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Abstract: In recent years, the vigorous rise in computational intelligence has opened up new re-
search ideas for solving chemical dynamic optimization problems, making the application of swarm-
intelligence optimization techniques more and more widespread. However, the potential for algo-
rithms with different performances still needs to be further investigated in this context. On this
premise, this paper puts forward a universal swarm-intelligence dynamic optimization framework,
which transforms the infinite-dimensional dynamic optimization problem into the finite-dimensional
nonlinear programming problem through control variable parameterization. In order to improve
the efficiency and accuracy of dynamic optimization, an improved version of the multi-strategy
enhanced sparrow search algorithm is proposed from the application side, including good-point set
initialization, hybrid algorithm strategy, Lévy flight mechanism, and Student’s t-distribution model.
The resulting augmented algorithm is theoretically tested on ten benchmark functions, and compared
with the whale optimization algorithm, marine predators algorithm, harris hawks optimization,
social group optimization, and the basic sparrow search algorithm, statistical results verify that the
improved algorithm has advantages in most tests. Finally, the six algorithms are further applied
to three typical dynamic optimization problems under a universal swarm-intelligence dynamic
optimization framework. The proposed algorithm achieves optimal results and has higher accuracy
than methods in other references.

Keywords: dynamic optimization; swarm intelligence; control variable parameterization; nonlinear
programming problem; sparrow search algorithm

MSC: 49M37; 68T20

1. Introduction

Dynamic optimization, also known as optimal control, a core part of industrial process
design, directly affects the approval of multiple performance indicators such as the overall
output, material loss, and efficiency improvement of the control system. It has long been
an important means to maximize the value in process control of the chemical industry [1,2].
Affected by the upgrading of industry and the expansion of system scale, the established
mathematical model is often full of high-dimensional, strongly nonlinear, and other com-
plex characteristics that are difficult to deal with. Therefore, how to achieve an effective
solution to this kind of dynamic optimization problem is not only a challenging but also an
urgent and practical research topic. With the continuous development and deepening of
optimization technology, the swarm-intelligence optimization technique, as an emerging
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branch, is becoming an attractive alternative to solve dynamic optimization problems [3],
which is increasingly favored by academia and industry.

The earliest method applied to dynamic optimization is the indirect method [4],
which has rigorous and accurate results. However, the mathematical process is often
complex and difficult to implement, and there is no analytical solution [5], so it is very
limited in practical application. Different from the indirect method, the direct method [6]
discretizes the variables of the dynamic optimization problem into a form that can be
solved by numerical methods. Among them, the CVP method [7] only discretizes the
control variables. It has higher efficiency when solving the system and has become the
mainstream direct method. Furthermore, the CVP method provides an effective time-
domain discretization strategy, which transforms the dynamic optimization problem into
a finite-dimensional NLP problem, so that the swarm-intelligence algorithm, a practical
parameter optimization technique [8,9], can be used. At present, swarm-intelligence
optimization techniques have attracted extensive attention in the application of various
optimization problems [10,11], and have the advantages of low dependence on prior
knowledge, high robustness based on population search, and no need to calculate the
gradient information of the objective function.

In recent years, scholars have used swarm-intelligence algorithms to solve dynamic
optimization problems, and proposed solutions including particle swarm optimization
(PSO) [12], beetle antennae search (BAS) [13], ant colony optimization (ACO) [14], seagull
optimization algorithm (SOA) [15], sailfish optimizer (SFO) [16], and cultural algorithm
(CA) [17]. In this context, these successful application cases confirm the effectiveness
of swarm-intelligence algorithms for dynamic optimization. However, in the current
literature description, a universal framework of swarm-intelligence algorithms for dynamic
optimization is generally ignored, which is not conducive to the further research of various
algorithms with different performances, thus limiting the long-term development of swarm-
intelligence dynamic optimization methods. Therefore, it is very necessary to establish a
universal framework of the swarm-intelligence dynamic optimization method, which is a
core topic to be solved in this paper. Furthermore, the efficiency and accuracy of solving
specific problems in the existing research still need to be improved, which often requires an
approach with better performance. Therefore, this paper introduces an improved version
of the sparrow search algorithm (SSA) applied to dynamic optimization problems, and uses
other well-known swarm-intelligence algorithms, including whale optimization algorithm
(WOA) [18], marine predators algorithm (MPA) [19], harris hawks optimization (HHO) [20],
and social group optimization (SGO) [21] compared under a universal swarm-intelligence
dynamic optimization framework. The boosted abilities of the proposed algorithm for
typical dynamic optimization problems is successfully verified.

The SSA was chosen as the base for augmentation as it has been validated as having a
better optimization performance and solving ability [22–26] compared to PSO, grey wolf
optimizer (GWO) [27], gravitational search algorithm (GSA) [28], and sine cosine algorithm
(SCA) [29]. It has been successfully applied in various domains, including UAV track
planning [30], density peak clustering [31], BP neural network optimization [32], robot
path planning [33], and micro-grid operation [34], showing great potential. However, it is
also established that the basic SSA suffers from insufficient search scope, weak resistance
to local extremum, and a slow convergence rate, which needs to be further enhanced.
Hybridization is a popular algorithm design approach [35], by integrating the advantages
of different algorithms, a hybrid algorithm with better performance can be constructed.
In this paper, SGO is introduced into the SSA optimization framework. On this basis, the
good-point set, inertia weight factor, and Lévy flight are used to modify the details, and the
structure of the optimization algorithm is modified by using the Student’s t-distribution
model. Then, a cooperative-mutation hybrid-swarm-intelligence algorithm (CM-HSSA) is
proposed to solve the dynamic optimization problem.

The main objective behind the universal swarm-intelligence dynamic optimization
framework proposed in this study is to further improve the SSA from the application
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side, and increase the efficiency and accuracy of solving specific dynamic optimization
problems. Furthermore, since the potential for algorithms with different performances
under a universal swarm-intelligence dynamic optimization framework has not been
investigated enough, five other well-known swarm-intelligence techniques were also
implemented and tested for three typical cases. In a nutshell, the significant characteristics
of our paper are listed as:

• A universal swarm-intelligence dynamic optimization method is summarized and
proposed, which lays a theoretical foundation for subsequent research on using the
swarm-intelligence technique to solve dynamic optimization problems.

• A novel modified SSA is implemented from the application side and utilized to
improve the efficiency and accuracy of typical dynamic optimization problems.

• Other well-known swarm-intelligence techniques for dynamic optimization are further
investigated under a universal optimization framework.

The rest of the paper is organized in the following manner. Section 2 describes the
fundamental methods used (the CVP method and a universal swarm-intelligence dynamic
optimization method). Section 3 introduces the modified version of the algorithm as
well as the original one and tests other algorithms on benchmark functions. Section 4
deals with the optimization of typical dynamic optimization problems with six algorithms
under a universal swarm-intelligence dynamic optimization framework. Finally, Section 5
summarizes some conclusions and prospects for future work.

2. Preliminaries

In this section, firstly, the standard mathematical model of the dynamic optimization
problem is introduced. Secondly, the basic principle of the CVP strategy is introduced, and
then a universal swarm-intelligence dynamic optimization framework is summarized and
proposed. In particular, the general implementation scheme and flow chart of this method
are given.

2.1. Dynamic Optimization Problem Description

Generally, dynamic optimization problems are common in the control systems of
industrial processes and widely exist in the chemical industry. The research object is mainly
aimed at dynamic time-varying systems [36]. The established mathematical model is often
described in the form of a differential–algebraic equation (DAE), which contains constraints
and an objective function. Therefore, the essence of solving the dynamic optimization
problem is to apply the control effect to the variables in the model and then select the
appropriate optimization scheme to make the performance index in the process reach the
best state. The mathematical model of a typical dynamic optimization problem can be
described as follows:

minJ = Φ[x(t f )] +
∫ t f

t0
L[x(t), u(t), t]dt

s.t.


dx
dt = f [x(t), u(t), t]
x(t0) = x0
ulb ≤ u(t) ≤ uub
t ∈ [t0, t f ]

(1)

where J is the objective function, also known as the performance index, which is composed
of the final value term Φ[x(t f )] at the process termination time t f and the integral term∫ t f

t0
L[x(t), u(t), t]dt existing on the whole time period [t0, t f ], u(t) = [u1(t), u2(t), · · · , um(t)]

T

is the m-dimensional control variable, and constrained by the upper boundary uub and the
lower boundary ulb, x(t) = [x1(t), x2(t), · · · , xn(t)]

T is the n-dimensional state variable.
Therefore, Equation (1) can be briefly described as looking for the control variable u(t)
that makes the target J obtain the optimal value under the condition of the initial state
x(t0) = x0, and the value of u(t) should meet the requirements of the feasible region.
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2.2. CVP Strategy

As the mainstream numerical calculation method in the direct solution, the principle
of the CVP method is to use the basic function with finite parameters to approach the
control effect. Specifically, the strategy first discretizes the time domain ([t0, t f ]) into NE
sub-interval ([tk−1, tk] (k = 1, 2, · · · , NE)), that is, t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tNE = t f , and
further uses the basis function to approximate the components on each sub-interval, then
u(t) can be expressed as the cumulative sum of each component on the whole [t0, t f ]:

u(t) =
NE

∑
k=1

σk
j (t) j = 1, 2, · · · , m k = 1, 2, · · · , NE (2)

where σk
j (t) is the linear combination of the basic function of the known structure of

each component (uj(t)) in the time interval ([tk−1, tk]), which is determined by limited
parameters. The mathematical model of the optimization problem transformed by the CVP
method can be described as:

min J̃ = ϕ[σ(t)]

s.t.ulb ≤
NE
∑

k=1
σk(t) ≤ uub

(3)

where σ(t) = [σ1(t), σ2(t), · · · , σNE(t)]T is the parameter vector to be optimized. Therefore,
the CVP method provides an effective transformation method, and an infinite-dimensional
dynamic optimization problem is transformed into a finite-dimensional static optimization
problem with a finite number of parameters.

2.3. Swarm-Intelligence Dynamic Optimization Method Based on CVP Strategy

For dynamic optimization problems, after CVP processing, the control variables, state
variables, objective functions, and constraints of the system are all determined by the param-
eter vector, thus forming the NLP problem which can be solved by the swarm-intelligent
optimization algorithm. Depending on the type of basis function, the approximation effect
is also different. As the most important type of basis function, the piecewise constant
approximation strategy is the most reasonable choice from theoretical analysis to practical
calculation, and has the characteristics of simplicity and effectiveness. Figure 1 shows the
control curve approximated by piecewise constant when NE = 7.
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In particular, different from the traditional deterministic optimization algorithm based
on gradient, the swarm-intelligence optimization algorithm established by randomness
generally does not need to calculate the gradient information about the objective function,
so the relevant gradient calculation process is not included in the solution structure. The
calculation steps of the swarm-intelligence dynamic optimization method based on the
CVP strategy are as follows. Figure 2 shows the calculation framework of this method.
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(1) Through the CVP strategy, u(t) is transformed into σ(t), and the dynamic optimization
problem shown in Equation (1) is transformed into the static optimization problem
form shown in Equation (3).

(2) Set relevant parameters, such as population size, the maximum number of iterations,
and algorithm parameters.

(3) Initialize the population.
(4) Evaluate and sort the fitness values of individuals in the population and record the

current optimal value.
(5) According to the evolution strategy of the algorithm, a new population is generated.
(6) Compare the fitness value of the new solution and replace it if it is better than the

current value.
(7) Determine whether the current condition meets the stop criterion; if so, terminate the

algorithm and output the optimal solution. Otherwise, return to (4) and continue to
execute, and set t = t + 1.
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3. Mathematical Models and Algorithms

This beginning of the section introduces the basic implementation of the SSA algorithm,
followed by a discussion about the known and observed flaws and drawbacks of the
original version, and a detailed description of the proposed modified algorithm that is
devised to specifically overcome these flaws of the original algorithm is provided. In the
end, ten groups of benchmark functions are used to test the performance of the proposed
algorithm, WOA, MPA, HHO, SSA, and SGO.

3.1. Sparrow Search Algorithm

The mathematical model of SSA mainly refers to the foraging habits of sparrows,
idealizes the individual behavior in the population, formulates the corresponding iterative
rules, and divides the individual into two roles of producers and scroungers in each
generation according to the fitness value. In addition, SSA also designed an early warning
process, which is to randomly select some individuals in the population called scouters, and
update their locations in each iteration. Finally, it searches for the global optimal solution
through a certain number of iterations.

The locations of producers are updated as follows:

Xt+1
i =

{
Xt

i · exp
(
− i

α·Itermax

)
, R2 < ST

Xt
i + Q · L, R2 ≥ ST

(4)

where t represents the current iteration, Itermax is the maximum number of iterations, α is a
random number in the range of (0, 1], Q is a random number subject to normal distribution,
L is a 1× D matrix with each element value of 1, R2(R2 ∈ [0, 1]) and ST(ST ∈ [0.5, 1])
represent the alarm value and safety threshold, respectively. It can be seen from Equation (4)
that their values determine the update mode of producers

The locations of scroungers are updated as follows:

Xt+1
i =

 Q · exp
(

Xt
worst−Xt

i
i2

)
, i > n/2

Xt
p +

∣∣∣Xt
i − Xt

p

∣∣∣ · A+ · L, otherwise
(5)

where n represents the number of sparrows, Xp is the best foraging location occupied by
the current producers, Xt

worst is the current worst foraging location, is a A matrix with
element values of 1 or −1, and A+ = AT(AAT)

−1. Q and L are the same as in Equation (4).
The locations of scouters are updated as follows:

Xt+1
i =

 Xt
best + β ·

∣∣Xt
i − Xt

best

∣∣, fi > fg

Xt
i + K ·

(
|Xt

i−Xt
worst|

( fi− fw)+ε

)
, fi = fg

(6)

where fi is the individual fitness value of scouters, fg represents the global optimal fitness
value, Xt

best is the global optimal foraging location, β is K are step control parameters, and ε
is a minimal constant to avoid the denominator being zero.

The flowchart of SSA is shown in Figure 3.
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3.2. Multi-Strategy Improved Hybrid Swarm-Intelligence Optimization Algorithm
3.2.1. Good-Point Set Theory

Previous studies have shown that the impact of the distribution of the initial population
on swarm-intelligence algorithms cannot be ignored [9]. To improve the uniformity of
the initial population search in solution space, scholars mostly use a chaotic map strategy
to solve this problem. At present, the commonly used chaotic map models include circle
map [37], tent map [38], piecewise map [39], cat map [40], logistic map [41], and Gauss
map [42]. However, although this initialization method based on chaotic mapping has
achieved some results, it still has considerable randomness, so it cannot effectively ensure
the search breadth of the initial population.

To solve the above problems, this paper applies the good-point set theory [43] to the
initial population stage. Its construction principle is: set Gs be the unit cube in s-dimensional
Euclidean space, and if r ∈ Gs, the shape is as follows:

Pn(k) =
{({

r(n)1 · k
}

,
{

r(n)2 · k
}

, · · · ,
{

r(n)s · k
})

, 1 ≤ k ≤ n
}

(7)

If the deviation ϕ(n) = C(r, ε)n−1+ε is satisfied, where C(r, ε) is the constant only related
to r and ε(ε > 0), then Pn(k) is the good-point set and r is the good point.

{
r(n)s · k

}
indicates

the decimal part, n is the number of samples, and we set r = {2 cos(2πk/p), 1 ≤ k ≤ s} and
p as the minimum prime number satisfying (p− 3) ≥ s. Mapping the good points of Gs to
the search space is:

Xi,j =
{

r(i)j · k
}
· (ubj − lbj) + lbj (8)

with the same number of points, a consistent distribution effect can be obtained each time
using the good-point set to initialize the population. Because the construction of the good-
point set is independent of the dimension of the sample, it plays a better role in solving
high-dimensional problems. Through calculation and analysis, the deviation of the good-
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point set is O(n−1+ε), while the deviation of the random method is O(n−1/2(log log n)1/2).
Compared with the random method, the deviation of the good-point set is reduced to
the square-root level. Therefore, the good-point set theory provides a stable and effective
uniform point selection strategy for population initialization.

To intuitively compare the two initialization methods, the population distribution
generated by the random method and good-point set method when N = 100 on [0, 1] is
provided in Figure 4. In addition, we further compared the six commonly used chaotic
maps mentioned above with the good-point set method. Considering the randomness of
chaotic maps, we carried out 10 experiments, and the average value distributions of each
method when N = 100 are shown in Figure 5.
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3.2.2. Hybrid Algorithm Strategy

In SSA, the producers represent the sparrows with better fitness in the population,
and have the function of guiding other individuals to move to the best foraging location.
Therefore, the location update process of the producers will closely affect the optimization
ability of SSA. According to Equation (4), the producers have two ways of updating their
locations. When R2 ≥ ST, the individuals will move randomly near the current locations
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according to the normal distribution; when R2 < ST, the update of the locations is affected
by Equation (9):

f (x) = exp(− x
α · Itermax

) (9)

when Itermax = 1000, N = 1000, D = 1 and α = 1, the value distribution of the producers
is shown in Figure 6. It can be seen that the search scope of producers shows an obvious
reduction trend with iterations, and finally decreases to less than half of the initial range, all
concentrated in the range of 0 to 0.4. The reduction of the search range is bound to reduce
the population diversity in the optimization process, resulting in a search blind area, which
increases the risk of SSA falling into the local extremum in the later stages of the iteration.
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To improve the deficiency of the location update strategy of the producers, we decided
to introduce the improvement phase of SGO to replace Equation (4). The mathematical
model of the improvement phase of SGO is as follows:

Xt+1
i = c · Xt

i + r · (Xt
best − Xt

i ) (10)

where t represents the current number of iterations, Xt
i and Xt

best are the current individual
location and the global optimal individual location, respectively, c ∈ (0, 1) is the self-
reflection parameter, which is 0.2 in the original reference [15], and r is a random number
satisfying uniform distribution from [0, 1]. It can be seen that the location update will be
guided by the current optimal individual, which is conducive to improving the global
exploration ability and the convergence rate of the algorithm in the initial stage. However,
as the self-reflection parameter, the constant attribute of c leads to an invariance dependence
on the location information with iterations. We change c into an inertia weight factor whose
value changes dynamically [44], as shown in Equation (11):

ct =
cs(cs − ce)(Itermax − t)

Itermax
(11)

where ct represents the inertia weight factor, cs and ce represent the adjustment parameters,
cs = 0.9. and cs = 0.4 are set, respectively. Therefore, by introducing ct, the adaptive
regulation of the participation degree of its location information is achieved. The decreasing
characteristic of ct makes the algorithm maintain a good global exploration ability at the
early stage of iteration and helps the algorithm have a more effective local development
ability at the later stage of iteration. Figure 7 describes the changing trend of ct with
iterations. The new producers’ update strategy is shown in Equation (12):

Xt+1
i = ct · Xt

i + r · (Xt
best − Xt

i ) (12)
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where ct is the inertia weight factor, Xt+1
i , Xt

i and Xt
best are the next-generation location,

current location, and current optimal location of the producer, respectively.
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3.2.3. Stagnation Disturbance Strategy Based on Lévy Flight

When the iteration proceeds to a certain extent, affected by the local extremum, the
update range of the producers will become smaller or move only near the current region.
At this time, more and more producers will change into scroungers, which indicates that
there is no solution in the nearby region, causing the algorithm to stagnate.

Lévy flight is a random walk. Studies have shown that the movement patterns of
many animals can be described by it [45]. Since the generation of its step is affected by the
heavy-tailed distribution, there will be a jump performance with a large span during the
random walk. Therefore, Lévy flight is applied to the update of individuals as a disturbance,
which will enable the search of the algorithm to enter a broader area and improve the
ability of global exploration. Furthermore, to further illustrate that Lévy flight can adapt to
larger-scale search, Brownian motion trajectory and Lévy flight trajectory simulated by the
Mantegna method [46] are revealed in Figure 8.
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The calculation method of Lévy flight in this paper is as follows [47]:

Levy(x) = 0.01× θ1 · σ

|θ2|
1
β

(13)

where θ1 and θ2 are parameters subject to normal distribution, β is a constant, which is
taken as 1.5 in this paper, and σ is calculated as follows:

σ =

[
Γ(1 + β) · sin(π · β/2)

Γ((1 + β)/2) · β · 2(β−1)/2

] 1
β

(14)

where Γ(x) is the gamma function and Γ(x) = (x − 1)! and x belongs to the set of natu-
ral numbers.

The new scroungers’ update strategy is shown in Equation (16):

Xt+1
i =

{
Xt

i + Xt
i · Levy(d), i > n/2

Xt
p +

∣∣∣Xt
i − Xt

p

∣∣∣ · A+ · L, otherwise
(15)

where Xt+1
i , Xt

i and Xt
p are the next-generation location, current location, and current

optimal location of the scrounger, respectively, and d represents the dimension of the
location vector.

3.2.4. Early Warning Process Based on Student’s t-Distribution Mutation Factor

According to Equation (6), the update of the early warning process is related to the
fitness value of the individual. When fi > fg, the individual will move towards the
current optimal location, When fi = fg, the individual will move randomly in the area near
itself, and the distance is related to the current worst location and the worst fitness value.
Therefore, the early warning process of SSA is essentially the furthest disturbance to the
population location after the iteration of producers and scroungers.

Student’s t-distribution is an important distribution type. Its curved shape is related
to the change in degrees of freedom n. When n = 1, t-distribution is Cauchy distribution;
when n→ ∞ , t-distribution is Gaussian distribution, that is, Cauchy distribution and
Gaussian distribution are two special cases of Student’s t-distribution.

In this paper, the degrees of freedom for t-distribution are taken from the current
iteration, and a mutation factor based on the Student’s t-distribution that changes with
iterations can be obtained. This is applied to scouters in the early warning process as a
random disturbance. The mathematical model of the new early warning process is shown
in Equation (16).

Xt+1
i = Xt

p + Xt
p · trnd(t) (16)

where trnd(t) is the t-distribution mutation factor with the current iteration as the degree
of freedom, and Xt+1

i and Xt
p are the next-generation location and current optimal location

of the scouter, respectively. Moreover, the mutation factor combines the advantages of
Cauchy distribution and Gaussian distribution and generates different disturbance ranges
through changing degrees of freedom, which can effectively balance the global exploration
ability and local development ability of the algorithm. The improved algorithm based on
the t-distribution mutation factor is defined as the collaborative-mutation hybrid sparrow
search algorithm (CM-HSSA). The pseudo-code of CM-HSSA is shown in Algorithm 1:
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Algorithm 1: The framework of CM-HSSA

Input: Max_Iter: the maximum iteration; N: the population size; PD: the proportion of producers;
SD: the proportion of early warning sparrows; cs, ce: the inertia weight adjustment parameters.
Output: Xbest: the optimal individual location; fg: the fitness value of the optimal individual.
/* Initialization*/

1. for i = 1 to N do
2. for j = 1 to d do
3. Initialize the location of N sparrows using equation (8);
4. end for
5. end for

/*Iterative search*/

6. Calculate the fitness value and record the current optimal individual;
7. for (t < Max_iter)
8. for i = 1 to PD*N do
9. Update the location of producers according to equation (12);
10. end for
11. for i = PD*N + 1 to N do
12. Update the location of scroungers according to equation (15);
13. end for
14. for i = 1 to SD*N do
15. Update the location of early warning sparrows according to equation (16);
16. end for
17. Evaluate the fitness value of the new location and update if it is better;
18. end for

/*Algorithm terminated*/

19. Return Xbest, fg

3.3. Benchmark Function Experiments

This section provides ten groups of classical benchmark functions to test the optimiza-
tion performance of six algorithms, including four unimodal functions with only one global
optimal value and five multimodal functions with multiple local extremums. F1–F8 are
30 dimensions and F9–F10 are 2 dimensions. Table 1 gives the relevant information on these
benchmark functions. The range represents the search scope, Opt represents the theoretical
optimal value and D represents the dimension of the problem. Among them, F1–F4 can
test the convergence rate, accuracy, and local development ability, while F5–F10 can test the
anti-local extremum ability and global exploration ability.

3.3.1. Parameter Settings

To verify the significance of the improvement, we compared the optimization effects
of WOA, MPA, HHO, SSA, SGO, and CM-HSSA on benchmark functions. To ensure the
objectivity of the experiments, the population is set to 30 and the maximum iteration is 100.
The specific parameter settings of each algorithm are as follows. For WOA, the logarithmic
spiral shape parameter b = 1. For MPA, the fish aggregating device FADs = 0.2. For HHO,
the prey energy factor E is a random number between (−1, 1). For SSA, the safety threshold
ST = 0.8, the proportion of producers PD = 0.2, and the proportion of scouters SD = 0.1.
For SGO, the self-reflection parameter c = 0.2. For CM-HSSA, the proportion of producers
PD = 0.2, the proportion of scouters SD = 0.1, and weight adjustment parameters cs = 0.9
and ce = 0.4. It is worth noting that the above parameters are taken from the original
references. The values of these artificially set parameters are obtained based on experience,
which can maximize the optimization performance of the algorithms.
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Table 1. Information on benchmark functions.

Benchmark Function Formula Range Opt

Sphere Model F1(x) =
n
∑

i=1
xi

2 [−100, 100] 0

Schwefel’s problem 2.22 F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10, 10] 0

Schwefel’s problem 1.2 F3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
[−100, 100] 0

Schwefel’s problem 2.21 F4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 0
Generalized Schwefel’s

problem 2.26 F5(x) =
n
∑

i=1
−xi sin

√
|xi| [−500, 500] −4.18.9829D

Generalized Rastrigin’s
Function F6(x) =

n
∑

i=1
[x2

i − 10 cos(2πxi) + 10]
[−5.12,
5.12] 0

Ackley’s Function F7(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
xi

2

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] 0

Generalized Griewank
Function F8(x) = 1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos xi√
i
+ 1 [−600, 600] 0

Branin Function F9(x) =
(

x2 − 5.1
4π2 x2 + 5

π x1 − 6
)2

+ 10
(

1− 1
8π

)
cos x1 + 10 [−5, 5] 0.398

Goldstein–Price
Function

F10(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]×
[30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
[−2, 2] 3

3.3.2. Statistical Result Comparison

To ensure the fairness of the experiments, each algorithm runs 20 times independently,
and the mean value, standard deviation, and average calculation time are recorded. Among
them, the mean value reflects the optimization accuracy, the standard deviation reflects
the robustness, and TIC/TOC is used to calculate the running time of each algorithm.
Through the experimental results listed in Table 2, we can see the different optimization
performances of the algorithms.

Table 2. Experimental results of six algorithms.

Function Result WOA MPA HHO SSA SGO CM-HSSA

F1

Mean 3.5706 × 10−10 1.9437 1.3052 × 10−20 2.9595 × 10−33 4.3773 × 10−135 0

Std. 7.1180 × 10−10 1.0336 5.8268 × 10−20 1.3235 × 10−33 2.9367 × 10−136 0

TIC/TOC 0.075297 0.260806 0.122167 0.098561 0.121907 0.102957

F2

Mean 9.7066 × 10−9 9.6357 × 10−2 4.3809 × 10−13 2.0208 × 10−21 1.5103 × 10−68 0

Std. 2.1815 × 10−8 3.3799 × 10−2 1.0991 × 10−12 8.9306 × 10−21 1.6423 × 10−69 0

TIC/TOC 0.060907 0.197253 0.121605 0.090216 0.127647 0.096940

F3

Mean 9.8067 × 104 2.1566 × 102 1.8472 × 10−13 4.1637 × 10−33 2.2632 × 10−135 0

Std. 2.8622 × 104 1.8756 × 102 8.2479 × 10−13 1.8621 × 10−32 9.9703 × 10−136 0

TIC/TOC 0.098011 0.306055 0.232791 0.116329 0.246341 0.148943

F4

Mean 5.6341 × 101 4.5856 × 10−1 3.6428 × 10−13 3.9747 × 10−21 1.0950 × 10−68 0

Std. 2.8796 × 101 1.0924 × 10−1 6.1075 × 10−13 1.7745 × 10−20 5.3688 × 10−70 0

TIC/TOC 0.060370 0.203315 0.113611 0.106351 0.126110 0.117772

F5

Mean −8.6688 × 103 −7.2695 × 103 −1.2356 × 104 −6.2868 × 103 −6.9435 × 103 −1.06 × 104

Std. 1.0522 × 103 4.7419 × 102 7.9240 × 102 1.6650 × 103 6.5873 × 102 7.8299 × 102

TIC/TOC 0.067170 0.251228 0.157786 0.079425 0.111361 0.098025
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Table 2. Cont.

Function Result WOA MPA HHO SSA SGO CM-HSSA

F6

Mean 1.2998 × 10−8 8.6017 0 0 0 0

Std. 5.3053 × 10−8 7.2342 0 0 0 0

TIC/TOC 0.060027 0.217248 0.177083 0.076583 0.130681 0.106733

F7

Mean 3.7669 × 10−7 8.9223 × 10−2 7.3576 × 10−12 1.0658 × 10−15 8.8818 × 10−16 8.8818 × 10−16

Std. 5.5884 × 10−7 2.8663 × 10−2 2.2196 × 10−12 7.9441 × 10−16 0 0

TIC/TOC 0.071849 0.177886 0.127309 0.079305 0.122893 0.098612

F8

Mean 9.1942 × 10−1 2.7695 × 10−1 0 0 0 0

Std. 2.8307 × 10−1 1.4355 × 10−1 0 0 0 0

TIC/TOC 0.073628 0.198219 0.159379 0.077422 0.131028 0.115157

F9

Mean 4.0011 × 10−1 3.9789 × 10−1 3.9853 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

Std. 3.7678 × 10−3 5.0943 × 10−11 1.1419 × 10−3 6.3089 × 10−7 2.3781 × 10−8 0

TIC/TOC 0.051275 0.173310 0.137616 0.098129 0.096289 0.083473

F10

Mean 8.4292 3.0201 3.0231 3.0023 3.0001 3.0000

Std. 1.1139 × 101 1.8833 × 10−10 1.4497 × 10−4 2.7527 × 10−7 1.9782 × 10−7 2.2017 × 10−15

TIC/TOC 0.056070 0.183948 0.155738 0.071500 0.107347 0.081171

The simulation software used in experiments was MATLAB R2018b. It is worth
mentioning that iterations are generally positively correlated with the accuracy, while the
maximum iteration set in this paper is 100, which can better reflect the optimization perfor-
mance of the algorithms in short iterations. According to Table 2, CM-HSSA can obtain the
stable optimal convergence accuracy for unimodal functions F1 − F4, and the optimization
performance is better than other algorithms. For multimodal functions, HHO has the
highest accuracy on F5, followed by CM-HSSA. The mean value of the two algorithms
has reached the level of −1 × 104, which is higher than other algorithms. For F6 and F8,
CM-HSSA, HHO, SSA, and SGO can obtain the best optimization accuracy. Although their
convergence behavior is different, they all successfully find the global optimal solution in
the limited iteration. For F7, F9, and F10, CM-HSSA has the highest accuracy and the small-
est standard deviation, which is better than other algorithms, indicating that CM-HSSA has
stronger local development ability and the ability to jump out of the local extremum. In
terms of calculation time, WOA is the fastest, CM-HSSA is close to that of SSA, faster than
HHO and SGO, and MPA takes the longest time. To improve the visualization of results
and the significance of CM-HSSA, we selected the boxplot and Wilcoxon test [48] to further
analyze the data in Table 3.

Table 3. The p-value test results over benchmark functions.

Function CM-HSSA vs.
WOA

CM-HSSA vs.
MPA

CM-HSSA vs.
HHO

CM-HSSA vs.
SSA

CM-HSSA vs.
SGO

F1 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9

F2 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9

F3 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 2.992 × 10−8 8.0065 × 10−9

F4 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9

F5 2.6609 × 10−6 6.7004 × 10−8 6.1833 × 10−4 6.8341 × 10−7 6.7004 × 10−8

F6 2.9868 × 10−8 8.0065 × 10−9 N/A N/A N/A
F7 8.0065 × 10−9 8.0065 × 10−9 1.0433 × 10−7 3.4211 × 10−4 N/A
F8 8.0065 × 10−9 8.0065 × 10−9 N/A N/A N/A
F9 1.1597 × 10−4 6.7956 × 10−8 1.0581 × 10−4 8.0065 × 10−9 5.0209 × 10−5

F10 8.0065 × 10−9 8.0065 × 10−9 2.1025 × 10−7 4.0137 × 10−8 1.9299 × 10−3
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The boxplot in Figure 9 shows the characteristic information of the results of six
algorithms, including maximum, minimum, and median. Table 3 shows the difference
between the results of CM-HSSA and other algorithms through p-value comparison with
the Wilcoxon test. When the p-value is less than 5%, there is an obvious difference between
the two algorithms; otherwise, it means that the difference is not obvious, and N/A means
that the two algorithms have the same performance and cannot be compared. According to
the data recorded in Table 3, in most tests (42/50), the p-value is less than 5%, indicating
that the optimization performance of CM-HSSA is significantly different from that of
other algorithms, and the optimization ability is much higher than that of SSA. To further
analyze the differences in convergence modes of each algorithm, Figures 10–19 show the
convergence trajectories of the six algorithms, and plot y-coordinates using a base-10
logarithmic scale on the y-axis.
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According to the iterative trajectories of the above six algorithms, the convergence
behavior of the algorithms can be summarized into the following three types. The first
type is that the convergence rate is significantly accelerated with iterations, which is mainly
reflected in f1 ∼ f4 of CM-HSSA. It shows that the adaptive mechanism of CM-HSSA
effectively finds a meaningful search space in the initial iteration, and finds the global
optimal solution more quickly. The second convergence behavior is to converge to the
optimal only at the end of the iteration, which is mainly reflected in the optimization of
other algorithms except for CM-HSSA. Compared with the first convergence behavior,
the convergence rate of this type is significantly slower. The third type of convergence
behavior is to accelerate the convergence from the initial iteration, which is reflected in the
optimization of all multimodal functions of the four algorithms, and this ability of CM-
HSSA is more obvious. For f6 ∼ f8, based on the good-point set population distribution,
CM-HSSA only needs 10 iterations to search for the optimal solution, which has a faster
convergence rate compared with other algorithms. When CM-HSSA determines the search
direction, it can quickly converge to the optimal accuracy, which is also reflected in the
optimization of f9 ∼ f10.

In summary, through the performance test of the benchmark functions, it is prelimi-
narily verified that the improved strategy is effective. Compared with other algorithms,
the results of CM-HSSA have significant advantages in most tests (42/50), improved the
convergence rate and accuracy of the original SSA, and also obtain a stable enhancement
in robustness. In the next section, the performance of six algorithms for dynamic opti-
mization problems is further investigated under a universal swarm-intelligence dynamic
optimization framework.

4. Case Studies in Dynamic Optimization

In this section, three typical dynamic optimization problems are selected as the re-
search targets. A universal swarm-intelligence dynamic optimization framework is used
to further analyze the performance of WOA, MPA, HHO, SSA, SGO, and the proposed
CM-HSSA for dynamic optimization problems, and the results are compared with existing
references. Specifically, the piecewise constant based on the equal division method is used
to approximate the control variable, and an infinite-dimensional dynamic optimization
problem is transformed into a finite-dimensional static optimization problem, which can be
solved by six algorithms. To calculate the values of state variables and objective functions,
the fourth-order Runge–Kutta method is used to solve the initial value problem of differen-
tial equations in each interval to obtain high-precision numerical solutions. In addition, the
three cases are calculated by segments NE = 100. All algorithms set the population to 200
and the maximum iteration to 1000. The specific parameters of each algorithm are the same
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as those in 3.3.1. Each case is tested 20 times independently and the mean value, standard
deviation, and calculation time (s) of the results are recorded.

4.1. Problem 1: Batch Reactor Consecutive Reaction

The batch reactor consecutive reaction is a classic dynamic optimization problem that
has been widely cited as a research object. For a batch reactor with a constructive chemical
reaction, temperature control plays a key role in the formation of products. In the initial
stage, it is necessary to provide a higher temperature to meet the conditions of reaction start-
up. With the progress of the reaction, the temperature needs to be continuously reduced
to ensure the maximum concentration of the target product. Therefore, the optimization
goal of this problem is to determine an optimal temperature control trajectory to optimize
the concentration of target product B generated by reactant A within 1 h of reaction.
The mathematical model of batch reactor constructive reaction problem is described as
follows [49]:

maxJ(t f ) = CB(t f )

s.t.



dCA
dt = −k1C2

A
dCB
dt = k1C2

A − k2CB
t f = 1
k1 = 4× 103 × e−2500/T

k2 = 6.2× 105 × e−5000/T

298 ≤ T ≤ 398, CA(0) = 1, CB(0) = 0

(17)

where CA is the reactant concentration, CB is the target product concentration, T is the
reaction temperature, and t f is the reaction termination time. Figure 20 shows the iterative
trajectories of six algorithms to solve problem 1 when NE = 100. Table 4 records the mean
value (mol/L), standard deviation, and mean calculation time (t/s) in 20 experiments. From
the experimental results, we can see the difference between CM-HSSA and other algorithms.
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Table 4. Comparison of optimization results for Problem 1.

Method Mean Std. TIC/TOC

WOA 0.60718532 5.9120 × 10−4 359.5657
MPA 0.61070726 7.8608 × 10−4 344.6441
HHO 0.61047035 1.9521 × 10−3 1092.0483
SSA 0.61077333 2.4912 × 10−7 351.2811
SGO 0.60584429 9.7315 × 10−4 767.8168

CM-HSSA 0.61079200 2.9799 × 10−7 347.2429
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By comparing the results in Table 4, CM-HSSA has the highest accuracy, and the
small standard deviation shows that the result is stable. Ranking of other algorithms:
SSA > MPA > HHO > WOA > SGO. In terms of calculation time, the difference between
WOA, MPA, SSA, and CM-HSSA is within 15 s, while SGO and HHO are much longer.
According to the literature [3], 99.95% of the highest average accuracy of the six algorithms
is defined as a satisfactory solution, and their performance of the convergence rate is
evaluated according to the iterations of reaching the satisfactory solution. For problem 1,
the satisfactory solution is 0.6104866. WOA, HHO, and SGO failed to reach the satisfactory
solution. CM-HSSA takes 346 iterations to reach the satisfactory solution, while MPA and
SSA take 706 iterations and 573 iterations. That is to say, compared with MPA and SSA,
iterations are reduced by 50.99% and 39.61%, respectively, with CM-HSSA. Figure 21 shows
the optimal control trajectory and optimal state variable trajectory of CM-HSSA solving
problem 1. To further illustrate the advantages of the obtained results, the data in different
references are recorded and compared with CM-HSSA, as shown in Table 5.
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Table 5. Comparison of optimization results for Problem 1.

Method NE J/(mol/L)

OC [50] - 0.61
SQP [51] 80 0.610775
IDP [52] 80 0.610775

PSO-CVP [12] - 0.6105359

IKEA [53]
10 0.6101
20 0.610426
100 0.610781–0.610789

HIGA [54]
10 0.61007
20 0.61046

IKBCA [17]
10 0.6101
20 0.610454
100 0.610779–0.610787

EBSO [13]
10 0.610558922
20 0.61064758
80 0.61078114

MSFO [16] 50 0.610771–0.610785
ISOA [15] 30 0.61059223

CVP-PSO [3] - 0.6107847
CVP-APSO [3] - 0.6107850

This work (CM-HSSA) 100 0.61079200

According to Table 5: Renfro et al. [50] obtained a result of 0.61 using the orthogonal
collocation (OC) method, Logsdon et al. [51] obtained 0.610775 by using the SQP strategy,
while the iterative dynamic programming (IDP) method used in reference [52] obtained the
same result, Shi et al. [12] used PSO to solve the problem under the CVP framework and
obtained 0.6105359, Peng et al. [53] obtained 0.610781 to 0.610789 by using the proposed
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IKEA, and the accuracy is slightly better than HIGA [54], which is generally consistent
with the results of IKBCK [17]. The EBSO proposed by Lyu et al. [13] is better than the
three algorithms mentioned above when the number of segments is small, but the accuracy
improved by the algorithm is not obvious through the increased segments, The MSFO used
by Zhang et al. [16] best obtained 0.610785. The ISOA proposed by Xu et al. [15] obtained
0.61059223 in the case of equal division of 30 segments. The results are poor compared
with EBSO [13], and the accuracy is limited due to the small number of segments. In this
paper, CM-HSSA is used to solve problem 1, and 0.61079200 is obtained in the case of equal
division of 100 segments. By comparing the above references, it can be seen that the result
obtained by CM-HSSA is the best, reaching the level of 0.61079, which is slightly better
than the best value of 0.6107850 in reference [3], which shows that CM-HSSA is feasible
and effective to solve the batch reactor consecutive reaction problem.

4.2. Problem 2: Catalyst Mixing Reaction in Tubular Reactor

The problem of the catalyst mixing reaction in the tubular reactor was first proposed
by Gunn et al. [55] in 1965. This problem can be briefly described as: in a tubular reactor
with a certain length, the two catalysts A and B are mixed to produce the target product C.
Therefore, the dynamic optimization involved in this problem is to optimize the output of
target product C in a fixed-length tubular reactor by regulating the catalyst concentration
in the mixture. It is worth noting that the reaction process takes place in an isothermal
tubular reactor by default. The mathematical model of catalyst mixing reaction in the
tubular reactor is as follows:

maxJ(z f ) = 1− xA(z f )− xB(z f )

s.t.


dxA
dz = −u(z)[10× xB(z)− xA(z)]

dxB
dz = u(z)[10× xB(z)− xA(z)]− [1− u(z)]× xB(z)

z f = 12
0 ≤ u(z) ≤ 1, xA(0) = 1, xB(0) = 0

(18)

where xA and xB are the mole fractions of A and B in the mixture, z f is the length of the
tubular reactor, and u(z) is the mixing fraction of catalyst A. Figure 22 shows the iterative
trajectories of six algorithms to solve problem 2 when NE = 100. Table 6 records the mean
value (mol/L), standard deviation, and mean calculation time (t/s) in 20 experiments.
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Table 6. Comparison of optimization results for Problem 2.

Method Mean Std. TIC/TOC

WOA 0.47625678 5.8233 × 10−4 426.7259
MPA 0.47742011 6.4257 × 10−4 1034.2457
HHO 0.47478338 1.7305 × 10−3 1213.1210
SSA 0.47744034 9.2403 × 10−4 503.7366
SGO 0.47530289 3.8821 × 10−4 1161.0388

CM-HSSA 0.47770179 2.7368 × 10−5 457.1058

It can be seen from the results in Table 6 that CM-HSSA has the most stable and highest
solution accuracy. In terms of optimization accuracy, ranking of other algorithms is as
follows: SSA > MPA > WOA > SGO > HHO. In terms of calculation time, the difference
between WOA, SSA, and CM-HSSA is within 78 s, while MPA, SGO, and HHO are much
longer. In terms of convergence rate, only CM-HSSA reaches a satisfactory solution and
takes 103 iterations. MPA and SSA are close to the satisfactory solution of 0.47746294,
but they have not achieved this value with 1000 iterations. Figure 23 shows the optimal
control trajectory and optimal state variable trajectory of CM-HSSA solving problem 2. To
further illustrate the advantages of the obtained results, the data in different references are
recorded and compared with CM-HSSA, as shown in Table 7.
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Table 7. Comparison of optimization results for Problem 2.

Methods NE J/(mol/L)

IDP [52]
20 0.47527
40 0.47695

ACO [14] - 0.47615

IKEA [53]
10 0.475
20 0.4757

100 0.47761–0.47768

IKBCA [17]
20 0.4753

100 0.47768–0.47770

EBSO [13]
10 0.47502183
20 0.47627191
40 0.47697288

MSFO [16]
20 0.47562
70 0.477544–0.47760

ISOA [15] 40 0.47721
This work (CM-HSSA) 100 0.47770179

It can be seen from Table 7 that the highest accuracy of IDP [52] is 0.47695, which is
slightly better than the result solved by Rajesh et al. [14] using ACO. The result obtained by
MSFO [16] is 0.477544–0.47760, which is inferior to the accuracy achieved by IKEA [53] and
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IKBCA [17]. ISOA [15] achieved 0.47721, and its accuracy is better than that of EBSO [13] in
the same segmentation. When the segment is 100, CM-HSSA obtains a result of 0.47770179
for solving the catalyst mixing reaction in a tubular reactor compared with other references;
only the proposed algorithm can stably reach the level of 0.4777, while the accuracy of
different methods hovers in the range of 0.475–0.476. Therefore, CM-HSSA has a better
solution effect than other methods, which further proves the effectiveness of the algorithm
proposed in this paper.

4.3. Problem 3: Parallel Reactions in Tubular Reactor

The parallel reaction problem in the tubular reactor is a dynamic optimization problem
with saturation characteristics of control variables [56], and it has been cited by many
researchers. In the tubular reactor, there is a side reaction process ( A→ C ) parallel to the
main reaction ( A→ B ), so the optimization goal of this problem is to maximize the target
product B of the main reaction at the end by determining an optimal control trajectory.
Similarly, all reactions of this problem occur in an isothermal tubular reactor by default.
The mathematical model of parallel reactions in the tubular reactor is as follows:

maxJ(t f ) = xB(t f )

s.t.


dxA
dt = −[u(t) + 0.5u2(t)]xA(t)

dxB
dt = u(t)xA(t)

t f = 1
0 ≤ u(t) ≤ 5, xA(0) = 1, xB(0) = 0

(19)

where xA is the concentration of reactant A, xB is the concentration of target product B, t f
is the reaction termination time, and u(t) is the saturation of the control variable. Figure 24
shows the iterative trajectories of six algorithms to solve problem 3 when NE = 100. Table 8
records the mean value (mol/L), standard deviation, and mean calculation time (t/s) in
20 experiments.
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By comparing the results in Table 8, CM-HSSA also obtains the highest accuracy
and the smallest standard deviation among the six algorithms, and the ranking of other
algorithms is as follows: MPA > SSA > HHO > WOA > SGO. In terms of calculation time,
except for SGO and HHO, the difference between the other four algorithms is within 33 s.
In terms of convergence rate, CM-HSSA takes only 98 iterations to achieve a satisfactory
solution of 0.57326693, while MPA takes 671 iterations, so the iterations are reduced by
85.39% with CM-HSSA. Other algorithms failed to reach this value. Through comprehen-
sive comparison, CM-HSSA has more advantages and wider applicability in optimization
performance and calculation efficiency. Figure 25 shows the optimal control trajectory
and optimal state variable trajectory of CM-HSSA solving problem 3. To further confirm
the superiority of the results obtained, the data in different references are recorded and
compared with CM-HSSA, as shown in Table 9.
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Figure 25. CM-HSSA for Problem 3.

Table 9. Comparison of optimization results for Problem 3.

Methods NE J/(mol/L)

IDP [52]
20 0.57330
40 0.57348
80 0.57353

CVP [57] - 0.56910
CVI [57] - 0.57322

ACO [14] - 0.57284
CP-PSO [3] - 0.573543

CP-APSO [3] - 0.573544
ISOA [15] 40 0.573073

This work (CM-HSSA) 100 0.57355371

According to Table 9, the IDP [52] divided into 80 segments has the best result of
0.57353. Biegler [57] proposed combining successive quadratic programming and orthogo-
nal collocation, and obtained 0.56910 and 0.57322 based on CVP and control vector iteration
(CVI), respectively. ACO [14] solved the problem and obtained 0.57284, which is lower
than other methods. Zhou et al. [3] proposed a dynamic optimization control parameter
solution and obtained 0.573544 using APSO, which is improved compared with PSO. Xu
et al. [15] divided it into 40 segments and obtained the best result of 0.573073. Compared
with these references, the solution of CM-HSSA has reached the highest accuracy level of
the current optimization for this problem, and is slightly better than the result of 0.573544
obtained in reference [3], which further verifies the ability of CM-HSSA to solve dynamic
optimization problems.

5. Conclusions

This manuscript introduced a novel SSA algorithm named CM-HSSA that further
enhanced both the exploration and exploitation abilities of the original method. Through
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the benchmark function experiments, compared with WOA, MPA, HHO, SSA, and SGO,
the statistical results verify that CM-HSSA has more advantages in stability, accuracy, and
convergence rate. Under a universal swarm-intelligence dynamic optimization framework,
the above six algorithms are used to solve three typical chemical dynamic optimization
problems, and the simulation results further validate the applicability of CM-HSSA to solve
the dynamic optimization problems. Compared with different methods in the literature,
CM-HSSA also achieved the best results.

For dynamic optimization problems, in addition to the performance of the optimiza-
tion algorithm affecting the final results, the segmentation of the time domain and the
selection of the approximation method for control variables will also have different effects
on the solution. In future work, we will conduct more research on these two aspects, and
use high-performance optimization algorithms to solve complex dynamic optimization
problems with strong nonlinearity.
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