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Abstract: In this paper we present an efficient Matlab computation of a 3-D electromagnetic scattering
problem, in which a plane wave impinges with a generic inclination onto a conducting ellipsoid
of revolution. This solid is obtained by the rotation of an ellipse around one of its axes, which is
also known as a spheroid. We have developed a fast and ad hoc code to solve the electromagnetic
scattering problem, using spheroidal vector wave functions, which are special functions used to
describe physical problems in which a prolate or oblate spheroidal reference system is considered.
Numerical results are presented, both for TE and TM polarization of the incident wave, and are
validated by a comparison with results obtained by a commercial electromagnetic simulator.

Keywords: spheroid; spheroidal vector wave functions; electromagnetic scattering; analytical method;
Matlab
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1. Introduction

In electromagnetic scattering problems it is often useful to refer to cases where scatter-
ers are two-dimensional objects immersed in non-homogeneous scenarios, as in ground-
penetrating radar, through-the-wall radar or wireless power transfer system applications
with wearable or implantable devices [1–8]. For other specific applications, ranging from
finding people in dangerous situations, such as after earthquakes, or in biological applica-
tions, it could be more interesting to model three-dimensional objects by means of spherical
or spheroidal geometries.

To this aim, the use of spheroidal wave functions is appropriate. The latter, introduced
by Hansen in 1935, are special functions widely used in mathematical physics where a
prolate or oblate spheroidal reference system is used [9–16], and also have important appli-
cations in electromagnetic scattering problems. Spheroidal reference systems are used in
applications which include, for example, the modelling of raindrops, in the calculation of
rain attenuation of microwave signals in line-of-sight, and satellite telecommunication sys-
tems or the modelling of a human head in the calculation of the electromagnetic interaction
between a head and a mobile phone [17,18].

Several analytical solutions involving spheroidal functions have been obtained over
the years, [19–26] such as the field and current distribution analysis of a prolate spheroidal
dipole antenna embedded in a larger dielectric confocal prolate spheroid with finite conduc-
tivity, carried out by Jen [27], and the exact solution for scattering from conducting prolate
spheroids by an axially incident plane wave, proposed by Schultz [28]. Reitlinger provided
the general solution for arbitrary incidence and arbitrary polarization but no numerical
results were presented [29]. This approach presents two main disadvantages: one concerns
a process of matrix inversion, which must be repeated each time the angle of incidence
of the source is changed, and the second is that the matrix from which the coefficients of
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the scattered field are obtained cannot be used to determine the coefficients of the other
polarization. The problem of the matrix inversion was removed by Sinha and MacPhie [30],
who presented a solution involving matrices depending only on the scatterer.

In this contribution, we referred to the theory developed in [30] and proposed an
efficient numerical implementation for both TE and TM modes. This implementation made
use of a library of functions already available where the authors were not aware that they
had ever been used for electromagnetic scattering problems. Truncation criteria previously
proposed by other authors have been revisited. Comparisons with a commercial numerical
electromagnetic solver, performed for both polarizations, several incident wave directions,
and different scatterer shapes, have shown a good agreement. The paper is organized as
follows. In Section 2 we summarize the analytical approach, in Section 3 we discuss the
numerical implementation and present the results through a comparison with a commercial
electromagnetic simulator. In Section 4 we draw the conclusions.

2. Theoretical Analysis

We are interested in studying the electromagnetic scattering of a plane, linearly po-
larized, monochromatic wave (with wavelength λ) from a perfectly conducting prolate
spheroid. The spheroid was immersed in a homogeneous, isotropic, non-conductive, and
non-magnetic medium. The geometry of the scattering problem is illustrated in Figure 1a,
where the prolate spheroidal coordinates are related to the Cartesian coordinates by the
following relations [20] (see Figure 1b):

x =
d
2

√
(1− η2)(ξ2 − 1) cos φ

y =
d
2

√
(1− η2)(ξ2 − 1) sin φ

z =
d
2

ηξ

where d is the interfocal distance and −1 ≤ η ≤ 1, 1 ≤ ξ < ∞, 0 ≤ φ ≤ 2π.
The surface at ξ = ξ0 = constant > 1 forms an elongated ellipsoid of revolution with

major axis of length dξ and minor axis of length d
√

ξ2 − 1. The value of ξ0 is related to the
major and minor axes of the ellipse (a and b, respectively) by the following relation:

ξ0 =
a√

a2 − b2
=

a/b√
(a/b)2 − 1

.

We assume, without loss of generality, that the direction of propagation of the incident
wave is in the xz-plane, and forms the angle θ0 with the z-axis. The plane-wave expressions
for TE polarization (electric field normal to the xz-plane) and for TM polarization (electric
field lying in the xz-plane), at a point of coordinates r, are

ETE
i (r) = ETE

i 0 e−jk·r ŷ , (1)

ETM
i (r) = ETM

i 0 e−jk·r (−x̂ cos θ0 + ẑ sin θ0) , (2)

where ETE
i 0 and ETM

i 0 are the field amplitudes, k = −k(x̂ sin θ0 + ẑ cos θ0) is the propagation
vector, with k = 2π/λ. The temporal dependence, of the form exp(jωt), is omitted
for brevity.

Considering prolate spheroidal coordinates, the separation of scalar variables results
in three independent functions: the radial spheroidal function R(i)

mn, the angular spheroidal
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function Smn [20], and the sine and cosine functions. The expansion of a plane wave in
terms of prolate spheroidal wave functions, given in [20], has the following expression:

e−jk·r = 2
∞

∑
m=0

∞

∑
m=n

εm jn

Nmn(c)
Smn(c, cos θ0)Smn(c, η)R(1)

mn(c, ξ) cos(mφ) (3)

where
c =

1
2

kd ,

εm is the Neumann number (εm = 1 for m = 0 and εm = 2 for m > 0), and Nmn(c) is
the normalization factor of the angular function of the first kind.

Figure 1. Prolate spheroid geometry (a) and the spheroidal coordinate system (b).

It is possible to rewrite Equations (1) and (2) in terms of vector wave functions [20]
as follows:

ETE
i =

ETE
i 0

k cos θ0

∞

∑
n=m

∞

∑
m=0

Amn(c, θ0)M
x(1)
emn (c; η, ξ, φ) , (4)

ETM
i =

ETM
i 0
k

∞

∑
n=m

∞

∑
m=0

Amn(c, θ0)M
y(1)
emn (c; η, ξ, φ) , (5)

where

Amn(c, θ0) =
2εm jn−1

Nmn
Smn(c, cos θ0)

and the M vectors are the vector spheroidal wave functions, given in [20].
Taking into account that the scattered fields must satisfy the radiation condition at

infinity, their expressions for TE and TM incident fields can be written as follows [30]:

ETE
s =

∞

∑
m=0

∞

∑
n=m

(αmnM+(4)
e m+1,n + γmnMz(4)

e mn) (6)

and

ETM
s =

∞

∑
m=0

∞

∑
n=m

(βmnM+(4)
o m+1,n + ρm+1,n+1Mz(4)

o m+1,n+1) +
∞

∑
n=1

β−1nM−(4)o 1n (7)
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respectively, where αmn, βmn, γmn, ρm+1,n+1, β−1n are expansion coefficients.
Considering a perfectly conducting prolate spheroid, the boundary conditions to be

imposed at the surface of the spheroid ξ = ξ0 are as follows:
Ei η + Es η = 0,

Ei φ + Es φ = 0
(8)

where the subscripts η and φ denote, respectively, the η- and φ-components of the fields.
Let us first consider the TE polarization case. Inserting the expressions of the incident

field (4) and the scattered field (6) into (8), we obtain the following, after some algebra:

(cos θ0)
−1QE

mAm = (RE
m)S

E
m, m = 0, 1, 2, ...,

and
(cos θ0)

−1(QE
+)A+ = (RE

+)S
E
+ (9)

where the expressions of QE
+, A+, RE

+, SE
+, QE

m, QE
mm and QE

m,m+2 are given in [30]. The scat-
tering column vector SE can be obtained from the incident column vector IE via the
following transformation:

SE = (GE)IE ,

where

(GE) =


(RE

+)
−1(QE

+) 0 0 · · ·
0 (RE

0 )
−1(QE

0 ) 0 · · ·
0 0 (RE

1 )
−1(QE

1 ) · · ·
...

...
...

...

 .

We consider now TM polarization of the incident wave. Inserting Equations (5) and (7)
into (8), and using the orthogonality of the trigonometric functions and the spheroidal
angular functions, we get

(QM)Am = (RE
m)S

M
m , m = 0, 1, 2...,

and
(QM

+ )A+ = (RM
+ )SM

+ ,

where [QM
m ], RE

m, Am, A+ are defined in [30]. We obtain, in the same way, the following
matrix transformation:

SM = (GM)IM,

3. Numerical Results and Discussion

The analytical method presented in Section 2 has been numerically implemented in
Matlab. The spheroidal library was used to calculate the spheroidal wave functions [31],
allowing the use of arbitrary precision arithmetic and the adaptive choosing of the number
of expansion coefficients.

The arbitrary precision arithmetic was achieved by the GNU MPFR library [32]. It
provided good accuracy in many of the computations, especially for high wave numbers
and modes. All the examples in this paper were obtained using a precision of 500 bits.
A preliminary step in the numerical evaluation of the spheroidal functions consisted of
computing and storing the characteristic values and the expansion coefficients in order to
speed-up the computations of the subsequent functions.

In the numerical evaluations, a truncation was introduced on the matrices and se-
ries described in the previous section. In accordance with [30] we used the following
truncation rules:

mt = bka + 4c,
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where b·c denotes the floor function, and all summations in Equations (3)–(7) are for
m = 0, ..., (mt − 1) and n = m, ..., (mt − 1).

3.1. TE Polarization

We first consider the case of TE polarization where the incident wave impinges onto
the prolate spheroid with the incidence angle θ0 = 30◦. In such a case the electric field
of the incident wave is perpendicular to the incidence plane. The geometric parameters
of the scatterer were ξ0 = 1.1 and kd = 10 (corresponding to ka = 5.5, kb = 2.2913,
c = 5, and mt = 9). The validation of our Matlab code is shown in Figure 2 through a
comparison with the results obtained by modelling the spheroid in CST Microwave Studio.
In particular, Figure 2a shows the real and imaginary parts of the electric field Ey along the
x-axis and Figure 2b shows those along the z-axis. In all the simulations performed in CST
Microwave Studio with the time domain solver, the computation domain was meshed with
hexahedral cells with sizes between 0.16/k and 0.33/k. It could be seen that the agreement
was excellent.

Figure 2. Real and imaginary parts of Ey along the x-axis (a) and the z-axis (b): comparison between
results obtained through the analytical approach implemented in Matlab and the results obtained
through CST Microwave Studio, for the case θ0 = 30◦, ka = 5.5, kb = 2.2913, c = 5, ξ0 = 1.1, d = 10,
mt = 9. TE polarization.

The magnitude of the electric field across the xz-plane is presented in Figure 3 for the
same geometrical parameters considered in Figure 2. In Figure 4 the results obtained for
different angles of incidence (θ0 = 60◦ and θ0 = 90◦) are presented. The case of orthogonal
incidence (θ0 = 90◦) was a special case, where the scattering column vector in Equation (9)
is given by:

SE = (GE)IE ,

and IE is obtained from A by replacing Amn by the following coefficients:

Bmn = 0, with (n−m) even

Bmn = 2
εm jn−1

Nmn

∞

∑
k=0

cmn
2k = 2

εm jn−1(−1)(n−m−1)/2(n + m + 1)!

2n
(

n−m−1
2

)
!
(

n+m+1
2

)
!

, with (n−m) odd .
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Figure 3. Magnitude of the E-field across the plane xz for the same geometrical parameters considered
in Figure 2. TE polarization.

Figure 4. Magnitude of the E-field across the plane xz for the same geometrical parameters of Figure 2
but for different incident angles of the plane wave: (a) θ0 = 60◦, (b) θ0 = 90◦.

In order to validate the adopted truncation rule (mt = 10, in this case), we considered
several cases with different truncation orders. In particular, we compared the results
obtained with mt = 5, mt = 10 and mt = 15, to those obtained with a large value of mt,
for which the convergence of the method was taken for granted (mt = 20). As shown in
Figure 5, the relative difference of the electric field magnitude was alway less than 10−4

when mt = 10.
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Figure 5. Validation of the truncation method. Comparison between the results obtained with mt = 5,
mt = 10, and mt = 15, to those obtained with mt = 20: (a) relative error along the x-axis; (b) relative
error along the z-axis. TE polarization.

Figure 6 shows the amplitudes of the terms of the G matrix for the geometrical
parameters considered in Figure 5, with mt = 9. The matrix was composed of 99× 99
terms.

The case of axial incidence (θ0 = 0◦) was also considered. In this case, the solution
was greatly simplified by virtue of the symmetry. Figure 7 shows the magnitude of the
E-field across the xz-plane for the incidence angle θ0 = 0◦, and the comparison between
the results obtained from the analytical approach implemented in Matlab (a) and CST (b).

The method was then validated by changing the geometry of the spheroidal scatterer.
In fact, two different cases were considered. In the first case, shown in Figure 8, we
considered a spheroid with the following parameters: ξ0 = 1.01 and kd = 20 (corresponding
to ka = 10.1, kb = 1.4177 and c = 10). In this case the truncation order was chosen as
mt = 14 and the G matrix size was 224× 224. It is worth noting that this limiting case
could be compared with the case of a 2-D cylindrical geometry scatterer. The comparison
between the electric field map across the xy plane in the case of spheroidal geometry of
Figure 8 (θ0 = 90◦) and that in the case of 2-D cylindrical geometry, obtained with CST, is
presented in Figure 9.
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Figure 6. Amplitude of the elements of the 120× 120 matrix G for the case with θ = 60◦, ka = 5.5,
kb = 2.29, c = 5, ξ0 = 1.1, d = 10, mt = 10. All elements with zero value are represented in white.

Figure 7. Magnitude of the E-field across the xz-plane for the case of axial incidence (θ0 = 0◦), for the
same geometry considered in Figure 2, obtained through the analytical approach in Matlab (a) and
through CST Microwave Studio (b). TE polarization.
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Figure 8. Real and imaginary parts of Ey along the x-axis and comparison with the results obtained
through CST Microwave Studio (a); magnitude of the E-field across the xz-plane (b). Used parameters
were as follows: θ0 = 30◦, ka = 10.1, kb = 1.4177, c = 10, ξ0 = 1.01, d = 20, mt = 14. TE polarization.

Figure 9. Magnitude of the E-field across the xy-plane: (a) spheroidal geometry with the same
geometrical parameters considered in Figure 8 (analytical approach); (b) cylindrical geometry (2-D)
(CST Microwave Studio). Cylinder radius was kr = 1.4177. TE polarization.

The second limiting case is shown in Figure 10 where a spheroid with parameters
ξ0 = 2, kd = 2, ka = 2, kb = 1.7321 is considered. In this case the truncation order was
mt = 6 and the G size was 48× 48. Since the values of interfocal distance kd and c were very
small, the spheroid could be approximated by a sphere, the geometry of which represented
a limiting case. In fact, in this case, the spheroidal angular and radial functions reduced
to spherical Legendre and Bessel functions. The comparison with the case of spherical
geometry, obtained with CST, is shown in Figure 11 (θ0 = 90◦).
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Figure 10. Real and imaginary parts of Ey along the x-axis and comparison with the results obtained
through CST Microwave Studio (a); magnitude of the E-field across the xz-plane (b). Used parameters
were as follows: θ0 = 30◦, ka = 2, kb = 1.7321, c = 1, ξ0 = 2, d = 2, mt = 6. TE polarization.

Figure 11. Magnitude of the E-field across the xy-plane: (a) spheroidal geometry with the same
geometrical parameters considered in Figure 10 (analytical approach); (b) spherical geometry (2-D)
(CST Microwave Studio). Sphere radius was kr = 1.7321. TE polarization.

3.2. TM Polarization

Here we consider the case of TM polarization. In this case the magnetic incident
field is perpendicular to the incidence plane. Figure 12 shows the field maps across
the xz-plane of the electric field. Figure 12a–c show the magnitude of the electric field
components |Ex|,

∣∣Ey
∣∣, |Ez|, respectively. Figure 12d shows the magnitude of the electric

field |E|. The geometry of the scatterer is the same in Figure 2. The real and imaginary
parts, obtained in both Matlab and CST, of the x- and z-component of the electric field are
shown in Figures 13 and 14, respectively.
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Figure 12. Field maps across the xz-plane for the case of TM polarization for the same case as in Fig-
ure 2, the magnitude of the electric field components |Ex|,

∣∣Ey
∣∣, |Ez| are shown in (a–c), respectively.

The magnitude of the electric field |Ex| is shown in (d).

Figure 13. Real and imaginary parts of Ex: comparison between the analytical approach implemented
in Matlab and CST Microwave Studio, for the geometry of Figure 2. TM polarization.
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Figure 14. Real and imaginary parts of Ez: comparison between the analytical approach implemented
in Matlab and CST Microwave Studio, for the geometry of Figure 2. TM polarization.

4. Conclusions

In this paper, we have presented a fast and ad hoc Matlab efficient numerical imple-
mentation of the theory of electromagnetic scattering of a plane wave by a conducting
ellipsoid of revolution, also known as a spheroid. Numerical results, both for TE and
TM polarization and for several propagation directions of the incident wave, have been
validated by comparison with the commercial electromagnetic simulator CST Microwave
Studio, showing an excellent agreement. To the authors’ knowledge, this is the first time
that the libraries used in this work have been used to solve electromagnetic scattering
vectorial problems. Truncation criteria were carefully considered. This method, being
exact and fast, will allow the development of new analytical techniques that are capable of
considering even the presence of a flat interface in the proximity of the spheroidal scatterer,
e.g., for applications concerning ground penetrating radar or through-the-wall radar mod-
elling. To this aim, field expansions of spheroidal vector wave functions in terms of plane
wave will be considered in future works.
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and G.S.; methodology, L.T., C.P., M.S. and G.S.; validation, L.T., C.P., M.S. and G.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been partly founded by the Italian Ministry for Education, University,
and Research under the project PRIN2017 “Quick, reliable, cost effective methodology for DIagnostics
of Conformal Antennas (DI-CA)” grant number 20177C3WRM003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 1761 13 of 14

References
1. Daniels, D.J. Surface Penetrating Radar, 2nd ed.; IEEE: London, UK, 2004.
2. Amin, M.G. Through-the-Wall Radar Imaging; CRC Press: New York, NY, USA, 2011.
3. Fiaz, M.A.; Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G. Asymptotic solution for a scattered field by cylindrical objects buried

beneath a slightly rough surface. Near Surf. Geophys. 2013, 11, 177–184. [CrossRef]
4. Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G. Through-wall electromagnetic scattering by N conducting cylinders. J. Opt. Soc.

Am. A 2013, 30, 1632–1639. [CrossRef] [PubMed]
5. Borghi, R.; Santarsiero, M.; Frezza, F.; Schettini, G. Plane-wave scattering by a dielectric circular cylinder parallel to a general

reflecting flat surface. J. Opt. Soc. Am. A 1997, 14, 1500–1504. [CrossRef]
6. Ponti, C.; Vellucci, S. Scattering by conducting cylinders below a dielectric layer with a fast non-iterative approach. IEEE Trans.

Microw. Theory Tech. 2015, 63, 30–39. [CrossRef]
7. Ponti, C.; Tognolatti, L.; Schettini, G. Electromagnetic scattering by metallic targets above a biological medium with a spectral-

domain approach. IEEE Open J. Antennas Propag. 2021, 2, 3230–3237. [CrossRef]
8. Tognolatti, L.; Ponti, C.; Schettini, G. Use of a set of wearable dielectric scatterers to improve electromagnetic transmission for a

body power transfer system. IEEE J. Electromagn. Rf Microwaves Med. Biol. 2021, in early access. 2021.3131286. [CrossRef]
9. Hansen, W.W. A new type of expansion in radiation problems. Phys. Rev. 1935, 47, 139–143. [CrossRef]
10. Hansen, W.W. Directional characteristics of any antenna over a plane earth. J. Appl. Phys. 1936, 7, 460–465. 10.1063/1.1745357.

[CrossRef]
11. Hansen, W.W. Trasformations useful in certain antenna calculations. J. Appl. Phys. 1937, 8, 282–286. [CrossRef]
12. Negishi, T.; Erricolo, D.; Uslenghi, P. Metamaterial spheroidal cavity to enhance dipole radiation. IEEE Trans. Antennas Propag.

2015, 63, 2802–2807. [CrossRef]
13. Negishi, T.; Erricolo, D. Symmetry properties of spheroidal functions with respect to their parameter. IEEE Trans. Antennas Propag.

2017, 65, 4947–4951. [CrossRef]
14. Erricolo, D.; Uslenghi, P. Exact radiation for dipoles on metallic spheroids at the interface between isorefractive half-spaces. IEEE

Trans. Antennas Propag. 2005, 53, 3974–3981. [CrossRef]
15. Borrelli, F.; Capozzoli, A.; Curcio, C.; Liseno, A. Numerical results for antenna characterization in a cylindrical scanning

geometry using a spheroidal modelling. In Proceedings of the 2021 IEEE International Conference on Microwaves, Antennas,
Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 1–3 November 2021; pp. 230–233. [CrossRef]

16. Borrelli, F.; Capozzoli, A.; Curcio, C.; Liseno, A. A NFFF approach using spheroidal wave functions in a cylindrical scanning
geometry. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio
Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 887–888. [CrossRef]

17. Li, L.-W.; Yeo, T.-S.; Kooi, P.-S.; Leong, M.-S. Microwave Specific Attenuation By Oblate Spheroidal Raindrops: An Exact Analysis of
Tcs’s in Terms of Spheroidal Wave Functions. J. Electromagn. Waves Appl. 1998, 12, 709–711. [CrossRef]

18. Li, L.-W.; Kang, X.-K.; Leong, M.-S. Spheroidal Wave Functions in Electromagnetic Theory; John Wiley & Sons: Hoboken, NJ, USA,
2004; Volume 166.

19. Stratton, J.A. Electromagnetic Theory; McGraw-Hill: New York, NY, USA, 1941.
20. Flammer, C. Spheroidal Wave Functions; Stanford University Press: Stanford, CA, USA, 1957; p.220.
21. Moffatt, D.L.; Kennaugh, E.M. The axial echo area of a perfectly conducting prolate spheroid. IEEE Trans. Antennas Propag. 1965,

AP-13, 401–409. [CrossRef]
22. Moffatt, D.L. The echo area of a perfectly conducting prolate spheroid. IEEE Trans. Antennas Propag. 1969, AP-17, 299–307.

[CrossRef]
23. Asano, S.; Yamamoto, G. Light scattering by a spheroidal particle. Appl. Opt. 1975, 14, 29–49. [CrossRef]
24. Dalmas, J.; Deleuil, R. Multiple scattering of electromagnetic waves from two infinitely conducting prolate spheroids which are

centered in a plane perpendicular to their axes of revolution. Radio Sci. 1985, 20, 575–581. [CrossRef]
25. Dalmas, J.; Deleuil, R. Translational addition theorems for prolate spheroidal vector wavefunctions M’ and N’. Q. Appl. Math.

1986, 44, 213–222. [CrossRef]
26. Merchant, B.L.; Moser, P.J.; Nagl, A.; Uberall, H. Complex pole patterns of the scattering amplitude for conducting spheroids and

finite lenght cylinders. IEEE Trans. Antennas Propag. 1988, AP-36, 1769–1777. [CrossRef]
27. Jen, L. A dipole antenna embedded in a prolate dielectric spheroid. Sci. Sin. 1962, 11, 173–184. [CrossRef]
28. Schultz, F.V. Scattering by a Prolate Spheroid; Rep. VMM-42; Willow Run Research Center (University of Michigan): Ann Arbor, MI,

USA, 1953.
29. Reitlinger, N. Scattering of a Plane Wave Incident on a Prolate Spheroid at an Arbitrary Angle; Memo. No. 2868-506-M; Radiation

Laboratory (University of Michigan): Ann Arbor, MI, USA, 1957.
30. Sinha, B.P.; MacPhie, R.H. Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle

of incidence. Radio Sci. 1977, 12, 171–184. [CrossRef]

http://doi.org/10.3997/1873-0604.2012021
http://dx.doi.org/10.1364/JOSAA.30.001632
http://www.ncbi.nlm.nih.gov/pubmed/24323223
http://dx.doi.org/10.1364/JOSAA.14.001500
http://dx.doi.org/10.1109/TMTT.2014.2376553
http://dx.doi.org/10.1109/OJAP.2021.3057138
http://dx.doi.org/10.1109/JERM.2021.3131286
http://dx.doi.org/10.1103/PhysRev.47.139
http://dx.doi.org/10.1063/1.1745357
http://dx.doi.org/10.1063/1.1710293
http://dx.doi.org/10.1109/TAP.2015.2416755
http://dx.doi.org/10.1109/TAP.2017.2724643
http://dx.doi.org/10.1109/TAP.2005.859920
http://dx.doi.org/10.1109/COMCAS52219.2021.9629098
http://dx.doi.org/10.1109/APS/URSI47566.2021.9703838
http://dx.doi.org/10.1163/156939398X00962
http://dx.doi.org/10.1109/TAP.1965.1138438
http://dx.doi.org/10.1109/TAP.1969.1139419
http://dx.doi.org/10.1364/AO.14.000029
http://dx.doi.org/10.1029/RS020i003p00575
http://dx.doi.org/10.1090/qam/856176
http://dx.doi.org/10.1109/8.14399
http://dx.doi.org/10.7498/aps.17.23
http://dx.doi.org/10.1029/RS012i002p00171


Mathematics 2022, 10, 1761 14 of 14

31. Adelman, R.; Gumerov, N.A.; Duraiswami, R. Software for computing the spheroidal wave functions using arbitrary precision
arithmetic. arXiv 2014, arXiv:1408.0074.

32. Fousse, L.; Hanrot, G.; Lefevre, V.; Pellissier, P.; Zimmermann, P. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 2007, 33, 13. [CrossRef]

http://dx.doi.org/10.1145/1236463.1236468

	Introduction
	Theoretical Analysis
	Numerical Results and Discussion
	TE Polarization
	TM Polarization

	Conclusions
	References

