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Abstract: We propose a novel method using Locality-Sensitive Hashing (LSH) for solving the op-
timization problem that arises in the training stage of support vector machines for large data sets,
possibly in high dimensions. LSH was introduced as an efficient way to look for neighbors in high
dimensional spaces. Random projections-based LSH functions create bins so that when great proba-
bility points belonging to the same bin are close, the points that are far will not be in the same bin.
Based on these bins, it is not necessary to consider the whole original set but representatives in each
one of them, thus reducing the effective size of the data set. A key of our proposal is that we work
with the feature space and use only the projections to search for closeness in this space. Moreover,
instead of choosing the projection directions at random, we sample a small subset and solve the
associated SVM problem. Projections in this direction allows for a more precise sample in many cases
and an approximation of the solution of the large problem is found in a fraction of the running time
with small degradation of the classification error. We present two algorithms, theoretical support,
and numerical experiments showing their performances on real life problems taken from the LIBSVM
data base.

Keywords: support vector machines; locality sensitive hashing; classification problems

MSC: 90-08; 60-08

1. Introduction

In this work, we deal with the problem of binary classification of large volume data
sets of possible high dimension (for instance, graphs and texts). There are many techniques
for solving this problem, for example, logistic regression and other linear methods, random
forests and ensemble methods in general, K-nearest neighbors or neural network-deep
learning models, see for example [1] for a general survey; however, one of the difficulties
of the classification problem is to be able to represent high dimensional points via an
appropriate embedding in a feature space. Methods based on kernel functions such as
Support Vector Machines (SVM) are an interesting alternative for the classification problem
because they aim exactly at this, supported by the statistical theory developed by [2].
They are based on finding a hyperplane of maximal margin that separates the data. A
very appealing feature of SVMs is that the separation can be achieved in the original data
space or in a higher dimensional one, via kernel functions, without explicitly forming the
space transformation map [3], unlike what most algorithms do. This feature also makes
it possible to apply the method in non-vectorial domains [4]. To construct the separating
hyperplane, SVM only needs to identify some significant vectors, called support vectors,
from the whole data set. Because of this, SVM may suffer less the effect of outliers than
other techniques. With well-tuned hyperparameters, SVMs have shown to be a robust and
well-behaved technique for classification in many real-world problems. We refer to the
web page http://www.clopinet.com/isabelle/Projects/SVM/applist.html (accessed on 28
April 2022) for a comprehensive list of applications.
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A drawback of SVM for the classification of very large data sets is the computational
cost of the optimization problem to be solved in the training stage. There are a large amount
of contributions in the literature that deal with this problem and several courses of action
have been developed. Following the seminal work by Osuna, Girosi, and Freund [5,6],
decomposition techniques based on the optimality conditions are used to find the solution
of the optimization problem by solving a sequence of smaller subproblems of the same
structure of the original one. Efficient methods, as well as different heuristics, have been
proposed for stating and solving the optimization subproblems, as SMO [7] which gave rise
to the broadly used LIBSVM [8] (that decomposes the large problem into small problems
of size two). Algorithms that decompose the large optimization problem into a sequence
of medium size problems include SVMlight [9,10], GPDT [11–13], and ASL [14]. There are
other approaches that do not use decomposition procedures but an efficient use of the linear
algebra for some kernels [15], or identification procedures of the positive components at
solution as the ones developed in [16]. All these methods strive at finding the exact solution
of the SVM optimization problem by considering, in different ways, subsets of the training
data set.

Other methods, although also using subsets of the training data set, are of a different
nature since they consider approximations of the optimization problem in an attempt
to reduce the computational cost while still obtaining similar generalization errors. In
this group, we can cite [17–19] that use low-rank approximations of the kernel matrix,
and [20–22] that use random samples of the data set. The use of subsamples may be
combined with techniques for reducing the feature space dimension as in [23] or combined
with search ideas as the one proposed in [24], followed by the extension presented in [25],
where approximated solutions of the large size SVM problems are found by looking at
the smaller optimization subproblems resulting from random samples of the data, and
enriching the subsamples by finding the k-nearest neighbors, in the complete data set, of
the support vectors associated to them. For a revision of subsampling methodologies we
refer to Nalepa and Kawulok [26] and Pardis et al. [27].

The results in [24] show that great computational advantages can be obtained by using
randomness and proximity ideas in the context of SVM. This has to do with the nature of
SVM where the main objective is to find the separating hyperplane. It seems then natural
to consider approaches that include randomness along with the idea that only points near
the actual support vectors are necessary in order to obtain a good fit over a sample, thus
reducing the required sample size. One way of addressing this problem is to use projections
over random directions, instead of random sampling, and then choosing a sample over the
projections. This approach has the advantage that it is not necessary to consider all points
for a given random direction, but rather only selected representatives. Motivated by this, in
this paper we look for an adequate subset of representative points of the data via projections
using Locality Sensitive Hashing (LSH) [28]. LSH has the advantage of transforming the
data points into a lower dimensional representation space, see for example [29,30]. One of
its main applications is the efficient search of (approximated) nearest neighbors. Since only
the support vectors are needed to obtain the optimal hyperplane classifier, to use LSH to
select a subset of points that may be support vectors, or close to them, is especially of great
benefit for reducing the training computational time for SVM; however, LSH could be used
jointly with other approaches as well.

Random projections create bins so that when great probability points belonging to
the same bin are close, points that are far will not be in the same bin. Based on these bins,
it is not necessary to consider the whole original set but representatives in each one of
them, thus reducing the effective size of the data set. A key of our proposal is that we
work with the feature space and use the projections to search for closeness in this space.
This is also another reason for using LSH in the context of SVM. Moreover, instead of only
choosing the projection directions at random, we also choose them by solving SVM very
small problems. We call these projecting directions as “directed” because they already
contain useful information of the large problem to be solved.
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Results relating to kernel-based classifiers and LSH are rather recent. Research efforts
are most importantly related to provably approximating the similarity structure given by
the kernel in the SVM in order to reduce the time and memory space required to train the
SVM as in [31], where authors show accuracy improvement over a series of benchmark
data sets. Another approach [32,33] is related to enhancing the prediction stage by using
hash functions. Instead of using the actual solution, the authors consider hashing both the
sample points and the normal to the obtained separating hyperplane in order to optimize
time and memory space.

Our main objective with this paper is to propose subsampling algorithms, based
on LSH, that produce a good selection of the data set for using in SVM. The goal is
to improve the computational cost without degrading the prediction error significantly.
Our approaches exploit the underneath idea of proximity but without looking explicitly
for neighborhoods. The numerical experimentation seeks to show the effectiveness and
efficiency of our methodologies comparing with the whole data set. We show improvement
in time and we support our numerical findings with theoretical results. Our next work will
be focused on improving the implementations (by using the embarrassing parallel nature
of our algorithms) and the computational environment so that much larger problems in
very high dimensions can be solved.

The article is organized as follows. In Section 3 we introduce LSH and the algorithmic
general frameworks that we propose for solving the complete SVM problem. The following
section includes numerical experimentation and details on the implementations. Section 5
contains theoretical results giving bounds on the obtained errors of the algorithms.

We end in Section 6 with some concluding remarks and future work.

2. Preliminaries: The SVM Problem

SVM for binary classification (the one considered in this paper) is based on the fol-
lowing. Given points {Xi ∈ Rd, i = 1, . . . , n} belonging to two classes (identified with
the corresponding tags yi = 1 or yi = −1), they are linearly separable if there exists an
hyperplane that divides them into the two different classes. The dimension d denotes the
attributes of the data, and the input (or observation) space the set formed by the data.
Among the separating hyperplanes, SVM seeks to find the one that maximizes the separa-
tion margin between classes, constrained to respecting the classification of each point of
the data. This problem can be modeled, after a normalization, as the optimization problem

minimize
w,b

1
2‖w‖2

2

subject to yi(wtXi + b) ≥ 1 ∀ i = 1, . . . , n.
(1)

Here, ‖.‖2 denotes the Euclidean norm.
Because the data set is usually linearly nonseparable (that is, there does not exist a

solution of problem (1)) two variants are introduced in the previous problem. On one hand,
a perturbation variable ξ is included in order to relax the constraints, so that a margin of
error in the classification is accepted. Additionally, since the data might be separable by a
nonlinear decision surface, such a surface is computed by mapping the input variables into
a higher dimensional feature space, and by working with linear classification in that space.
In other words, let us denoteH as the feature space, which is a reproducing kernel Hilbert
set (RKHS). We denote the inner product in H with < ., . >. Then, x ∈ Rd is mapped
into φ(x) ∈ H, where φ(.) is the transformation induced by the use of the kernel function
K. This is, K(z, a) =< φ(z), φ(a) > for every z, a ∈ Rd. Thus, the input vectors Xi are
substituted with the new “feature vectors” φ(Xi), belonging to the “feature space”H. In
this way, for the linearly nonseparable case, the optimization problem is written as

minimize
w,b,ξ

1
2‖w‖2

H + C ∑n
i=1 ξi

subject to yi(< w, φ(Xi) > +b) ≥ 1− ξi ∀ i = 1, . . . , n,
ξi ≥ 0 ∀ i = 1, . . . , n

(2)
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where C is a positive constant that penalizes the errors at the constraints, and ‖w‖2
H =

< w, w >.
Let us denote (w∗, b∗, ξ∗) the solution to this problem. A new point X ∈ Rd is classified

according to the side of the “hyperplane” where φ(X) falls. Hence, the function used to
classify a new point X can be written as

g∗(X) = sign(< w∗, φ(X) > +b∗) (3)

and is usually called the classification or generalization function.
In order to solve (2), standard duality theory may be used since the problem is convex

and quadratic. For more details, we refer to the book by Cristianini and J. Shawe-Taylor [3].
Using this theory, (2) can be solved by solving its dual. Some advantages of using the
dual problem is that an explicit description of φ above is not required but a function that
preserves in the higher dimensional space H the properties of the inner product, and
this is satisfied by the kernel function K. Then, the dimension of the feature space for
the classification can be increased without increasing the dimension of the optimization
problem to solve, and this is particularly relevant when dealing with an infinite dimensional
spaceH.

Following [3], the dual problem corresponding to (2) is given, in terms of the kernel
function, by

mimimize
λ

−∑n
i=1 λi +

1
2 λtQλ

subject to ytλ = 0,
0 ≤ λi ≤ C for i = 1, . . . , n

(4)

where Q ∈ Rn×n is a symmetric positive semidefinite matrix with positive diagonal, defined
as Qij = yiyjK(Xi, Xj). The matrix K with ij-component equal to K(Xi, Xj) is called the
kernel matrix. To avoid complicating notation, typically K will stand for both the generic
kernel and the matrix defined by the kernel restricted to the original data of size n.

Let λ∗ be a solution of (4). Using the Karush–Kuhn–Tucker (KKT) optimality condi-
tions (see [3]), we can obtain an expression of w∗ as

w∗ =
n

∑
i=1

λ∗i yiφ(Xi). (5)

Observe that in this sum, only the λ∗i > 0 are relevant. The corresponding Xi are the
so-called support vectors and their importance falls in the fact that the remaining objects
are irrelevant for classification purposes.

Complementarity slackness conditions [3] also imply that, for any i with 0 < λ∗i < C,
one has yi(< w∗, φ(Xi) > +b∗) = 1, and therefore an expression for b∗ can also be
obtained as

b∗ = 1− max
{yj=1,0<λ∗j <C}

< w∗, φ(Xj) > . (6)

Let us recall that our interest is to classify a new point by means of the generalization
function g∗ using λ∗. This can be achieved by substituting w∗ in (3) and (6), so we obtain

g∗(X) = sign(
n

∑
i=1

λ∗i yiK(Xi, X) + b∗) (7)

with b∗ = 1−max{yj=1,0<λ∗j <C} ∑n
i=1 λ∗i yiK(Xi, Xj).
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Therefore, the classification of a new point can be made just by selecting a (hopefully
small) group of points from the large original data: the support vectors. The procedure of
finding these vectors (which we denote by SV) from the given data set is usually referred
to as the training process or training the machine. After training, it is customary to qualify
the result by using it in order to classify points that are known to be in one class or another.
This set of points is called the testing set. The estimated classification or prediction error for
a given data set is the percentage of points from the test set that are incorrectly predicted.
This last part of the SVM procedure is known as the fitting process. Note that the number
of SV vectors impact the fitting time—the fewer, the faster.

In the following section, we introduce the algorithms proposed to solve an approxima-
tion of problem (4) by the use of locality-sensitive hashing and subsamples.

3. Using LSH for SVM

Locality-sensitive Hashing (LSH) was introduced as an efficient way to look for nearest
neighbors in high dimensional spaces [28]. The idea is to hash the vectors in the space using
several hash functions so that, for each one, the probability of collision is much higher for
points that are close to each other than for those that are far apart. Then, LSH can be used
to search approximated nearest neighbors of a given query point by retrieving elements
stored in the same bin containing this point. Formally, the definition follows.

Definition 1. (LSH functions) For a given R > 0 and probabilities p1 > p2, a family of functions
belonging to the set H = {h : D → N} where D is a metric space with metric d̃, and N the set of
integers, are LSH if for each q̃, q ∈ D and each h ∈ H the followings are satisfied

• if d̃(q̃, q) ≤ R then PrH[h(q) = h(q̃)] ≥ p1,
• if d̃(q̃, q) > R then PrH[h(q) = h(q̃)] ≤ p2.

In this paper we are interested in the projection-based hash functions as presented
in [34]. For any p dimensional vector v, define the maps ha,θ(v) : Rp → N indexed by a
choice of a α-stable random vector a (see [34] for a definition) and a real number θ chosen
uniformly from the range [0, r] in the following way. For a fixed a, θ the hash function ha,θ
is given by

ha,θ(v) =
⌊

atv + θ

r

⌋
. (8)

Here, b.c denotes the floor function.
In [34] is shown that the projection-based functions h, as previously defined, are LSH.
We use these hash functions in the feature space in order to find representatives of

clusters for the data set used to train the SVM problem. We do this by projecting the
data several times and choosing, as a representative, a random data point at each bin,
after each projection. Because the projections are computationally expensive, we project
only subsamples of the whole data set. In order to choose the direction a we follow two
alternative procedures, random and directed projections, as described below.

One interesting feature of this procedure, although we do not include this in our nu-
merical experiments, is that repetitions are independent, so the problem is embarrassingly
parallel. Each parallel iteration constructs an independent subsample, which can then be
joined to form the final subsample that is used to train the SVM.

3.1. Random Projections

Following [34], we choose the entries of a independently from a Gaussian distribution
in the input space.

This leads to the following Algorithm 1.
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Algorithm 1 LSH-SVM (random projections)
Given an initial kernel K, B bins, η1 ∈ (0, 1) the percentage of subsample data points, N the
number of projections repetitions, η3 the cutoff percentage, and S = {X1, . . . , Xn} the data
set of problem (4):

1. Take a random subsample S1 of S with size n1 = bη1nc.
2. Generate a vector a with independent entries from a α-stable distribution in the input

space.
3. Find K(a, v) for all v ∈ S1. Calculate Rmax = maxv∈S1 K(a, v)−minv∈S1 K(a, v).
4. For given B the number of bins calculate r = Rmax/B.
5. Generate θ ∼ Uni f [0, r], and find h̃a,θ(v) := hφ(a),θ(φ(v)) as (8) (in the feature space),

this is, h̃a,θ(v) =
⌊

K(a,v)+θ
r

⌋
, for all v ∈ S1.

6. Eliminate bins with η3 percent highest and lowest values.
7. For each one of the remaining bins, randomly select a representative.
8. Repeat N times steps 2 to 5. Call Ŝ the set formed by all the representatives found.
9. Solve (4) using Ŝ and ŷ their corresponding classes, instead of S and y. Call λ̂(1) the

solution, and ŵ(1), b̂(1) the corresponding hyperplane values as defined in (5) and (6).

3.2. Directed Projections

In this case, the direction a is found by solving small random SVM subproblems. To
motivate this choice, assume the solution w∗ of the complete SVM problem was known
beforehand. By construction, projecting in the direction of w∗ immediately identifies the
support vectors. By sampling a small subset and solving the associated SVM problem we
can approximate w∗, and projections in this direction allow for a much more precise sample.
In summary, we obtain Algorithm 2.

Algorithm 2 LSH-SVM (directed projections)
Given an initial kernel K, B number of bins, η1, η2 ∈ (0, 1) the percentages of subsample
data points, N the number of projections repetitions, η3 the cutoff percentage, and S =
{X1, . . . , Xn} the data set of problem (4):

1. Take a random subsample S1 of S with size n1 = bη1nc.
2. Take a random subsample S2 of S with size n2 = bη2nc.
3. Find λn2 the solution to problem (4) corresponding to S2 and normalize λ̃n2i =

λn2 i

∑
n2
i=1(λ

2
n2 i)

1/2 .

4. Denote the corresponding normal hyperplane direction w̃n2 as defined in (5) and (6).
5. Find < w̃n2 , φ(v) >= ∑i λ̃n2iyiK(Xi, v) for all v ∈ S1. Calculate Rmax = maxv∈S1 <

w̃n2 , φ(v) > −minv∈S1 < w̃n2 , φ(v) >.
6. For given B the number of bins calculate r = Rmax/B.
7. Generate θ ∼ Uni f [0, r] and find

hw̃n2 ,θ(φ(v)) =
⌊
< w̃n2 , φ(v) > +θ

r

⌋
=

⌊
∑i λ̃n2iyiK(Xi, v) + θ

r

⌋

for all v ∈ S1.
8. Eliminate bins with η3 percent highest and lowest values.
9. For each one of the selected bins, randomly select a representative.
10. Repeat N times steps 2 to 7. Call S̄ the set formed by all the representatives found.
11. Solve (4) using S̄ and ȳ their corresponding classes, instead of S and y. Call λ̄(2) the

solution, and w̄(2), b̄(2) the corresponding hyperplane values as defined in (5) and (6).
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4. Numerical Experiments

In this section, we show the results of applying the LSH-SVM method to a set of real life
SVM problems taken from the LIBSVM webpage www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/ (accessed on 27 April 2022). The method was implemented under R environment
and the SVM problems were all solved using the Kernlab package. Kernlab [19] uses a
version of the algorithm implemented in LIBSVM, based on the method SMO proposed by
Platt [7].

The problems tested and their sizes can be found in Table 1. We selected 80% for the
training stage of the algorithms and the remaining 20% of the data is used for finding the
classification error.

Table 1. Problems tested.

Problem Number of Data Points (n) Number of Attributes (d)

a9a 48,844 123
w8a 49,749 300

covtype.binary 581,012 54
cod-rna 59,535 8
ijcnn1 49,990 22
skin 245,057 3

phishing 11,055 68

The objectives of the experiments were to study the performance of our approach
and the effect of the parameters, as well as to analyze the impact of the directed directions
in contrast with the use of random ones. All the experiments performed considered the

RBF Gaussian kernel defined as K(Xi, Xj) = exp(− ||Xi−Xj ||2

2(0.05)2 ) ∀i, j, and the value of the
parameter C from problem (4) was set equal to 5. We would like to highlight that the
algorithms here presented are specially proposed as efficient techniques for solving SVM
problems with nonlinear kernels.

In order to be more effective in the choice of representatives from each bin and to
reduce running times, we considered in practice a slight change of Algorithms 1 and 2.

Step 5 in Algorithm 1 was changed by

1. Generate θ ∼ Uni f [0, r] and calculate the B intervals (bins) with equal (or almost
equal) number of values of the collection K(a, v) + θ, v ∈ S1.

2. For each v ∈ S1 define h̃a,θ(v) to be the corresponding bin of the value K(a, v) + θ.

Step 7 in Algorithm 2 was changed by

1. Generate θ ∼ Uni f [0, r] and calculate the B intervals (bins) with equal (or almost
equal) number of values of the collection < w̃n2 , φ(v) > +θ, v ∈ S1.

2. For each v ∈ S1 define hw̃n2 θ(φ(v)) to be the corresponding bin of the value <

w̃n2 , φ(v) > +θ.

In Table 2 we include the CPU training time and classification errors obtained for the
tested problems using the LSH-SVM Algorithm 2 (directed projections) and Kernlab for
the complete data set. After an extensive number of trials, we selected the parameters
η1 = 0.001, η2 = 0.005, N = 100, B = 40 for the LSH-SVM algorithm. In each case,
N1 = 20 repetitions were considered and the minimum, maximum, mean, and standard
deviation were calculated. For data set w8a, we set η2 = 0.008 because the data are not
balanced (approx. 3–97%) so that taking η2 = 0.001 led to one class samples. Steps 4 and 6 in
Algorithms 1 and 2, respectively, were performed by discarding the bins corresponding to
the η3 = 10% largest and smallest values. We also include in Table 2 the number of support
vectors found by each approach at the training stage. It can be observed that the running
time obtained by our proposed algorithm is much lower than when using Kernlab for the
complete data set. In addition, there is not a significant degradation of the classification

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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error in many cases, even though the number of support vectors is much smaller. This
seems to point out that much more support vectors than the ones really needed for a good
classification were obtained by using the complete data set. An additional benefit of the
reduced number of support vectors is reduced fitting time as shown in Table 3.

Table 2. LSH-SVM Algorithm 2 vs. Kernlab.

Problem
LSH-SVM (N1 = 20)

Kernlab Variable
Min Max Mean Std

a9a

Directed: η1 = 0.001, η2 = 0.005

12.28 15.5 13.53 1.05 1972.58 CPU time (s)

0.1993 0.2120 0.2047 0.0035 0.1798 Classification error

1115 1223 1168.31 29 23,004 # Support vectors

w8a

Directed: η1 = 0.001, η2 = 0.008

21.94 31.20 26.17 2.88 2313.6 CPU time (s)

0.0288 0.0315 0.0301 0.0006 0.0203 Classification error

24 486 273.4 151.47 23,658 # Support vectors

covtype

Directed: η1 = 0.001, η2 = 0.005

112.55 125.79 118.72 3.44 — CPU time (s)

0.2062 0.2137 0.2097 0.002 — Classification error

1099 1199 1148.65 26.54 — # Support vectors

cod-rna

Directed: η1 = 0.001, η2 = 0.005

3.65 4.54 4.04 0.29 84.55 CPU time (s)

0.0513 0.0561 0.0536 0.0013 0.0460 Classification error

461 516 484.1 15.76 6669 # Support vectors

ijcnn1

Directed: η1 = 0.001, η2 = 0.005

3.42 4.81 3.73 0.30 49.64 CPU time (s)

0.0377 0.0518 0.0423 0.0034 0.0132 Classification error

297 349 317.65 13.66 2900 # Support vectors

skin

Directed: η1 = 0.001, η2 = 0.005

5.83 6.59 6.04 0.21 224.45 CPU time (s)

0.0103 0.0118 0.0111 0.0004 0.0053 Classification error

487 522 502.3 9.23 4156 # Support vectors

phishing

Directed: η1 = 0.001, η2 = 0.005

2.98 3.16 3.04 0.063 27.31 CPU time (s)

0.0660 0.1239 0.1007 0.0166 0.0275 Classification error

443 484 464.2 10.84 3221 # Support vectors

Finally, for completeness sake we have included a baseline comparison to simple
random sampling with N1 = 20 replicas over set a9a in order to highlight the performance
of Algorithms 1 and 2. In Table 4 we show results for different sample sizes ranging
from l = 0.1 to l = 0.001. The latter comparable to the size of random samples used in
Algorithms 1 and 2. Errors for l = 0.1 are essentially comparable to results of Algorithm 2
and increase as sample size decreases, as predicted. It is interesting to note however,
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that the number of support vectors for a random sample l = 0.1 is almost double than for
Algorithm 2. Support vectors decrease with sample size and are typically close to this value.

Table 3. CPU estimation times for proposed algorithms and Kernlab over the test sample. For all
cases, the test sample is randomly chosen and corresponds to 20% of the complete data set.

Problem Fit Time Kernlab Fit Time Algorithm 1 Fit Time Algorithm 2

a9a 27.54 1.53 1.60
w8a 63.39 1.1 0.26

covtype.binary – 19.08 11.83
cod-rna 7.12 0.40 0.54
ijcnn1 2.05 0.31 0.35
skin 18.12 1.78 2.67

phishing 0.83 0.16 0.12

Table 4. Random samples baselines for set a9a. As sample size increases, error is smaller but number
of SV increase. Total error for l = 0.1 is essentially equal to results for LSH-SVM Algorithm 2, but
number of SV is consistently larger.

Sample Size
Random Samples for Set a9a (N1 = 20)

Variable
min max mean std

l = 0.1

6.75 9.54 7.37 0.6 CPU time (s)

0.18 0.20 0.20 0.003 Classification error

2983 3096 3031 26.9 # Support vectors

l = 0.01

0.08 0.13 0.09 0.013 CPU time (s)

0.2 0.23 0.22 0.005 Classification error

361 384 373 4.86 # Support vectors

l = 0.005

0.03 0.04 0.04 0.003 CPU time (s)

0.21 0.23 0.23 0.004 Classification error

189 195 193 1.56 # Support vectors

l = 0.001

0.016 0.028 0.019 0.004 CPU time (s)

0.22 0.24 0.24 0.004 Classification error

39 39 39 0 # Support vectors

In order to study the benefit of our directed directions, we also solved the problems
with the LSH-SVM Algorithm 1 using random directions for the projections. The results
can be found in Table 5. Notice that, as should be expected, the running time is better when
using random projections since no SVM problems need to be solved. Although in some
cases the difference is not very noticeable.

In addition, as expected, the directed directions separate classes more accurately
than random ones. This is illustrated in Figure 1, where histograms for the two kind of
projections are shown for problems covtype.binary and a9a from LIBSVM. Each figure
represents the histogram of both type of projections over the same sample. Coloring is set
by the most frequent class (−1 or 1) over each bin in the histogram.

However, although errors tend to be slightly smaller with Algorithm 2, the differences
seem to be related to complexity of the problem (dimension, nonlinearity).
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Table 5. LSH-SVM Algorithm 1: random vs. Algorithm 2: directed (mean).

Problem
LSH-SVM (N1 = 20)

Mean Variable
min max mean std

a9a

Random: η1 = 0.001 Dir.

12.14 15.49 12.78 1.04 13.53 CPU time (s)

0.2092 0.2175 0.2128 0.0026 0.2047 Classification error

1186 1262 1235.9 22.08 1168.31 # Support vectors

w8a

Random: η1 = 0.001 Dir.

13.25 44.45 19.03 8.73 26.17 CPU time (s)

0.0293 0.0309 0.0299 0.0004 0.0301 Classification error

34 405 189.8 125.02 273.4 # Support vectors

covtype

Random: η1 = 0.001 Dir.

35.18 41.97 37.6 2.025 118.72 CPU time (s)

0.2329 0.2511 0.2395 0.0043 0.2097 Classification error

1685 1816 1749.85 30.98 1148.65 # Support vectors

cod-rna

Random: η1 = 0.001 Dir.

2.81 3.62 3.15 0.27 4.04 CPU time (s)

0.0525 0.0567 0.0540 0.0011 0.0536 Classification error

373 443 399.5 18.25 484.1 # Support vectors

ijcnn1

Random: η1 = 0.001 Dir.

3.29 4.50 3.83 0.33 3.73 CPU time (s)

0.0351 0.0488 0.0432 0.0037 0.0423 Classification error

323 407 350.75 19.59 317.65 # Support vectors

skin

Random: η1 = 0.001 Dir.

5.15 9.56 5.91 0.99 6.04 CPU time (s)

0.01405 0.0198 0.0166 0.0012 0.0111 Classification error

362 420 393.2 17.30 502.3 # Support vectors

phishing

Random: η1 = 0.001 Dir.

2.16 3.07 2.44 0.28 3.04 CPU time (s)

0.0809 0.1542 0.1198 0.0222 0.1007 Classification error

412 462 440.3 12.18 464.2 # Support vectors

The effect of changing parameters is shown in the next series of figures for data
set covtype.binary. Figure 2 shows changes for number of bins from 10 to 250, for both
Algorithms 1 and 2. Error decreases nonlinearly, as follows from Theorems 3 and 4 com-
bining the increase in number of bins with more separated points. Increasing the number
of bins in Algorithm 2 has a greater effect than on Algorithm 1, probably because of the
greater effect over separating points for the former. Time increases very slowly at first for
Algorithm 2 and almost linearly for Algorithm 1. As the number of bins increases, time is
almost equivalent for both algorithms. The number of support vectors increases almost
linearly for both algorithms; however, Algorithm 1 has a smaller slope, indicating a greater
efficiency in finding significant support vectors.

Figure 3 shows the effect of varying the number of projections. Error-wise, the effect
over both algorithms is similar (curves are parallel) with bigger errors for Algorithm 1. Time
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increases piecewise linearly with a slope change around 350 iterations. Before this change,
Algorithm 1’s slope is smaller than that of Algorithm 2. Both curves appear to be parallel
however after 350 projections. As for the number of bins, the number of SV increases almost
linearly. Algorithm 2 is again more efficient in selecting significant support vectors.

(a) (b)

Figure 1. Histograms of Directed projections and Random projections algorithms (Algorithms 1 and 2).
Data sets covtype.binary (a) and a9a (b).
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Figure 2. Plots of the effect of changing the number of bins over error (a), time (b) and number of SV
(c) for data set covtype.binary.
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Figure 3. Plots of the effect of changing the number of projections over error (a), time (b), and number
of SV (c) for data set covtype.binary.
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Finally, Figure 4 shows the effect of varying the size of the second sample for
Algorithm 2, given by η2. Error decreases quite quickly, reaching a plateau. Time in-
creases nonlinearly however, probably owing to the changing effect of the proportion of
time employed in finding the first approximate solution. The number of support vectors
appears to find an optimal (lower) level for sample sizes around η2 = 0.005.
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Figure 4. Plots of the effect of parameter η2 (size of the first small SVM problem in Algorithm 2
in order to obtain projection directions) over: error (a), time (b), and number of SV (c) for data set
covtype.binary. Larger sample sizes were not considered because of the increase in training time.

5. Theoretical Results

The procedures described in Algorithm 1 (random projections) and Algorithm 2
(directed projections) produce subsamples of size N × B by appropriately selecting points
from a series of N samples each distributed in B bins. In each case a SVM model is adjusted
based on the representatives selected. In this section, we give approximation results for
both proposed methods and give some intuition as to when directed sampling is better
than random sampling. Approximations are based on two main results: general risk
minimization theory [35,36] used to bound, with high probability, the supremum of the
differences between the original loss function (to be introduced in the preliminaries) and
its approximation using a subsample of the data. The bounds are shown to depend on the
trace, the spectral and the Frobenious norm of kernel K over the subsample. In addition,
deterministic approximation lemmas allow us to bound the difference between the solution
w∗ and that obtained by subsampling, as in Theorem 3. This then allows us to argue in the
case of directed projections, that chosen points are more correlated to the normal vector of
the optimal separating hyperplane with high probability. Finally, our results can be used to
improve bounds over the unobserved theoretical misclassification error.

We begin by introducing some preliminaries.

5.1. Preliminaries

We assume that the n observations (Xi, yi) i = 1, . . . , n, Xi ∈ Rd and yi ∈ {−1, 1}, are
independent with identical joint distribution P. In what follows, E(h(X, y)) stands for the
expectation of any function h of the random vector (X, y) with respect to probability P.
Our aim is to construct the data-dependent function g = g(w, b) with values in {−1, 1},
as defined in (3), over an appropriate function space such that P(g(X) 6= y) is small.
For this, we choose a vector (w, b) minimizing an optimization problem equivalent to (2)
defined over a class of data-defined functions over a subsample of the original observations
(Xi, yi) i = 1, . . . , n.

Notice that (2) can be written as the unconstrained minimization problem

minimize
w,b

1
2
‖w‖2

H + C
n

∑
i=1

ψ(−yi(< w, φ(Xi) > +b)) (9)

with ψ(x) = max(1 + x, 0). Recall we denote by (w∗, b∗) the solution.
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Define An(w, b) := 1
n ∑n

i=1 ψ(−yi( fw(Xi) + b)), with fw(x) =< w, φ(x) >. This
function is known as the hinge loss function. Divide the objective function of problem (9)
by nC, and let M = 1

2nC . Then, we can rewrite problem (9) as

minimize
w,b

M‖w‖2
H + An(w, b). (10)

Clearly, using (5) and (6), the minimization problem (10) can in turn be restated as

minimize
w,b

An(w, b)

over the set Fn
(11)

with
Fn = {(w, b) : ‖w‖H ≤ ‖w∗‖H, |b| ≤ 1 + ‖w∗‖Hmax

j

√
K(Xj, Xj)}.

The next proposition gives bounds for the feasible points of problem (11) in terms
of C,n and kernel K. For any w = ∑n

i=1 wiφ(Xi) we use the following notation: ‖w‖∞ =

max1≤i≤n(|wi|), ‖K‖2 = sup‖w‖2=1 ‖Kw‖2, ‖K‖2
F = ∑i,j=1 K2

i,j, and K1/2 := [|Ki,j|1/2]1≤i,j≤n
the entry-wise square root matrix. We also introduce the following assumptions on Ker-
nel K.

K1 There exists a positive constant CK such that for all x, K(x, x) ≤ CK.
K2 Given d1 > 0, for all x, y with ‖x− y‖ > d1 there exists a positive constant ε(d1) such

that K(x, y) < ε(d1).

Proposition 1. Let (w, b) ∈ Fn. Then ‖w‖H ≤ R := C min(
√

n‖K‖1/2
2 , ‖K1/2‖F) and |b| ≤

1 + R
√

CK.

Proof. The proof follows easily by bounding w∗ using (5). We have that w∗ = ∑n
i=1 w∗i φ(Xi)

with w∗i = λ∗i yi and 0 ≤ λ∗i ≤ C. Then, ‖w∗‖2
H = ∑n

i,j=1 w∗i w∗j K(Xi, Xj) satisfying ‖w∗‖2
H ≤

min(‖K‖2‖w∗‖2
2, ‖w∗‖2

∞‖K1/2‖2
F) ≤ R. On the other hand, |b| ≤ 1+ ||w∗||Hmaxj

√
K(Xj, Xj).

The result follows bounding K(Xj, Xj) ≤ CK.

Observe that if KS denotes the submatrix of K formed by the values corresponding
to the position of the support vectors, zeroing the other components, that is, KS

ij = Kij if

i ∈ SV or j ∈ SV and KS
ij = 0 if not, then the solution of (11) satisfies being in the set FS =

{(w, b) : ‖w‖H ≤ RS, |b| ≤ RS√CK + 1} where RS = C min(
√
|SV|‖KS‖1/2

2 , ‖(KS)1/2‖F).
The next lemma from [35] gives a bound, in probability, between the hinge loss

function and its expectation, i.e., between A(w, b) := Eψ(−y( fw(X) + b)) and An(w, b).
Clearly E(An(w, b)) = A(w, b). This result will be at the heart of our theory.

Lemma 1. Let us define ∆ := sup(w,b)∈Fn [A(w, b)− An(w, b)]. Then, with probability greater
than 1− δ we have that

∆ <
4
n

√
Tr(K) + ( sup

(w,b)∈Fn

‖ fw + b‖∞ + 1)

√
2 log(1/δ)

n

with Tr(K) = ∑n
i=1 K(Xi, Xi).

Proof. The proof follows [35], page 8, bounding supx,y ψ(−y f (x)) ≤ ‖ f ‖∞ + 1 and E∆ by
2
n

√
Tr(K) using Radamacher averages [35].

In the following subsections, we use the previous lemma to compare the values of
the hinge loss function for the given data set and for subsamples of the data set gener-
ated randomly or by the LSH-SVM method. For some results, we require the following
assumptions on the original sample:
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S1 There exists a unique (w∗, b∗) which minimizes An(w, b) in problem (12) over F̃n.
S1’ With probability one, the collection of classes F = ∪nFn defined by an infinite sample

{(Xi, yi)}i≥1 is such that (w0,n, b0,n) = arg min(w,b)∈Fn A(w, b) converges to an overall
solution (w0, b0) ∈ F .

A sufficient condition for [S1] is that there are a different number of support vectors
for each class (see [37]). This is usually the case for practical SVM problems. In addition,
the overall minimum of A(w, b) is the Bayes classifier (see [35]). If, with probability
one, the class is rich enough, condition [S1’] then implies (w0,n, b0,n) converges to the
Bayes classifier.

In Section 5.2, we consider the case when the subsamples are randomly chosen.
Sections 5.3 and 5.4 cover the cases when the subsamples are generated by the LSH-
SVM Algorithms 1 and 2, respectively. In these latter subsections, we show that the
approximation bounds improve respect to the random case, and we also show how these
bounds relate for the two algorithms.

5.2. Random Samples

Consider an index set M ⊂ {1, . . . , n} corresponding to a random sample of the
original data set (without replacement) of size l. Recall, as shall be required below, that any
function of the random sample may be thought of as a function of the sampled variables
(Z1, t1), . . . , (Zl , tl), where P((Zk, tk) = (Xi, yi)) = 1/n. Since the sample is without

replacement, if Zi = 1 if (Xi, yi) is selected among the l trials, then P(Zi1 · · · Zir = 1) = (m
r )

(|SV|
r )

.

Set S̃ to be the sample based on the index set M, and let K̃ be the associated kernel matrix,
that is K̃st = K(Zs, Zt).

Following the presentation above, define Al(w, b) := 1
l ∑l

k=1 ψ(−tk( fw(Zk) + b)).
As for problem (10), the unconstrained minimization problem with solution (wl , bl)

can be stated as minimizing Al over the set Fn,l = {(w, b) : w = ‖w‖ ≤ ‖wl‖H, |b| ≤
1 + ‖wl‖Hmaxj

√
K̃(Zj, Zj)}.

For our theory, we use a closely related minimization problem, where the feasible set
Fn,l is substituted by the set ˜Fn,l defined as

˜Fn,l =

{
Fn,l if ‖wl‖H ≤ ‖w∗‖H
Fn if ‖wl‖H > ‖w∗‖H

This is, the minimization problem

minimize
w,b

Al(w, b)

over the set ˜Fn,l
(12)

Observe that Problem (12) is equivalent to an unconstrained problem of the type of (9)
for some parameter C̃. The followings are satisfied

(1) ˜Fn,l ⊆ Fn,l , ˜Fn,l ⊆ Fn.
(2) ∪l ˜Fn,l = Fn.
(3) Following Proposition 1, for any (w, b) ∈ ˜Fn,l we have that ‖w‖H ≤ Rl and |b| ≤

C
√

l supM ‖K̃‖2 + 1 ≤ 1 + Rl
√

CK with

Rl := C min(
√

l sup
M
‖K̃‖1/2

2 , sup
M
‖K̃1/2‖F).

(4) Al(wl , bl) is a lower bound for Al(w̃, b̃) with (w̃, b̃) the solution of problem (12).

Next, our objective is to bound the difference of the hinge loss functions corresponding
to the original dataset and the random sample.
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Set ∆M := sup(w,b)∈F̃n,l
[An(w, b)− Al(w, b)]. In order to bound ∆M, we use the follow-

ing Mc Diardmid type inequality for symmetric functions of samples due to Cortes et al.,
2008 (cited from Kumar et al. [36] (Th. 2: pages 998 to 1000)).

Theorem 1. Let Z1, . . . , Z` be a sequence of random variables sampled uniformly without replace-
ment from a fixed set of `+ u elements. Let Γ : Z` → R be a symmetric function such that for all
j ∈ {1, . . . , `}, |Γ(Z1, . . . , Zj, . . . , Z`)− Γ(Z1, . . . , Z′j, . . . , Z`)| ≤ c. Then,

P(Γ− E(Γ) > ε) ≤ e
− 2ε2

α(`,u)c2

where α(`, u) = `u
`+u

1
1−1/(2 max(`,u))

Based on Lemma 1 and Theorem 1, we obtain the following theorem

Theorem 2. Assume kernel K satisfies assumption [K1]. Consider a sample of size l taken with-
out replacement from an original sample of size n. Define ∆M := sup(w,b)∈F̃n,l

[An(w, b) −
Al(w, b)] and Tl(K) := 2Rl

√
CK + 1. Then, with probability greater than 1− δ

∆M ≤
4
l

√
Tr(K̃) + Tl(K)

√√√√1
2

log(1/δ)
n− l

n l (1− 1
2 max(l,n−l) )

.

Proof. The proof follows directly from Lemma 1 and Theorem 1, bounding | 1l (∆M(Z)−

∆M(Z′))|2 ≤
(supw,b supj | fw(Xj)+b|+1)2

l2 using that EM Al(w, b) = An(w, b), where EM stands
for the expectation with respect to the subsampling procedure, that is, conditional to
the original sample S . Next we bound supw,b supj | fw(Xj) + b|. By definition fw(x) =<

w, φ(x) > so supw,b supj | fw(Xj) + b| ≤ ‖w‖H supj

√
K(Xj, Xj) + |b| ≤ 2Rl

√
CK + 1 =

Tl(K) by our assumptions over w (see (3)) and Kernel K.

Using Theorem 2, we obtain the following bound

An(w∗, b∗)− Al(w̃, b̃) ≤ min
(w,b)∈ ˜Fn,l

An(w, b)− Al(w̃, b̃) ≤ ∆M.

Theorem 2 also allows us to give a bound between the minimizers (w∗, b∗) and (w̃, b̃).
For this purpose, we assume [S1] applies to the minimizer (w̃, b̃) of problem (11), and we
present the next two lemmas.

Lemma 2. Let V : Rn → be a convex function, F ⊆ Rn a not empty convex, closed, and bounded
set, and x∗ a unique global minimizer of V over F . Then, there exists εo such that for all 0 < ε < εo
there exists δ = δ(ε) such that if ||x− x∗|| > δ we have that V(x)−V(x∗) > ε for any x ∈ F .

Proof. Let εo := arg maxx∈F V(x) + V(x∗), which is well defined because V is continuous
and F compact. Moreover, since V cannot be the constant function equal to zero, εo is
positive. Given any εo > ε > 0 consider the level set E = {x ∈ F : V(x) = ε + V(x∗)}.
This set is not empty because the function V is coercive, this is V(x)→ ∞ if ||x|| → ∞. Let
us define δ = δ(ε) the distance from x∗ to the set E . This distance exists because E is a not
empty closed set inside a compact, therefore is compact.

Let x ∈ F such that ||x∗ − x|| > δ. Then, there exists xε ∈ E such that ||x∗ − xε|| = δ
and λ ∈ (0, 1) with xε = λx∗ + (1 − λ)x; therefore, by convexity, V(xε) ≤ λ(V(x) −
V(x∗)) + V(x) < V(x) and we obtain that V(x)−V(x∗) > ε.
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Lemma 3. Consider a function V satisfying the assumptions of previous lemma and Ṽ another
function with unique minimizer x̃ over F and such that supx∈F |V(x)− Ṽ(x)| ≤ ε, for some
εo
2 > ε > 0. Then ‖x∗ − x̃‖ ≤ δ(2ε) with δ given as in the previous lemma.

Proof. Assume that ‖x∗− x̃‖ > δ(2ε). Then, by Lemma 2, we have that 2ε < V(x̃)−V(x∗);
therefore, 2ε + V(x∗) + Ṽ(x∗)− Ṽ(x∗) < V(x̃)− Ṽ(x̃) + Ṽ(x̃). Using the assumption at
each side of the inequality, we obtain 2ε− ε + Ṽ(x∗) < ε + Ṽ(x̃). This contradicts the fact
that x̃ is the minimizer of Ṽ over F .

Observe that previous lemmas apply to the Hilbert space H being finite dimensional
or being infinite dimensional (by considering the restriction to the subspace of finite linear
combinations of the data set, based on the dual representation [3]). Now the theorem can
be stated.

Theorem 3. Assume kernel K satisfies [K1]. Assume [S1] and [S1’] are satisfied. Then, there exist
n, l such that with probability greater than 1− 2δ, ‖(w∗, b∗)− (w̃, b̃)‖ ≤ δ(ε/2) + δ(ε) + ε with

ε =
4
l

√
Tr(K̃) + Tl(K)

√√√√1
2

log(1/δ)
n− l

n l (1− 1
2 max(l,n−l) )

,

Tl(K) := 2Rl
√

CK + 1 as in the previous theorem, and ||.|| denoting the induced norm in the
Cartesian product spaceH×R.

Proof. By [S1’] and [S1], A(w, b) satisfies the assumptions of Lemma 2 over F , so there exists
ε0 and δ(ε) satisfying Lemma 1 for all ε < ε0 over Fn for large enough n. In addition, [S1] is
satisfied for An(w, b) over Fn and for Al(w, b) over ˜Fn,l . Then supFn

|A(w, b)− An(w, b)| ≤
∆ < ε0/2, supF̃n,l

|An(w, b) − Al(w, b)| ≤ ∆M < ε0/2 and finally supF̃n,l
|A(w, b) −

Al(w, b)| ≤ ∆M + ∆ < ε0, for n, l large enough with probability greater than (1− δ)2 > 1−
2δ. On the other hand, since Fn = ∪lFn,l (4.2), setting (w0,l , b0,l) = arg min(w,b)∈Fn,l

A(w, b)
we have that ||(w0,l , b0,l)− (w0,n, b0,n)|| converges to zero when n, l goes to infinity.

Then, with probability greater than 1− 2δ, ||(w0,n, b0,n) − (w∗, b∗)|| ≤ δ(ε/2) and
||(w0,l , b0,l) − (w̃, b̃)|| ≤ δ(ε0), for ε < ε0, by applying the lemmas. Moreover, for any
given ε, ||(w0,n, b0,n)− (w0,l , b0,l)|| < ε for n, l large enough; therefore, using the triangle
inequality we obtain ||(w∗, b∗)− (w̃, b̃)|| ≤ δ(ε/2) + δ(ε) + ε.

Finally, Lemma 1 and Theorem 2 can be used to improve bounds over the misclassifi-
cation error given by L(w, b) = P(sign(< w, φ(X) > +b) 6= y).

Indeed, following [35], we have that L(w̃, b̃) ≤ Al(w̃, b̃) + sup(w,b)∈ ˜Fn,l
[An(w, b) −

Al(w, b)] + sup(w,b)∈ ˜Fn,l
[An(w, b)− A(w, b)].

Then,
L(w̃, b̃) ≤ Al(w̃, b̃) + ∆ + ∆M.

Therefore, the unobserved theoretical misclassification error is bounded by the ob-
served hinge loss function plus two approximation errors. The bound denoted by ∆M
can be further improved if the subsample is generated by the LSH-SVM algorithm. The
improved bound is established in the following subsections by Theorems 4 and 5, for the
LSH-SVM algorithm with random projections and directed projections, respectively.

5.3. Random Projections

In Theorem 2, the quantity Tl(K) can be improved if we are able to control the charac-
teristics of the random sample. The main idea behind random projections (Algorithm 1) is
being able to improve this bound by selecting with high probability a sample over a set
of data points belonging to B blocks satisfying d(Xj, Xk) > d forj, k in different blocks and
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some d > 0. In order to show this, we have the following lemma. We denote Ŝ the sample
created by Algorithm 1.

Lemma 4. Assume kernel K satisfies [K1]. Let 0 < c, δ be fixed constants. Set p(c, δ) :=
P(maxX,X′∈Ŝ (K(a, X)− K(a, X′)) > Bc/δ), and for each X ∈ Ŝ define Vd(X) = {X′ ∈ Ŝ :
‖φ(X)− φ(X′)‖H ≤ d}. Then

P(max
X
|Vc/2CK (X)| ≤ N − 1) ≥ 1− BN(1− δ)− Np(c, δ).

Proof. Recall LSH-SVM projecting Algorithm 1 creates the sample Ŝ of B N points, with
N projection directions and B bins for each direction, where r = maxX,X′∈Ŝ (K(a, X) −
K(a, X′)/B. By construction, for any given direction, r > Bc/(δB) and then c/r < δ with
probability at least p(c, δ). For a ∼ N(0, I) consider the random variables K(a, X) for
any given X. Let fa(X, X′) be the density of the random variable K(a, X)− K(a, X′). The
probability P(h̃a,θ(X) = h̃a,θ(X′)) =

∫ r
0 fa(X, X′)(x)(1− x/r)dx.

In particular, if ca = |K(a, X)− K(a, X′)|, then conditional to a, P(h̃a,θ(X) = h̃a,θ(X′)|
ca) =

∫ r
ca
(1− θ/r)dθ. If ca ≤ r then X, X′ are in contiguous bins with probability P =

1− P(h̃a,θ(X) = h̃a,θ(X′)) =
∫ ca

0 (1− θ/r)dθ = ca/r. Then, conditional on a, the event
{|h̃a,θ(X′)(X)− h̃a,θ(X′)| = 1} = {θ < ca} and for any 0 < c < r, with probability greater
than c/r, c < ca ≤ ‖φ(X)− φ(X′)‖H ‖φ(a)‖H ≤ CK‖φ(X)− φ(X′)‖H. The last inequality
by [K1].

In addition, if |h̃h̃a,θ(X′),θ(X)− h̃a,θ(X′)| ≥ 2 then r < ca ≤ CK‖φ(X)− φ(X′)‖H using
the same bounds as before on kernel K.

It follows that with probability at least 1 − B N(1 − δ) − Np(c, δ) selected points
from contiguous bins in any given projection will be apart at least c/CK. Given any
X ∈ Ŝ from projection j, for each projection j′ 6= j, if there exists X′ from projection j′ with
‖φ(X)− φ(X′)‖H < c/2CK then ‖φ(X)− φ(X′′)‖ > c/2CK for all other X′′ from projection
j′. Thus ‖φ(X)− φ(X′)‖H ≤ c/2CK for at most N − 1 points from Ŝ .

Set K̂ to be the kernel matrix defined over the sample Ŝ and consider the corre-
sponding minimization problem (12) with the feasible set denoted as F̂n,l . Define ∆̂ :=
sup(w,b)∈F̂n,l

[An(w, b)− Al(w, b)]. We have the following result

Theorem 4. Let Ŝ be the sample obtained by Algorithm 1. Set p1 := 1−max(1− B N(1− δ)−
Np(c, δ), 0). Assume [K1] and [K2] are satisfied. Set

C1 = min(C(NCK + N(B− 1) ε(c(1− δ)/2CK)), RŜ
√

Ck),

where RŜ = C min(
√

NB‖K̂‖1/2CK
2 , ‖K̂1/2‖F), T1(K) = 2C1 + 1, and ε(d) is defined in [K2].

Then, with probability greater than 1− p1 − δ,

∆̂ ≤ 4
NB

√
Tr(K̂) + T1(K)

√
1
2

log(1/δ)
n− NB

n NB (1− 1
2 max(NB,n−NB) )

.

Proof. The sample Ŝ is a subset of S satisfying the property that for each v ∈ Ŝ there exist
at most N − 1 points at distance smaller than r(1− δ) over a set S1 with P(S1) > 1− δ.
We now bound P(∆̂ ≤ ε) ≤ P({∆̂ ≤ ε} ∩ S1) + P(Sc

1). The proof follows from bounding
P({∆̂ ≤ ε} ∩ S1). We use Theorem 1, and the bound supw,b(‖ fw + b‖∞ + 1) ≤ 2C1 + 1. For
this, use that over the set S1, maxj ∑i |K̂(Xi, Xj)| ≤ NCK + N(B− 1) ε(c(1− δ)/2CK) by
Lemma 4.

Then, we bound E(∆̂1S1) ≤ E(∆̂) and use the bounds on the Radamacher averages
following [35].
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Remark 1. By Lemma 4, matrix K̂ will satisfy with high probability a block-like property. This
improves the bounds over ‖K̂‖2 from the case of a completely random sample.

5.4. Directed Projections

Random projections (Algorithm 1) are effective because they are able to assure a
minimum distance among most part of elements of the sample; however, it may happen
that certain randomly chosen directions are non-informative: i.e., directions that are close to
the normal of the optimal solution w∗. Algorithm 2, selects directions that are informative
with high probability, i.e., close to the optimal solution w∗. This has a two-wise benefit.
On the one hand, maintain a minimal distance among selected points, but on the other
concentrate the sample over a set of points that are close to optimal separating hyperplane.
Thus, by choosing a representative from each bin we are able to reduce the quantity of
effective support vectors required to estimate the solution. Although our theoretical bounds
are not as strong as we would like, they do offer a key to understanding why this method
works better in certain cases.

Lemma 4 also holds for Algorithm 2 thus assuring the minimum distance property;
however, Theorem 3 allows for a different approach. First we introduce some notation.

Let Zi,j(w) :=< w, φ(Xi)− φ(Xj) >. Then, |Zi,j(w)| ≤ ‖w‖H‖φ(Xi)− φ(Xj)‖H. In
addition, for any given direction, w we have the distances are ordered: that is |Zi,j(w)| > r
for 2 apart bins, |Zi,j(w)| > 2r for 3 apart bins and so on. Theorem 3 then yields that for the
direction w̃n2 obtained by Algorithm 2, with probability greater than 1− δ,

‖φ(Xi)− φ(Xj)‖H ≥ (p− 1)(r− η(ε))/‖w∗‖H

for points that are p bins apart. Bins that are contiguous are harder to bound so we just
consider non-contiguous bins.

The rest of the approximation result is just as in the random projection case. This
yields the following result whose proof is omitted as it is exactly as the proof of Theorem 4.
Here the subsample is denoted as S̄ , K̄ is the kernel matrix defined over S̄ and we consider
the corresponding minimization problem (12) with feasible set F̄n,l . In addition, ∆̄ stands
for the supremal among the original and approximated hinge loss functions. This is,
∆̄ := sup(w,b)∈F̄n,l

[An(w, b)− Al(w, b)].

Theorem 5. Let S̄ be the sample obtained by Algorithm 2. Assume [K1], [K2], [S1], and [S1’] are
satisfied. Set

C2 = min(C(3NCK +
B−1

∑
p=2

ε((p− 1)(r− η(ε))/‖w∗‖H)), RS̄
√

CK),

with ε(d) from [K2], T2(K) = 2C2 + 1, and RS̄ = C min(
√

NB‖K̄‖1/2
2 , ‖K̄1/2‖F). Then, with

probability greater than 1−min((N + 1)δ, 1),

∆̄ ≤ 4
NB

√
Tr(K̄) + T2(K)

√
1
2

log(1/δ)
n− NB

n NB (1− 1
2 max(NB,n−NB) )

.

Moreover, directed projections satisfy an additional property stemming from the fact
that with high probability, the projections in the optimal direction w∗ are zero for the actual
support vectors. We have the following result.

Lemma 5. Assume r > 2. Let w∗ be the solution of problem (1). Then, P(hw∗ ,θ(Xj) =

hw∗ ,θ(Xi)) ≥ r−2
r for any Xj, Xi support vectors. In any case, P(|hw∗ ,θ(Xj)− hw∗ ,θ(Xi)| > 1) =

0. This result applies to the feature space H. This is, P(|h̃w∗ ,θ(φ(Xj))− h̃w∗ ,θ(φ(Xi))| > 1) = 0.
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Proof. If Xj is a support vector, (w∗)tXj = yj − b̂ with yj = 1 or − 1 and hw∗ ,θ(Xj) =⌊ yj−b∗+θ

r

⌋
. Thus for two support vectors Xi, Xj we have that |(Xj − Xi)

tw∗| ≤ 2. Then,
as in the proof of Lemma 4, use that for a given direction P(hw∗ ,θ(Xj) = P(hw∗ ,θ(Xi)) =
r−|Zi,j(w∗)|

r .

Even though b∗ is not known, Lemma 5, suggests looking at the central bins in order to
select support vectors or points such that φ(Xj) is close to the separating hyperplane. Thus
a reasonable guess based on projections is to eliminate the highest and lowest value bins.
As we have seen, Lemma 3 assures points in these center bins will concentrate support
vectors and points that are close to the margins of the separating hyperplane.

Thus, directed projections improve over random projections. The extent of this im-
provement is hard to assess though, and depends on the geometry of S . Experimental
results show a greater improvement for high dimensional problems with many support
vectors for the optimal solution.

6. Concluding Remarks

In this article, we propose a novel methodology for dealing with classification prob-
lems in very large data sets using support vector machines. Our findings are that using
projections based on Locality-Sensitive Hashing (LSH) can lead to improved estimation and
fitting times by selecting a smaller yet significant data set for model training. Moreover, we
show that previous knowledge based on the problem at hand, such as solving the problem
over a small sample and then projecting in the normal direction to the obtained hyperplane,
can further improve error rates in some cases. One byproduct of the proposed algorithms is
that reducing the number of support vectors of the solution yields an important reduction
in fitting times without affecting the overall error.

Although we restricted our attention to SVM, the approach here presented can be
readily applied to other classification methods. Theoretical results, albeit not as conclusive
as experimental results indicate, show improvement is related to better bounds over the
target function class by eliminating less informative points, such as very close points or far
from actual support vectors. This suggests that our method acts as a dimension reduction
technique as measured by the decrease in the supreme of the infinity norm over the target
class. An important related problem is considering sampling schemes not only for rows
but also for columns in order to address problems with a huge number of features as well.
Further research is necessary to fully understand how efficient column sampling can be
achieved with similar heuristics, for example by sub-setting based on correlations with
chosen support vectors over a smaller sample. Finally, since our method is embarrassingly
parallel, future research will consider parallel implementation for further training time
reductions for huge problems.
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