge, gu, gs] [1.00, 0.73, —0.39] [1.00, 1.00, —0.58]

* Normalized with respect to the solution of Element 1.

0.0
Analytical solution (Super-stable line)

|
o
]

.[0.73, -0.39] of DE + FDM

|
o
'S

[1.00, -0.58] of DE + DNN

Force densities of struts, gs
s
o

|
o
o

-1.0 ™ T T ™ T ™ T T T
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2.0

Force densities of vertical cables, g,

Figure 12. Comparison of the force densities of the 3D truncated tetrahedron tensegrity using an
FDM, a DNN-based form-finding model with a DE algorithm and a analytical solution [6].

1.0
—e— DE + FDM
0.91 -~ DE + DNN
0.8 4
0.7
0.6 4

0.5 1

0.4 4

Error |fmean - fbestl

0.3 1

0.2

0.11

0.0 . : :
1 2 3 4 5

Iteration
Figure 13. Relationship between the iteration and error for the 3D-truncated tetrahedron tensegrity
using an FDM and a DNN-based form-finding method with a DE algorithm.

4.2.3. Prediction for Lengths and Designation of Coordinates

As mentioned above, new lengths of the 3D-truncated tetrahedron tensegrity can be
predicted at each generation by using the trained DNN. The lengths should be grouped into
three kinds of attributes. The trained network gives a set of element lengths, [0.36, 0.52, 0.95],
for the three groups, namely edge cables, vertical cables and struts. Figure 14 shows three
steps of the coordinate designation for the 3D-truncated tetrahedron tensegrity. First,
the pin joints, Nodes 1 to 6, are set to zero z-axis level; the centroid of the bottom face
consisting of Nodes 1 to 6 lies at the origin point. The six nodal points can then be
designated automatically. After definite values of Nodes 1 to 6 are assigned, the values of
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the next level depend upon the value of the bottom level. Nodes 7 to 9 can be assigned
by Equation (12). For the 3D-truncated tetrahedron tensegrity system, Equation (12) is
reorganized as

24
12 = ||C1 + Cgp + +Cp3]|? (26)
p=1

The above 24 simultaneous equations in Equation (26) can used to obtain the final
geometry. After obtaining the coordinates of Nodes 7 to 9, the last Nodes 10 to 12 can be
assigned by using the equations corresponding to the nodal points.

X

(c)

Figure 14. Three steps of the coordinate designation for the 3D-truncated tetrahedron tensegrity.
(a) Step 1: Nodes 1 to 6. (b) Step 2: Nodes 7 to 9. (c) Step 3: Nodes 10 to 12.

The final geometry obtained by the proposed DNN-based form-finding model shows
more uniform shape than that of the FDM in Figure 15. Without the FDM, the feasible set of
force densities and nodal coordinates can be readily obtained by using the proposed model.

Figure 15. Final geometry of five iterations of the 3D truncated tetrahedron tensegrity using an FDM
and a DNN-based form-finding model with a DE algorithm. (a) FDM. (b) DNN-based form-finding
model.
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4.3. Three-Dimensional-Truncated Icosahedron Tensegrity

The 3D-truncated icosahedron tensegrity in Figure 16 is formed by cutting off 12 ver-
tices along a plane perpendicular to the radius emanating from the center of the icosahe-
dron. This creates 12 new pentagon faces and leaves the original 20 triangle faces as regular
hexagons. It has 60 nodes and 120 elements that consist of 30 identical compression mem-
bers and 90 tension cables. Figure 17 and Table 6 show the connectivity of the 3D-truncated
tetrahedron tensegrity. The blue dotted lines denote vertical cables, while the green solid
line represents edge cables. The nodal points of the 3D-truncated tetrahedron tensegrity
are numbered on the model as shown in Figure 18.

Figure 16. 3D-truncated icosahedron tensegrity in which the red thick lines denote strut members,
and others are cable members. (a) Geometry. (b) Isometric view.

60, 56

Figure 17. Connectivity of the 3D-truncated tetrahedron tensegrity in which the blue dotted lines
denote vertical cables, and others represent edge cables.
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Table 6. Connectivity of the strut members for the 3D-truncated tetrahedron tensegrity.
Element i j Element i i Element i j
91 37 58 101 24 26 111 13 40
92 14 16 102 27 49 112 12 34
93 2 20 103 23 50 113 33 36
94 1 15 104 22 44 114 32 59
95 5 10 105 43 46 115 8 35
96 6 29 106 42 57 116 9 11
97 28 55 107 19 21 117 7 54
98 48 51 108 18 45 118 31 53
99 4 30 109 38 41 119 47 56
100 3 25 110 17 39 120 52 60

Figure 18. The nodal points of the 3D-truncated tetrahedron tensegrity are numbered on the model.

4.3.1. Data Preparation and Training Phase

The dataset of the 3D-truncated tetrahedron tensegrity system for training DNNs was
50,000. The three groups, namely edge cables g,, vertical cables g, and struts g, are used
for generating the dataset. The dataset is uniformly distributed on the bounds.

Deciding the number of hidden layers and the number of neurons in each hidden
layer is a challenging issue [41]. Figure 19 shows a comparison of the validation loss for
various hidden layer sizes. In this figure, each hidden layer used 512 neurons and the ReLU
activation function. The validation loss result of the case of three hidden layers is higher
than those of other cases. Because the cases of two to five hidden layers are similar to each
other, the case of three hidden layers is selected to train the DNN.

Currently, the most widely-used activation function is the rectified linear unit (ReLU).
After the ReLu activation function has been introduced, various hand-designed alternatives,
such as a leaky ReLU [42], an exponential linear unit (ELU) [43] and a scaled exponential
linear unit (SELU) [44], to the ReLU are proposed. The leaky ReLU has the following form:

ax if x<0

x if x>0 27)

Irelu(x) = {

which has the gradient:



Mathematics 2022, 10, 1822 19 of 27

d a ifx<0
alrelu(x) = {1 $ 10 (28)

where & = 0.01, as proposed in the paper by [42].

2 hidden layers
3 hidden layers
4 hidden layers
5 hidden layers

11

6x1073

Validation loss

4x1073

3x1073

0 20 40 60 80 100

Figure 19. Comparison of the validation loss for various hidden layer sizes with log-scale. The num-
ber of neurons is 512 for the 3D-truncated icosahedron tensegrity.

The exponential linear unit (ELU) has the following form:

_ fa(exp(x)—1) if x< 0
BLU(x) = { x if x>0 @)
which has the gradient:
d _ JELU(x)4+a if x< 0
dx V() = { 1 if x>0 (30)
where & = 1, as proposed in the paper by [43].
The scaled exponential linear Unit (SELU) has the following form:
o falexp(x)—1) if x< 0
SELU(x) = A{ N f x>0 (31)
which has the gradient:
d _ [SELU(x) +Aw if x < 0
d PR ) = { A if x>0 (32)

where &« = 1.6733 and A = 1.0507, as proposed in the paper by [44].

Figure 20 shows the graphs of the different variants of the activation functions. Com-
parisons of the training loss and the validation loss for various activation functions are
plotted in Figure 21. The architectures of the DNN have three hidden layers with 512 neu-
rons. The cases of the ReLU and the leaky ReLU activation functions show better results
than those of the ELU and SELU. For the 3D-truncated icosahedron tensegrity module,
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the ReLU is selected as an activation function. As shown in Figure 22, the final trained
DNN is then obtained to predict the element lengths.

10 Rectifier Linear Unit (ReLU)

Ouput
»

-2 T T T T T T T
-10.0 -75 -50 -25 00 25 50 75 100
Input

(a)

10 Exponential Linear Unit (ELU)

— a=1.0

Ouput

-2 T T T T
-10.0 -75 -5.0 -25 0.0 25 5.0 7.5 10.0
Input

(©)

Leaky ReLU
10

— a=0.01

Ouput
B

=2 T T T T T T T
-100 -75 -50 -25 00 25 50 75
Input

(b)

10 Scaled exponential Linear Unit (SELU)

10.0

— a=1.6733,A =1.0507

Ouput

T T

-2 T T T T T
-10.0 =75 =50 =25 0.0 25 5.0 7.5
Input

(d)

Figure 20. Variants of activation functions. (a) ReLU. (b) Leaky ReLU. (c) ELU. (d) SELU.
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ELU

RelLU
Leaky ReLU
SELU

—
o
o

Validation loss

0 20 40 60 80 100
epoch

(b)

Figure 21. Comparison of the training loss and validation loss for various activation functions
with log scale. Three hidden layers and 512 neurons were used for the 3D-truncated icosahedron

tensegrity example. (a) Training loss. (b) Validation loss.

—— Training
—— Validation
10-2
0 6x1073
ke
4x1073
3x1073
0 1000 2000 3000 4000 5000

epoch
Figure 22. The training and validation loss curves for the 3D-truncated icosahedron tensegrity.

Figure 23 shows rectangular coordinates of the truncated icosahedron tensegrity in a
2 x 2 x 2 cube. The 2 x 2 x 2 cube is located in the 3D rectangular coordinate system so
that the eight vertices occupy the position at (1, =1, +1). In geometry, the truncated icosa-
hedron tensegrity has 12 regular pentagonal faces, 20 regular hexagonal faces, 60 vertices
and 90 edges. The truncated icosahedron tensegrity can be decomposed into 20 hexagonal
pyramids and 12 pentagonal pyramids by drawing segments from all the vertices of the
truncated icosahedron tensegrity toward the origin [45]. The analytical expression and
numerical values of pin-joints of the truncated icosahedron tensegrity module are given
in Table 7, where a = (3++/5)/6,b = (/5 —1)/3, and ¢ = /5/3. Here, the notation b
indicates the edge length of the pentagonal face.
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Figure 23. Rectangular coordinates of the 3D-truncated icosahedron tensegrity ina 2 x 2 x 2 cube,
where a = (3++/5)/6,b = (v/5—1)/3,and c = 1/5/3. (a) Front view. (b) Top view.

Table 7. Cartesian coordinates of the 3D-truncated icosahedron tensegrity using the connectivity
shown in Figure 17, where a = (3 + V5)/6,b=(v/5—1)/3,and c = v/5/3.

No. x y z No. x y z
1 0 —b/2 1 31 -b a 1/3
2 -1/3 -b a 32 —b/2 1 0
3 —b/2 —c 2/3 33 —b a -1/3
4 b/2 —c 2/3 34 —c 2/3 —b/2
5 1/3 -b a 35 —c 2/3 b/2
6 0 b/2 1 36 -1 0 —b/2
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Table 7. Cont.

No. x y z No. x Y z

7 1/3 b a 37 —a 1/3 —b
8 b/2 c 2/3 38 —-2/3 b/2 —c
9 —b/2 c 2/3 39 -2/3 —b/2 —c
10 -1/3 b a 40 —a -1/3 —b
11 -2/3 —b/2 c 41 —b/2 —c —2/3
12 -2/3 b/2 c 42 -1/3 —b —a
13 —a 1/3 b 43 0 —b/2 -1
14 -1 0 b/2 44 1/3 —b —a
15 —a -1/3 b 45 b/2 —c —2/3
16 —b —a 1/3 46 a -1/3 —b
17 —c -2/3 b/2 47 2/3 —b/2 —c
18 —c -2/3 —b/2 48 2/3 b/2 —c
19 —b —a -1/3 49 a 1/3 —b
20 —b/2 -1 0 50 1 0 —b/2
21 b —a 1/3 51 c 2/3 b/2
22 b/2 -1 0 52 c 2/3 —b/2
23 b —a -1/3 53 b a -1/3
24 c —-2/3 —b/2 54 b/2 1 0
25 c —-2/3 b/2 55 b a 1/3
26 2/3 —b/2 c 56 b/2 c —2/3
27 a -1/3 b 57 1/3 b —a
28 1 0 b/2 58 0 b/2 -1
29 a 1/3 b 59 -1/3 b —a
30 2/3 b/2 c 60 —b/2 c —2/3

Because the Cartesian coordinates described in Table 7 are for a 2 x 2 x 2 cube, a scale
factor is needed to obtain the nodal coordinates of the final tensegrity shape. If a notation I,
denotes the edge cable of the truncated icosahedron tensegrity, the scale factor is defined as
follows:

x=— (33)

where b = (v/5 — 1) /3 = 0.41202266.
After obtaining the set of element lengths by using the trained DNN, the nodal
coordinates can be obtained by the scale factor.

4.3.2. Optimization Algorithm

A total number of eight iterations is implemented to obtain the final set of force densi-
ties. Table 8 shows the final results of the 3D-truncated icosahedron tensegrity using the
FDM and the proposed DNN-based form-finding model. Figure 24 illustrates a comparison
of the force densities of the truncated icosahedron tensegrity using an FDM, a DNN-based
form-finding model with a DE algorithm and an analytical solution [6]. The result of the
proposed method, [1.00,0.80, —0.35], is in complete agreement with the analytical solution
while that of the FDM, [1.00,1.00, —1.00], does not satisfy the super-stable line. Figure 25
shows relationship between the iteration and error of the two methods. Again, the proposed
method shows a much better convergence than a conventional FDM.
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Figure 24. Comparison of the force densities of the 3D truncated icosahedron tensegrity using FDM,
DNN-based form-finding model with DE algorithm and analytical solution [6].
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Figure 25. Relationship between the iteration and error of the 3D truncated icosahedron tensegrity
using an FDM and a DNN-based form-finding model with a DE algorithm.

Table 8. The final results of the 3D-truncated icosahedron tensegrity using an FDM and a DNN-based
form-finding model with a DE algorithm.

DE + FDM DE + DNN
Iteration 8 8
| frean—fpest | 0.14 0.04
Solution [ge, §v, gs] [1.00, 1.00, —1.00] [1.00, 0.80, —0.35]
Force density * [ge, gu, gs] [1.00, 1.00, —1.00] [1.00, 0.80, —0.35]

* Normalized with respect to the solution of element 1.

4.3.3. Prediction for Lengths and Designation of Coordinates

The final geometries of eight iterations of form-finding processes for the 3D-truncated
icosahedron tensegrity module obtained by using the conventional FDM and the proposed
DNN-based form-finding model with a DE algorithm are shown in Figure 26. The case
of the proposed model shows a much better tensegrity shape compared with a conven-
tional one.
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-0.2

(b)

Figure 26. Final geometry of eight iterations of the 3D-truncated icosahedron tensegrity module
using an FDM and a DNN-based form-finding model with DE algorithm. (a) FDM. (b) DNN-based
form-finding model.

5. Conclusions

In this study, the machine-learning-based form-finding method for tensegrity struc-
tures is proposed. The new form-finding method used state-of-the-art deep learning
techniques to train the DNN. The trained DNNs can predict the feasible set of coordinates.
The eigenvalue decomposition process of the force density matrix and the singular value
decomposition process of the equilibrium matrix in the conventional approach are not
needed to find the nodal point information. The proposed DNN-based form-finding model
is based on the differential evolution algorithm, which is performed to find the global
minimum of the constrained optimization problems. Three well-known tensegrity exam-
ples, the 2D two-strut, the 3D-truncated tetrahedron and the 3D icosahedron tensegrity
are presented for numerical verifications. Variants of the activation functions such as the
rectified linear unit (ReLU), the leaky ReLU, the exponential linear unit (ELU) and the
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scaled exponential linear unit (SELU) are investigated. The cases of the ReLU and the leaky
ReLU activation functions show better results than those of the ELU and SELU. Moreover,
this study confirms that three of hidden layers and 512 neuron size are the best combination
for the DNN structures. The results obtained by the proposed method are in complete
agreement with those of analytical solution, stable line, or previous studies. It is concluded
that the set of force densities obtained by the proposed DNN-based form-finding model
shows more accurate results and their geometries have more uniform shape than those of
the conventional form-finding process using the force density method. Future studies will
be required to apply various regression methods such as kernel ridge regression, SVM (Sup-
port Vector Machines), decision tree, and ensemble methods to form-finding of tensegrity
structures.
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