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Abstract: Graph-oriented methods have been widely adopted in multi-view clustering because
of their efficiency in learning heterogeneous relationships and complex structures hidden in data.
However, existing methods are typically investigated based on a Euclidean structure instead of a
more suitable manifold topological structure. Hence, it is expected that a more suitable manifold
topological structure will be adopted to carry out intrinsic similarity learning. In this paper, we
explore the implied adaptive manifold for multi-view graph clustering. Specifically, our model
seamlessly integrates multiple adaptive graphs into a consensus graph with the manifold topological
structure considered. We further manipulate the consensus graph with a useful rank constraint so
that its connected components precisely correspond to distinct clusters. As a result, our model is
able to directly achieve a discrete clustering result without any post-processing. In terms of the
clustering results, our method achieves the best performance in 22 out of 24 cases in terms of four
evaluation metrics on six datasets, which demonstrates the effectiveness of the proposed model. In
terms of computational performance, our optimization algorithm is generally faster or in line with
other state-of-the-art algorithms, which validates the efficiency of the proposed algorithm.

Keywords: multi-view learning; graph learning; clustering; manifold learning

MSC: 05C50

1. Introduction

In real scenarios, since data typically originates from various sources or consists of
different features, a large amount of multi-view data emerges. For example, an object
can be described by audio, images, video, and text; news can also be written in different
languages [1]. Since the majority of the data is unlabeled, multi-view clustering, which
combines the latent information from multiple views and separates the data into different
categories [2,3], has become a significant application [4–6].

Graph-oriented learning is an efficient approach for modeling heterogeneous relation-
ships and complex structures hidden in data and therefore has been widely adopted in
multi-view clustering [7–9]. Among them, multi-view clustering based on the adaptive
neighbor technique [10], which conducts local manifold structure learning and clustering
simultaneously, has been widely utilized with superior performance. The method in [11]
learns an optimized graph for each view by assigning adaptive neighbors and then inte-
grates these graphs into a global graph in a well-designed way. To allocate each data sample
to the most appropriate cluster and guarantee consistency across views, the method in [12]
proposes to make all views share the same similarity matrix. The method in [13,14] learns a
similarity graph for each view, and an automated weighting strategy is then adopted to
combine the different views efficiently into a unified one. Since all samples in separate
views have the same cluster structure, the method in [15] exploits the shared information
derived from the links between the different views to obtain a better consensus clustering
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result. Instead of constructing a similarity graph in the original feature space, the method
in [16] learns the critical graph in a spectral embedding space to eliminate the disturbance
of noise and redundant information. In addition, the adaptive neighbor technique has been
effectively applied to the field of incomplete multi-view clustering [17]. At the same time,
there are methods designed to solve the clustering task [18,19].

Although these methods have demonstrated excellent performance, they typically
work on Euclidean space and ignore the manifold topological structure, which is crucial for
clustering data in the manifold. In this paper, we explicitly explore the manifold topological
structure across multiple adaptive graphs by learning a consensus graph. We further
manipulate the consensus graph with a useful rank constraint so that its connected com-
ponents precisely correspond to distinct clusters. As a result, our model is able to directly
achieve the discrete clustering result without any post-processing. Our model seamlessly
accomplishes three subtasks: It constructs an adaptive graph for each view, integrates the
multiple adaptive graphs into a consensus graph with the manifold topological structure
considered, and allocates the discrete cluster label for each sample. By leveraging the
interactions between these three subtasks in a unified framework, each subtask is iteratively
boosted in a mutual reinforcement manner. An iterative updating algorithm is introduced
to solve the optimization problem. Experiments on several real-world datasets demonstrate
the effectiveness of the proposed model, compared to the state-of-the-art competitors, in
terms of four widely used clustering evaluation metrics.

The main contributions of this work are summarized as follows:

• The proposed multi-view graph clustering method, for the first time to the best of our
knowledge, explores the topological manifold structure from multiple adaptive graphs
such that the topological relevance across multiple views can be explicitly detected.

• Essentially as an end-to-end single-stage learning paradigm, our model seamlessly
achieves three subtasks: It constructs the adaptive graphs for each view, explores
the topological manifold structure across multiple graphs, and allocates the discrete
cluster label for each sample.

• An iterative updating algorithm is carefully designed to solve the optimization prob-
lem. Experiments on several benchmark datasets demonstrate the effectiveness of the
proposed model.

The remainder of this paper is as follows: In Section 2, we introduce the preliminary
work. Section 3 describes the model in detail proposed in this paper. Section 4 introduces
the solution and optimization algorithm of the model. Section 5 verifies the validity of the
model proposed in this paper through experiments. We conclude the paper in Section 6.

Notations. Throughout this paper, a boldface uppercase letter, e.g., A, denotes a matrix.
ai and aij represent the i-th column and the ij-th element of A, respectively. ‖·‖F denotes
the Frobenius norm, and 1 is a column vector with all its elements being 1. I represents the
identity matrix with proper size.

2. Preliminary Work

Previous works have proven that real-world data are usually sampled from a nonlinear
low-dimensional manifold that is embedded in high-dimensional ambient space [20–22].
Thus, it is beneficial to reveal the manifold structure implied within the data to boost the
corresponding learning performance.

To accurately measure the intrinsic similarity relationships of crowds, the authors
in [23] explored the topological relationship between individuals by using a propagation-
based manifold learning method. It aims to uncover the topological relevance such that
the manifold topological structure can be explicitly considered. There is a simple and
intuitive assumption for this consideration: the topological connectivities between distinct
individuals could be propagated from near to far. In other words, the spatial similarity
between two individuals may be low, but their topological relevance to each other would
be high if they are linked by consecutive neighbors. Instead of only making use of the
Euclidean structure, it is expected that a more suitable manifold topological structure will
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be adopted to carry out intrinsic similarity learning. Figure 1 visualizes the manifold
topological structure learning procedure. As we can see, though the green and red samples
have low similarity in terms of spatial location and velocity, they are closely connected
to each other considering the high topological relevance between them. That is to say,
if two samples maintain a high consistency, their topological relevance to any other sample
should be similar.

Figure 1. Illustration of topological relevance. The red data sample and the green data sample show
a low similarity on spatial velocity, but they maintain high topological relevance to each other.

Suppose a predefined similarity graph Z = [zij] ∈ Rn×n that depicts the intrinsic
similarity relationships of data X ∈ Rd×n with n samples and d features. Based on the
assumption that data samples with large similarity share similar topological relevance to
any other sample, the authors in [23] extract the topological relationship of data samples by
solving the following problem:

min
S

1
2

n

∑
i,j,k=1

zij

(
ski − skj

)2
+ β‖S− I‖2

F, (1)

where β is a balance parameter, S is the target topological relationship matrix, and sij
denotes the data sample j’s topological relevance to i. The first term in Equation (1) is
a smoothness constraint that guarantees that the data samples j and k share a similar
topological relationship with sample i if j and k are similar. The second term is a fitting
constraint that avoids the trivial solution. Based on Equation (1), the topological consistency
is propagated through neighbors with high similarities, and the distant data samples will
maintain a close relationship if they are linked by consecutive neighbors. Finally, we can
search the topological relationship matrix S by solving the problem defined in Equation (1).

Note that the similarity graph Z involved in Equation (1) is a fixed graph that might
not be optimal for subsequent learning. More often, it is expected a similarity graph will be
automatically learned from the original data. To do so, the method described in [10] was
proposed to automatically learn a similarity graph for clustering tasks by assigning the
adaptive and optimal neighbors for each data sample based on the local connectivity. It is
based on a natural assumption that the data samples with a smaller distance should have a
larger probability of being neighbors. Instead of a predefined similarity graph, an adaptive
graph can be automatically learned by solving the problem as follows:

min
Z

n

∑
i,j=1

(∥∥xi − xj
∥∥2

2zij + αz2
ij

)
s.t. zij ≥ 0, zT

i 1 = 1,

(2)

where α is a trade-off parameter and can be determined according to the number of adaptive
neighbors [10].
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Let {X(1), . . . , X(m)|X(v) ∈ Rn×dv} be a multi-view dataset with m views and dv fea-
tures for the v-th view. Equation (2) is easily extended to a multi-view formulation as

min
Z(v)

m

∑
v=1

n

∑
i,j=1

(∥∥∥x(v)i − x(v)j

∥∥∥2

2
z(v)ij + α

(
z(v)ij

)2
)

s.t. z(v)ii ≥ 0,
(

z(v)i

)T
1 = 1,

(3)

where Z(v) denotes the adaptive graph learned from the v-th view.

3. The Proposed Model

Note that the formulation in Equation (1) has several drawbacks. First, if a data sample
is connected with many similar neighbors, it will largely affect the objective value. Hence,
it is required that a normalized version of Equation (1) be designed, such that each sample
is treated equally. That is to say, a data sample with too many connections would dominate
the objective function. The normalization has two main purposes: (1) it ensures that each
sample is treated equally; (2) it is equivalent to a sparse constraint, i.e., a l1-norm on a
similarity graph. Second, the learned S does not contain the explicit cluster structures, so
a subsequent postprocessing step is needed to output the final discrete clustering results.
It is preferred that the similarity graph and cluster structure are learned simultaneously.
It sounds unrealistic to achieve such a pure structured graph. Fortunately, we can tackle
this problem with a useful rank constraint. Taking the above concerns into consideration,
Equation (1) can be upgraded to

min
S

1
2

n

∑
i,j,k=1

zij

 ski√
dii
−

skj√
djj

2

+ β‖S− I‖2
F,

s.t. sT
i 1 = 1, sij ≥ 0, rank(LS) = n− c,

(4)

where D = [dij] ∈ Rn×n is the degree matrix of Z, LS is the Laplacian matrix of S,
and rank(LS) = n− c is a rank constraint that guarantees that S contains exactly c connected
components (c is the cluster number of data). The rank constraint has been successfully
used to achieve a clear cluster structure [10,24]. Note that, unlike Equation (1), here we
constrain the sum of each row of S to be one, and all elements of S are nonnegative. Finally,
a structured target graph S that reveals the topological relevance can be acquired by solving
Equation (4).

In this paper, we extract the topological relevance from multiple adaptive graphs such
that the manifold topological structure can be explicitly detected for the clustering task.
Combining Equation (4) and Equation (3), our new multi-view graph clustering model can
be formulated as

min
Z(v),S

m

∑
v=1

n

∑
i,j=1

(∥∥∥x(v)i − x(v)j

∥∥∥2

2
z(v)ij + α

(
z(v)ij

)2
)
+

1
2

m

∑
v=1

µ(v)
n

∑
i,j,k=1

z(v)ij

 ski√
d(v)ii

−
skj√
d(v)jj

2

+ β‖S− I‖2
F

s.t.
(

z(v)i

)T
1 = 1, z(v)ij ≥ 0,

sT
i 1 = 1, sij ≥ 0, rank(LS) = n− c,

(5)
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where µ(v) denotes the weight of the v-th view and can be determined by an inverse
distance weighting strategy, i.e.,

µ(v) = 1

/
2

√√√√√ n

∑
i,j,k=1

z(v)ij

 ski√
d(v)ii

−
skj√
d(v)jj

2

. (6)

Note that Equation (6) is essentially a kind of auto-weighted strategy, which has been
widely utilized in previous works [7,25,26]. To further verify the effect of an auto-weighting
strategy, we will conduct an ablation study in a later section.

Note that, if we denote σi(LS) as the i-th smallest eigenvalue of LS, the rank constraint
rank(LS) = n− c would be satisfied if ∑k

i=1 σi(LS) = 0 since LS is a positive semidefinite
matrix. According to Ky Fan’s Theorem [27] that ∑c

i=1 σi(LS) = minF Tr
(
FTLSF

)
, we can

incorporate the rank constraint term into the objective function, and finally we arrive at

min
Z(v),S,F

m

∑
v=1

n

∑
i,j=1

(∥∥∥x(v)i − x(v)j

∥∥∥2

2
z(v)ij + α

(
z(v)ij

)2
)

+
1
2

m

∑
v=1

µ(v)
n

∑
i,j,k=1

z(v)ij

 ski√
d(v)ii

−
skj√
d(v)jj

2

+ β‖S− I‖2
F + 2γTr

(
FTLSF

)
s.t.
(

z(v)i

)T
1 = 1, z(v)ij ≥ 0, sT

i 1 = 1, sij ≥ 0,

F ∈ Rn×c, FTF = I,

(7)

where γ is a self-adjusted parameter, and F denotes the cluster indicator matrix. When γ is
large enough, the optimal solution S for Equation (7) will enforce the last term Tr

(
FTLSF

)
,

i.e., ∑c
i=1 σi(LS), to be zero. Thus, the constraint rank(LS) = n− c in Equation (7) could

be satisfied. Moreover, according to [26], γ can be tuned in a heuristic way: initialize γ
to a positive value (e.g., γ = 10) and we then automatically halve (i.e., γ← γ

2 ) or double
(i.e., γ← 2 ∗ γ) it when its number of connected components is greater or smaller than the
cluster number c in each iteration. In this way, the target graph S will be modified until it
contains precisely c connected components.

4. Optimization

Since the optimization problem in Equation (7) is not jointly convex in all variables,
we optimize it with respect to one variable while fixing other variables.

4.1. Update Z(v)

The optimization problem for Z(v) can be stated as

min
Z(v)

m

∑
v=1

n

∑
i,j=1

(∥∥∥x(v)i − x(v)j

∥∥∥2

2
z(v)ij + α

(
z(v)ij

)2
)
+

1
2

m

∑
v=1

µ(v)
n

∑
i,j,k=1

z(v)ij

 ski√
d(v)ii

−
skj√
d(v)jj

2

s.t.
(

z(v)i

)T
1 = 1, z(v)ij ≥ 0.

(8)

Since Equation (8) is independent for different v, for a specific v, we need to solve

min
Z(v)

n

∑
i,j=1

(
hx

ijz
(v)
ij + α

(
z(v)ij

)2
+

1
2

µ(v)hs
ijz

(v)
ij

)
s.t.
(

z(v)i

)T
1 = 1, z(v)ij ≥ 0,

(9)
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where hx
ij =

∥∥∥x(v)i − x(v)j

∥∥∥2

2
, and hs

ij =

∥∥∥∥∥∥ si√
d(v)ii

− sj√
d(v)jj

∥∥∥∥∥∥
2

2

. Note that, for each i, Equation (9)

can be transformed into a compact vector form as

min(
z(v)i

)T
1=1,z(v)ij ≥0

∥∥∥∥z(v)i +
1

2α
hi

∥∥∥∥2

2
, (10)

where hi is a vector with its j-th element being

hij = hx
ij +

1
2

µ(v)hs
ij. (11)

Note that Equation (10) has a closed-form solution according to [28].

4.2. Update S

The optimization problem with respect to S can be denoted as

min
S

1
2

m

∑
v=1

µ(v)
n

∑
i,j,k=1

z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

+ β‖S− I‖2
F + 2γTr

(
FTLSF

)
s.t. sT

i 1 = 1, sij ≥ 0.

(12)

It is obvious that Equation (12) can be rewritten as

min
S

n

∑
i=1

{
m

∑
v=1

1
2

µ(v)
n

∑
j,k=1

z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

+ β
n

∑
j=1

(
sij − eij

)2
+ γ

n

∑
j=1

∥∥fi − fj
∥∥2

2sij

}

s.t. sT
i 1 = 1, sij ≥ 0,

(13)

where eij is the ij-th element of the identity matrix I.
Note that Equation (13) is independent for different i, so we have

min
sij≥0,sT

i 1=1
sT

i

(
m

∑
v=1

µ(v)
(

I−D(v)−
1
2 Z(v)D(v)−

1
2

))
si + β‖si − ei‖2

2 + sT
i ui, (14)

where ui represents a vector with its j-th element uij = γ
∥∥fi − fj

∥∥2
2.

Denote A = ∑m
v=1 µ(v)

(
I−D(v)−

1
2 Z(v)D(v)−

1
2

)
+ βI and b = 2βei−ui. Equation (14)

can then be stated as
min

sij≥0,sT
i 1=1

sT
i Asi − sT

i b. (15)

Equation (15) turns out to be a quadratic convex optimization problem, which can be
tackled by the augmented Lagrangian multiplier (ALM) strategy [29]. According to the
ALM, the counterpart of Equation (15) is defined as

min
sij≥0,sT

i 1=1,p=si

sT
i Ap− sT

i b, (16)

where p is the Lagrangian multiplier. Thus, the augmented Lagrangian function of
Equation (16) can be represented as

min
sij≥0,sT

i 1=1,p
sT

i Ap− sT
i b +

η

2

∥∥∥∥si − p +
1
η

q
∥∥∥∥2

2
, (17)
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where η and q are the corresponding penalty coefficient and parameter, respectively.
To solve Equation (17), we can update p and si iteratively:
(1) Update p with a fixed si. The Lagrange function of Equation (17) with respect to p

can be formulated as

Lp = sT
i Ap +

η

2

∥∥∥∥si − p +
1
η

q
∥∥∥∥2

2
. (18)

Taking the derivative of Lp with respect to p and setting the derivative to zero, i.e.,

∂Lp

∂p
= 0, (19)

we obtain the following solution:

p = si −
1
η

(
ATsi + q

)
. (20)

(2) Update si with a fixed p. The Lagrange function of Equation (17) with respect to
si is

min
sij≥0,sT

i 1=1

∥∥∥∥si − p +
1
η

q +
Ap− b

η

∥∥∥∥2

2
, (21)

which has a similar form to Equation (10) and thus can be solved effectively. Note that η is
exaggerated increasingly during each iteration, and q can be updated by q← q+ η(si − p).
The optimization routine for Equation (17) is outlined in Algorithm 1.

Algorithm 1: Algorithm to solve Equation (17).
Require: a nonzero matrix A and a nonzero vector b.

Set 1 < ρ < 2, initialize η > 0, q.
Ensure: S.

1: repeat
2: Update p according to (20).
3: Update si according to (21).
4: Update η ← ρη.
5: Update q← q + η(si − p).
6: until converge

4.3. Update F

The optimal solution of F can be searched by solving

min
F∈Rn×c ,FTF=I

Tr
(

FTLSF
)

, (22)

which is a classical problem in spectral theory, and the solution is formed by the c eigenvec-
tors of LS corresponding to the c smallest eigenvalues.

Up to now, the overall algorithm to solve the proposed objective function in Equation (7)
is summarized in Algorithm 2. We will provide the time complexity and convergence
analysis of Algorithm 2 in a later section.
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Algorithm 2: The algorithm for our model.

Require: Multi-view data {X(1), X(2), . . . , X(m)} with m views, cluster number c,
parameters α and β.
Initialize the weight of each view µ(v) = 1

m .
Initialize Z(v) for each view by (2).
Initialize the consensus graph S = ∑m

v=1 µ(v)Z(v).
Ensure: The target S ∈ Rn×n with exactly c connected components, and the cluster

indicator matrix F.
1: repeat
2: Update Z(v) according to Equation (10).
3: Update S by Algorithm 1.
4: Update F according to Equation (22).
5: Update µ(v) according to Equation (6).
6: until converge

4.4. Time Complexity Analysis

As shown in Algorithm 2, there are four steps that mainly determine the complexity
of our model. Recall that n, m, and c denote the number of data points, views, and clus-
ters, respectively. t denotes the number of iterations. We summarize the computational
complexity of each step in Table 1.

Table 1. Details of computational complexity.

Steps Calculation Complexity

Equation (10) update Z(v) O(nmc)
Algorithm 1 update S O

(
nm2c + nmc

)
Equation (22) c eigenvectors of LS O

(
n2c
)

Equation (6) view weight µ(v) O
(
n2mc

)
Total O

(
n2t
)

In practice, we have m� n and c� n, so the overall complexity is O
(
n2t
)
, which is

in line with the classical graph-based methods and hence is acceptable.

4.5. Convergence Analysis

In Algorithm 2, we can obtain the closed-form solutions with respect to Z(v), µ(v),
and F, as described in the main paper. ALM optimization theory [30] guarantees that the
iterations will make the optimization process converge. In a word, the updating of variables
Z(v), µ(v), and F with iterative optimization steps will monotonically decrease toward the
lower bound of the objective function in (7). Hence, we only need to prove the convergence
of (12) with respect to S. We will show that our algorithm can find a local optimal solution.
Before we prove its convergence, first we introduce an important lemma as follows [31]:

Lemma 1. For any positive real number q and t, the following inequality holds:

√
q− q

2
√

t
≤
√

t− t
2
√

t
.

Proof. It is obvious that the inequality (
√

q−
√

t)2 ≥ 0, so we have

(
√

q−
√

t)2 ≥ 0⇒ q− 2
√

qt + t ≥ 0⇒ √q− q
2
√

t
≤
√

t
2 ⇒

√
q− q

2
√

t
≤
√

t− t
2
√

t
which completes the proof.
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Theorem 1. In each iteration, the updated S will monotonically decrease the objective in Equa-
tion (12), which generally makes the solution converge to the local optimum of Equation (12).

Proof. Suppose the alternatively updated S is S̃ in each iteration. By solving Equation (17),
we obtain

S̃ = arg min
S

{
1
2

m

∑
v=1

µ(v)
n

∑
i,j,k=1

z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

+ β‖S− I‖2
F

}
.

According to Equation (6), i.e., µ(v) = 1

/
2

√√√√√ n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

, we obtain

1
2

m

∑
v=1

n
∑

i,j,k=1
z(v)jk

 s̃ij√
d(v)jj

− s̃ik√
d(v)kk

2

2

√√√√√ n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2
+ G

(
S̃
)
≤

1
2

m

∑
v=1

n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

2

√√√√√ n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2
+ G(S),

where G(S) = β‖S− I‖2
F.

Based on Lemma 1, we have

1
2

m

∑
v=1

√√√√√ n

∑
i,j,k=1

z(v)jk

 s̃ij√
d(v)jj

− s̃ik√
d(v)kk

2

− 1
2

m

∑
v=1

n
∑

i,j,k=1
z(v)jk

 s̃ij√
d(v)jj

− s̃ik√
d(v)kk

2

2

√√√√√ n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

≤ 1
2

m

∑
v=1

√√√√√ n

∑
i,j,k=1

z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

− 1
2

m

∑
v=1

n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2

2

√√√√√ n
∑

i,j,k=1
z(v)jk

 sij√
d(v)jj

− sik√
d(v)kk

2
.

By summing over the above two equations in the two sides, we obtain
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2

+ G(S),
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which completes the proof. That is, the objective function value will monotonically decrease
in each iteration of updating S.

5. Experiments

To verify the efficiency of our proposed method, we compare it with the following
state-of-the-art methods: self-weighted multi-view clustering (SwMC) [7], multi-view
learning with adaptive neighbours (MLAN) [12], multi-view clustering via adaptively
weighted procrustes (AWP) [32], weighted multi-view spectral clustering (WMSC) [33],
multi-view consensus graph clustering (MCGC) [15], consistent and specific multi-view
subspace clustering (CSMSC) [34], graph-based multi-view clustering (GMC) [14], consen-
sus one-step multi-view subspace clustering (COMSC) [35], and multi-view clustering via
consensus graph learning (CGL) [16].

We conduct the experiments on several prevalent datasets, namely, 3Sources, MSRC,
BBCSport, COIL-20, Caltech-7, and Caltech-20. The detailed information of all datasets
is as follows: 3Sources (http://mlg.ucd.ie/datasets/3sources.html (accessed on 26 April
2022)) is collected from three news sources, i.e., Reuters, BBC, and The Guardian. There
are 948 news articles covering 416 different news stories. Among them, 169 news sto-
ries were reported in all three sources, and each story was annotated with one of six
topical labels: business, health, politics, entertainment, sport, and technology. MSRC
is comprised of 240 images in eight classes. We selected seven classes with each class
containing 30 images. For each image, five visual features are extracted for a com-
prehensive description. BBCSport is a sports news dataset that consists of 544 arti-
cles in 5 areas with 2 views. The 2 views are 3183 dimension MTX features and 3203
dimension TERMS features, respectively. COIL-20 is a subset of an object database
(http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php (accessed on 26 April
2022)) that includes 100 categories. Images of each object were taken five degrees apart as
the object was rotated on a turntable, and each object has 72 gray images. Each image is
described by three types of features. Caltech101 is an object recognition dataset with 101
categories. This dataset is represented by 6 types of features. Following [12], we selected
1474 images within 7 classes (Caltech-7) and 2386 images within 20 classes (Caltech-20).

The specific characteristics of the datasets are given in Table 2.

Table 2. Characteristics of all datasets.

Data Set n m c d1 d2 d3 d4 d5 d6

3Sources 169 3 6 3560 3631 3068 – – –
MSRC 210 5 7 24 576 512 256 254 –
BBCSport 544 2 5 3183 3203 – – – –
COIL-20 1440 3 20 1024 3304 6750 – – –
Caltech-7 1474 6 7 48 40 254 1984 512 928
Caltech-20 2386 6 20 48 40 254 1984 512 928

n, m, and c denote the number of samples, views, and clusters, respectively. dv denotes the dimensionality of the
features in the v-th view.

The parameters for comparison algorithms were set according to the recommendations
in their corresponding paper. The parameter settings of our model will be introduced later.
All algorithms were repeated 10 times, and the average results are presented.

To achieve a comprehensive evaluation, four widely used metrics (clustering accu-
racy (ACC), normalized mutual information (NMI), purity, and F-score) are adopted in
this paper.

5.1. Clustering Results

The clustering performance of different methods on all datasets is reported in Table 3.
Note that the best performance is in bold, and the second-best performance is underlined.
As we can see, our method outperforms other methods in most cases, which verifies

http://mlg.ucd.ie/datasets/3sources.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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the effectiveness of the proposed model. Specifically, our method outperforms the most
competitive competitors by 1.5%, 12.2%, 3.1%, 1.1%, 15.2%, and 24.5%, respectively, on
different datasets in terms of ACC. In terms of the F-score, the number becomes 2.8%,
17.3%, 4.9%, 1.0%, 15.0%, and 4.4%, respectively. With other clustering metrics, it can also
be observed that the improvement is notable.

Table 3. Clustering results of all methods on different datasets (%). The best performance is bolded,
and the second best performance is underlined.

Dataset SwMC MLAN AWP WMSC MCGC CSMSC GMC COMSC CGL Ours

ACC

3Sources 39.64 79.88 54.44 57.81 56.80 78.28 69.23 57.22 56.27 81.06
MSRC 72.38 51.48 63.33 68.81 74.86 80.48 74.76 80.48 81.90 91.90

BBCSport 35.85 87.50 59.74 35.29 47.13 82.35 80.70 47.50 79.78 90.25
COIL-20 86.39 75.28 66.46 76.08 77.22 72.94 79.10 65.42 56.57 87.22
Caltech-7 40.77 63.30 58.96 38.89 55.22 63.49 69.20 58.30 61.47 79.71

Caltech-20 55.11 53.91 51.55 33.43 47.53 47.22 45.64 42.17 54.82 68.60

NMI

3Sources 11.81 64.12 45.88 49.20 34.21 70.71 54.80 39.70 61.91 71.23
MSRC 71.78 45.24 54.88 59.30 70.18 71.43 74.21 69.91 74.43 84.02

BBCSport 11.51 76.52 43.06 20.94 22.01 68.22 72.26 27.88 71.92 79.37
COIL-20 94.29 83.06 78.24 83.90 89.86 83.61 91.89 76.54 76.07 94.49
Caltech-7 23.38 54.66 46.25 28.07 47.00 54.35 60.56 37.28 54.16 67.75

Caltech-20 47.02 59.00 57.90 41.66 54.57 58.17 38.46 42.97 60.62 61.43

Purity

3Sources 44.38 80.47 63.31 71.54 65.09 83.61 74.56 64.97 76.33 84.61
MSRC 77.14 52.43 63.33 71.19 80.95 80.48 79.05 79.52 81.90 91.90

BBCSport 36.58 87.50 66.54 42.10 47.13 82.35 84.38 52.06 83.64 94.11
COIL-20 89.86 76.41 68.13 77.76 82.92 76.01 84.79 71.86 62.51 90.00
Caltech-7 56.24 88.74 83.04 79.58 82.97 87.84 88.47 76.07 86.50 88.60

Caltech-20 67.98 77.12 73.39 67.19 68.65 78.11 55.49 62.37 78.92 77.66

F-score

3Sources 35.95 72.67 42.46 50.66 51.58 73.09 60.47 51.88 55.56 75.10
MSRC 66.19 46.47 53.76 57.29 69.68 70.13 72.46 68.70 71.87 84.33

BBCSport 38.35 84.27 47.42 30.23 48.70 74.09 79.43 41.21 78.32 88.38
COIL-20 84.44 71.68 63.15 72.80 75.57 69.84 79.20 57.12 51.69 85.26
Caltech-7 45.98 61.87 61.83 37.76 58.78 63.91 72.17 52.21 62.63 82.98

Caltech-20 38.98 45.26 53.43 30.21 40.17 42.24 34.03 36.26 49.34 55.79

It is worth noting that MLAN, MCGC, GMC, and CGL are all multi-view clustering
methods that involve the adaptive graph. From the results, we can say the proposed method
that adopts the manifold topological structure has a superior performance, which further
illustrates the effectiveness of adaptive manifold learning. Taking the datasets COIL-20 and
BBCSport as examples, we carried out the t-SNE [36] to visualize the clustering results. As
shown in Figures 2 and 3, our model obviously achieves a much clearer clustering structure
with better separability, and the gap between different clusters is evident, which further
validates that our model can better uncover the intrinsic structure of the data. Considering
that real-world data are usually sampled from a nonlinear low-dimensional manifold, our
method is able to achieve a promising clustering performance in the general case.
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(a) (b) (c)

(d) (e)

Figure 2. Visualization of the clustering results of the first 5 classes of COIL-20 with t-SNE. (a) MLAN.
(b) MCGC. (c) GMC. (d) CGL. (e) Ours.

(a) (b) (c)

(d) (e)

Figure 3. Visualization of the clustering results of the first 5 classes of BBCSport with t-SNE. (a)
MLAN. (b) MCGC. (c) GMC. (d) CGL. (e) Ours.

5.2. Sensitivity Analysis

We showcase the sensitivity of the proposed model with respect to different param-
eter settings. As described before, γ is a self-adjusted parameter and can be tuned in a
heuristic way. Thus, we only need to search the parameters α and β properly. As men-
tioned in Equation (2), α can be determined according to the number of adaptive neigh-
bors [10]. In this paper, we empirically search the adaptive neighbors k in the range
[10,15,20,25,30,35,40] and β in the range [0.1,0.5,1,5,10,50,100]. The clustering results of
all datasets are plotted in Figure 4. It is obvious that our performance is relatively stable
under a wide range of parameter settings, which pinpoints the robustness of our model.
Generally speaking, we can expect a promising clustering performance when β varies from
0.5 to 10, and k from 15 to 30, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Accuracy (ACC) with respect to β and the number of neighbors (k). (a) 3Sources. (b) MSRC.
(c) BBCSport. (d) COIL-20. (e) Caltech-7. (f) Caltech-20.

5.3. Ablation Study

In order to verify the importance of the auto-weight learning strategy in Equation (6),
we tested a special case where all views are of the same importance to the clustering
task, i.e., µ(v) = 1

m , denoted as the simple version of our model. As shown in Figure 5,
we report the clustering performance of two evaluation indexes (ACC and NMI) on six
datasets, respectively. We can see that the experimental results of the auto-weight learning
strategy (as described in Equation (6) are superior to those obtained by the simple average
weighting strategy. Moreover, it can be seen that the overall improvement is remarkable,
which obviously showcases the effectiveness of our auto-weight learning strategy.

(a) (b)

Figure 5. Auto-weight learning strategy (adopted in Our original model) vs. average weighting
strategy (denoted by Ours_smp). (a) ACC. (b) NMI.

5.4. Computational Performance

Given the computational complexity of our algorithm theoretical analyzed above, here,
we empirically compare the computational speed of our method with other multi-view
graph clustering approaches. The computational time of all algorithms on a machine with
2.60 GHz Intel Xeon Gold 6240 CPU and 256 GB RAM is shown in Table 4. We see that
COMSC and SwMC are the two timesaving-most algorithms, especially COMSC, which
is slower than other methods by nearly two orders of magnitude. Generally speaking,
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our algorithm is faster than COMSC and SwMC and in line with other methods, which
validates the efficiency of the proposed algorithm.

Table 4. Comparison of computational time (seconds).

Dataset SwMC MLAN AWP WMSC MCGC CSMSC GMC COMSC CGL Ours

3Sources 0.51 0.11 0.08 0.16 0.50 0.19 0.22 27.29 0.34 0.66

MSRC 1.05 0.12 0.09 0.19 0.22 0.08 0.29 29.31 0.58 0.84

BBCSport 2.67 0.90 0.45 0.61 1.00 0.85 0.76 103.04 1.66 1.99

COIL-20 192.25 13.48 8.41 12.98 16.03 9.85 11.15 2015.47 26.08 10.94

Caltech-7 143.45 13.15 16.60 50.01 17.31 6.78 12.62 3493.87 54.16 19.89

Caltech-20 679.34 66.75 74.00 224.91 78.76 27.28 39.94 12484.65 201.20 75.11

5.5. Convergence Study

The convergence property of our algorithm was theoretically analyzed previously.
Here, we empirically validate the convergence speed of the proposed algorithm. The con-
vergence curves along with the clustering results of our algorithm are shown in Figure 6,
where the orange line represents the ACC of the proposed model, and the blue line denotes
the value of the objective function. We can observe that the iterative updating algorithm
converges very fast, which implies the efficiency of our algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 6. Convergence analysis of the proposed method, where OBJ denotes the objective value.
(a) 3Sources. (b) MSRC. (c) BBCSport. (d) COIL-20. (e) Caltech-7. (f) Caltech-20.

6. Conclusions

In this paper, we explore the implied adaptive manifold for multi-view graph cluster-
ing. Our model seamlessly integrates multiple adaptive graphs into a consensus graph with
the manifold topological structure considered. In addition, we manipulate the consensus
graph with a useful rank constraint so that its connected components precisely correspond
to distinct clusters. As a result, our model is able to directly achieve the discrete clustering
result without any post-processing. An alternating iterative algorithm is introduced to
solve the optimization problem. Experiments on several benchmark datasets illustrate the
effectiveness of the proposed model, compared to the state-of-the-art algorithms in terms
of four clustering evaluation metrics. In detail, the experimental results have shown that
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(1) our model achieved the best results in the majority of cases, (2) the proposed model is
very stable across a wide range of parameter settings, and (3) the designed optimization
algorithm is very efficient and converges fast. However, our model cannot deal with non-
linear data, which can be considered in future work. Furthermore, we are also interested in
extending the proposed framework to other machine learning applications, such as medical
data analysis and genetic data analysis.
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