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1 Institute of Mathematics, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia;
michal.feckan@fmph.uniba.sk

2 Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská Dolina,
842 48 Bratislava, Slovakia

* Correspondence: dilna@mat.savba.sk
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1. Introduction

The theory of fractional functional differential equations (FFDEs) is applied in the
modeling of most natural processes. From the point of view of physics, especially of
mechanics, the models established by using a fractional differential operator (cap-resistor)
were analyzed in [1]. We would also like to highlight [2], where the authors made a complex
overview of possible applications of FDEs.

The multiplicity of investigations in the theory of FFDEs covers the variable aspects
of the theory of boundary value problems. To investigate the boundary value problem
for nonlinear FFDEs (see, for example, [3]), very often, one needs to use the qualitative
results for the initial value problem for the linear FFDEs. The main goal of our investigation
is to construct the exact conditions sufficient for the unique solvability of linear FFDEs.
For establishing these conditions, we use the method of test elements intended for the
estimation of the spectral radius of the linear operator. There are many recent results
for the Cauchy problem for fractional differential equations (see [2,4–12]) and functional
differential equations [13–15]). The authors in [4] investigated the existence and uniqueness
of symmetric solutions for fractional differential equations with multi-order fractional
integral boundary conditions using fixed-point theorems; the aim of the paper [7] was to
propose a new operator named the infinite coefficient-symmetric Caputo–Fabrizio fractional
derivative and to study some its properties; the authors investigated the symmetry analysis
of the initial and boundary value problem for fractional diffusion and the third order
fractional partial differential equation in [10]; by using Banach fixed point theorem in [11]
the authors established the existence and uniqueness of the solutions for fractional order
functional differential equations involving the Hilfer fractional derivative in the weighted
spaces; existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville-type
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fractional integro-differential boundary value problem with multi-point sub-strip boundary
conditions, via Banach and Krasnosel’skii’s fixed point theorems were established in [16].
Unlike the general results from [4,7,10,11,16] we obtain here more exact conditions on
unique solvability. We use the method characterized by the fact that it allows one to
estimate the spectral radius of a linear operator based on knowledge of the value of the
operator on a single, suitably chosen element of a space.

We apply the obtained theoretical results for the pantograph-type model from electro-
dynamics (see Section 6). Another application is an example for a model with a discrete
memory effect. We assume that the obtained results can be applied, for example, in the
model of the Stieltjes string described in [3,17].

We consider FFDE

Dq
au(t) = (lu)(t) + r(t), t ∈ [a, b], (1)

with initial value problem

u(a) = c, (2)

where Dq
a is the Caputo fractional derivative of order q ∈ (0, 1) with the lower limit zero,

operator l = (lk)n
k=1 : C([a, b],Rn) → L([a, b],Rn) is the bounded linear operator, and

function r belongs to the L([a, b],Rn).
The main goal of our investigations is to establish the exact conditions sufficient

for the unique solvability of the initial value problem (2) for systems of linear fractional
functional differential Equation (1) presented by positive operators. For this aim, we use
the method of test elements studied for the estimation of the spectral radius of a linear
operator based on knowledge of the value of the operator on a single, suitably chosen,
element of the space. Moreover, the unique solution is presented in view of the Neumann’s
series. The pantograph-type model from electrodynamics is investigated.

The paper is constructed in the following way: we give the notations and all necessary
definitions in Section 2. Next, we give all auxiliary statements in Section 3. The main
result can be found in Section 4, where it is also presented the unique solution in view
of the Neumann’s series. The proof of this result is in Section 4.1. The corollary is in
Section 4.2. The example that proves the optimality of the condition is in Section 5. All
theoretical investigations are shown in the example for the pantograph-type model from
electrodynamics in Section 6. The summary of the investigation can be found in Section 7.

2. Notations and Definitions

We use the following notation:

• q ∈ (0; 1) is an order of the Caputo fractional derivative Dq
a ;

• R := (−∞, ∞), R+ := [0, ∞);
• If u = (ui)

n
i=1 ∈ Rn, then

|u|∞ = max
1≤i≤n

|ui|; (3)

• C([a, b],Rn) is the Banach space of continuous functions [a, b]→ Rn with the norm

C([a, b],Rn) 3 u→ max
s∈[a,b]

|u(s)|∞ = max
s∈[a,b]

ess sup |u(s)|; (4)
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• For fixed {σ1, σ2, . . . , σn} ⊂ {−1, 1}

~σ :=



σ1
σ2
·
·
·

σn


we set

Rn
+ := σ1R+ × σ2R+ × · · · × σnR+.

The set Rn
~σ thus defined is obviously a closed solid cone in Rn;

• C([a, b],Rn
~σ) is the set of all functions u from the space C([a, b],Rn) that take values in

the cone Rn
~σ;

• Ca([a, b],Rn
~σ) is the set of all functions u from the space C([a, b],Rn) that satisfy

condition (2) and take values in the cone Rn
~σ;

• B([a, b],Rn) is the Banach space of all bounded functions from [a, b] to Rn equipped
with norm

B([a, b],Rn) 3 u→ sup
s∈[a,b]

|u(s)|∞;

• L([a, b],Rn) is the Banach space of summable vector functions [a, b] → Rn with
the norm

L([a, b],Rn) 3 u→
∫ b

a
|u(s)|∞ds;

• ρ(Ψ) is the spectral radius of a bounded linear operator Ψ.

Definition 1. By a solution of the linear boundary-value problems (1) and (2), we understand
continuous vector function u : [a, b]→ Rn possessing property (2) and satisfying relation (1) for
almost all t from the interval [a, b].

Definition 2 ([8]). For a function u given on the interval [a, b] the Caputo derivative of fractional
order q is defined by

Dq
au(t) =

1
Γ(1− q)

( d
dt

) ∫ t

a
(t− s)−q(u(s)− u(a)

)
ds, 0 < q < 1,

where Γ(q) : [0, ∞)→ R is a Gamma function and

Γ(q) :=
∫ ∞

0
tq−1e−tdt. (5)

Remark 1. For an, at least, n-times differentiable function u given on the interval [a, b], the Caputo
derivative of fractional order q, n− 1 < q < n, n = [q] + 1 and [q] denotes the integer part of the
real number q defined as

Dq
au(t) =

1
Γ(n− q)

∫ t

a
(t− s)n−q−1u(n)(s)ds.

Remark 2 ([2]). The Caputo derivative of order q for a function u : [a, b]→ R (we mean Dq
au(t))

can be written as
Dq

au(t) = LDq
a

(
u(t)− (t− a)−qu(a)

)
,

and it is known, see [2], that the Riemann–Liouville fractional derivative LDq
a of order q for a

function u : [a, b]→ R does not depend on the initial conditions.
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Definition 3. For a certain given {σ1, σ2, . . . , σn} ⊂ {−1, 1} an operator l : C([a, b], Rn)
→ L([a, b],Rn) is a~σ-positive operator if the fact that, for all t ∈ [a, b], the relation

σνuν(t) ≥ 0, ν = 1, 2, . . . , n (6)

is true implies that
σν(lνu)(t) ≥ 0, ν = 1, 2, . . . , n

for almost every t from [a, b].

Remark 3. The inequality sign between vectors and matrices and the other relations is understood
component-wise.

Remark 4. If σν ≡ 1, ν = 1, 2, . . . , n, then we have a positive operator in the usual sense.

Definition 4. We say that a functional g : Y → Rn, where Y denotes one of the spaces
Ca([a, b],Rn), C([a, b],Rn), and B([a, b],Rn),~σ-positive functional if the fact that conditions (6)
are satisfied for all components (uk)

n
k=1 of a vector function, u ∈ Y always yields

g(u) ≥ 0.

Definition 5. An element u of a cone K ⊂ Y in a Banach space Y is called a quasi-interior element
if, for arbitrary g ∈ K∗ \ {0}, the strict inequality g(u) > 0 is satisfied. The symbol K∗ here stands
for the set of all functionals g from Y∗ that take non-negative values on the elements of the cone K.

Definition 6. A cone K ⊂ Y of a Banach space Y is called a minihedral cone if a single-valued
mapping sup : Y × Y → Y is well defined such that, for arbitrary {u1, u2, y} ⊂ Y, we have
sup{u1, u2} − u1 ∈ K and sup{u1, u2} − u2 ∈ K and, moreover, it always follows from the
relations y− u1 ∈ K and y− u2 ∈ K that y− sup{u1, u2} ∈ K.

In other words, K is a minihedral if, in the partial ordering generated by this cone in the space
Y, every finite set has the least upper bound.

3. Auxiliary Statements

Lemma 1 ([2] Lemma 2.21). Let 0 < q < 1 and let u(t) ∈ L([a, b],Rn) or u(t) ∈ C([a, b],Rn),
then

Dq
a Iq

a u(t) = u(t)

and
Dq

b Iq
b u(t) = u(t),

where

Iq
a u(t) =

1
Γ(q)

∫ t

a
(t− s)q−1u(s)ds, x > a, (7)

Iq
b u(t) =

1
Γ(q)

∫ b

t
(t− s)q−1u(s)ds, x < b (8)

and Γ-function is defined by (5).

Lemma 2 ([2] Lemma 2.22). Let 0 < q < 1. If u(t) ∈ C([a, b],Rn), or u(t) ∈ D([a, b],Rn)
then

Iq
a Dq

au(t) = u(t)− u(a)

and
Iq
b Dq

bu(t) = u(t)− u(b),

where Iq
a and Iq

b are defined by (7) and (8) correspondingly.
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For the following investigation, we use the well-known result from the general theory
of boundary value problems for the functional differential equation.

Lemma 3. The nonhomogeneous problem (2) for linear FFDE (1) is uniquely solvable if the
corresponding homogeneous problem

u(a) = 0 (9)

for linear FFDE
Dq

au(t) = (lu)(t), t ∈ [a, b], (10)

only has a trivial solution.

In view of Definition 1, Lemmas 1 and 2 and relation (5) the next obvious Lemma is true.

Lemma 4. The problems (1) and (2) are equivalent to the equation

u(t) = u(t0) +
1

Γ(q)

∫ t

t0

(t− s)q−1(lu)(s)ds +
1

Γ(q)

∫ t

t0

(t− s)q−1r(s)ds, t ∈ [a, b].

For establishing the unique solvability conditions for problems (1) and (2), we need
the method of the test elements used for the estimation of the spectral radius of a linear
operator (see M. Krein [18]). This method is characterized by the fact that, in many cases, it
allows one to estimate the spectral radius of a linear operator based on knowledge of the
value of the operator on a single, suitably chosen, element of a space.

For the present paper, the following statements are sufficient.

Theorem 1 ([19] Theorem 5.5). Let Y be a Banach space and let Ψ be a completely continuous
linear operator on Y, leaving invariant a certain total cone K ⊂ Y, i.e., Ψ(K) ⊂ K. Suppose that
there exists a quasi-interior element z of the cone K such that, for certain positive constant β and
integer p, the following relation is true:

βz−Ψpz ∈ K. (11)

Then the spectral radius r(Ψ) of the operator Ψ admits the estimate

ρ(Ψ) ≤ β
1
p . (12)

We will need the next statement.

Lemma 5. The set Ca([a, b],Rn
~σ) creates a reproducing minihedral cone (see Definition 6) in the

Banach space Ca([a, b],Rn).

Proof. It is easy to see from the definition of the set Ca([a, b],Rn
~σ) (see Notations and

Definitions), that set Ca([a, b],Rn
~σ) forms nontrivial closed cones in Ca([a, b],Rn).

The least upper bound v = sup{ũ, ˜̃u} of the elements {ũ, ˜̃u} ⊂ Ca([a, b],Rn) is repre-
sented by the formula

vk =

{
max{ũk(t), ˜̃uk(t)}, if σk = 1, t ∈ [a, b], k = 1, 2, . . . , n,
min{ũk(t), ˜̃uk(t)}, if σk = −1, t ∈ [a, b], k = 1, 2, . . . , n

in the partial ordering generated by Ca([a, b],Rn
~σ) in Ca([a, b],Rn). Therefore, the cone

Ca([a, b],Rn
~σ) is minihedral and reproducing. Lemma 5 is proved.

We recall the next well-known lemma.
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Lemma 6. An arbitrary bounded linear functional g on the space Ca([a, b],Rn) is represented as

Ca([a, b],Rn) 3 u = (uk)
n
k=1 7−→ g(u(t)) :=

n

∑
k=1

∫ b

a
uk(t)dhk(t), (13)

for every k = 1, 2, . . . , n, and some functions hk : [a, b]→ R with bounded variations on [a, b] and
continuous at t0.

The same formula (13) allows one to define a bounded functional g̃ coinciding with the natural
linear norm-preserving extension of g to C([a, b],Rn). If, in addition, the original functional g is
~σ-positive (see Definition 4), then g̃ is also~σ-positive.

Lemmas 5 and 6 yield the following statement:

Lemma 7. A continuous linear functional g of the form (13), where the scalar functions
{hk|k = 1, 2, . . . , n} are such that σkhk is non-decreasing for any k = 1, 2, . . . , n, is~σ-positive and,
vice versa, every~σ-positive bounded linear functional on the space C([a, b], Rn) can be represented
in the form (13) for every k = 1, 2, . . . , n, the function σkhk : [a, b]→ R is continuous at the point
a and non-decreasing on [a, b].

Let us fix arbitrary y0 ∈ Ca([a, b],Rn) and introduce the sequence of functions

yk(t) :=
1

Γ(q)

∫ t

a
(t− s)q−1(lyk−1)(s)ds, t ∈ [a, b], k = 1, 2, . . . . (14)

with property

σkyk(t) > 0, t ∈ (a, b], (15)

yk(a) = 0. (16)

The following inclusion is then satisfied obviously:

{yk ≥ 0} ⊂ Ca([a, b],Rn). (17)

The next lemma is applied in the sequel.

Lemma 8. If all components of an arbitrary continuous vector function (yν)n
ν=1 : [a, b] → Rn

satisfy conditions (15), (16), then yν(t) is a quasi-interior element of the cone Ca([a, b],Rn
~σ) in the

space Ca([a, b],Rn).

Proof of Lemma 8. Suppose that the components (yν)n
ν=1 of a continuous vector function

y = (yν)n
ν=1 : [a, b] → Rn satisfy conditions (15), (16). Consider an arbitrary nontrivial

bounded linear~σ-positive functional g : Ca([a, b],Rn)→ Rn. In view of Lemmas 6 and 7,
every functional of this type can be given by (13), where the functions hν, ν = 1, 2, . . . , n,
are continuous at point a, and the corresponding functions σνhν, ν = 1, 2, . . . , n, are non-
decreasing. By assumption, g 6= 0, and, therefore, for a certain ν0 ∈ {1, 2, . . . , n}, the linear
functional

Ca([a, b],R) 3 y 7−→ κ(y(t)) :=
∫ b

a
y(t)dhν0(t) (18)

is not identically equal to zero. In particular, the function hν0 satisfies the condition

σν0

(
hν0(b)− hν0(a)

)
> 0. (19)

Indeed, if
hν0(b) = hν0(a),



Mathematics 2022, 10, 1759 7 of 15

then the inequality

σν0

(
hν0(s2)− hν0(s1)

)
≥ 0,

which is satisfied for all {s1, s2} ⊂ [a, b], s1 < s2, and means that the function σν0 hν0

is non-decreasing, implies that the function hν0 is constant, and, hence, functional (18)
is trivial.

Let us fix a sufficiently small positive δ and consider the value of functional (18) on
the function yν0 . This functional is~σν0 -positive (see Definition 4), whereas the function yν0

satisfies the condition (15) with ν = ν0. Therefore,∫ a+δ

a
yν0(t)dhν0(t) ≥ 0

and, hence,

κ
(
yν0(t)

)
=
∫ a+δ

a
yν0(t)dhν0(t) +

∫ b

a+δ
yν0(t)dhν0(t) ≥

∫
[a+δ,b]

yν0(t)dhν0(t). (20)

We chose certain partitions

a + δ =: t̃0 < t̃1 < t̃2 < . . . t̃m−1 < t̃m := b

of the intervals [a + δ, b]. Now we represent the integral on the right-hand side of (20) by
the limit of the corresponding integral sums. Then relation (20) ensures the inequality

m−1

∑
i=0

yν0(ζ̃i)
[
hν0(t̃i+1)− hν0(t̃i)

]
≤ κ

(
yν0(t)

)
(21)

which is fulfilled for arbitrary fixed points ζ̃i from the intervals (t̃i, t̃i+1], whenever the
values max1≤i≤m−1[t̃i+1 − t̃i] are sufficiently small.

It is obvious from (15), (16) that, for positive δ, the number

µδ := min
t∈[a+δ,b]

σν0 yν0(t)

is positive. Taking into account (15) and the non-decreasing σν0 hν0 we have that

σν0 yν0(ζ̃i) > 0,

and
σν0 yν0

(
hν0(t̃i+1)− hν0(t̃i)

)
≥ 0,

which are valid for all i = 0, 1, . . . , m− 1, and relation (21) yields

µδσν0

m−1

∑
i=1

(
hν0(t̃i+1)− hν0(t̃i)

)
≤ κ(yν0(t)),

i.e.,
σν0

(
hν0(b)− hν0(a + δ)

)
µδ ≤ κ(yν0(t)). (22)

The condition (16) and Lemmas 6 and 7 require that the Stieltjes function hν0 can be
assumed to be continuous at the point a. By virtue of inequality (19), such a choice of hν0

guarantees that

σν0

(
hν0(b)− hν0(a)−

(
hν0(t0 + δ)− hν0(a)

))
> 0 (23)

whenever δ is sufficiently small. Taking into account the positivity of the value µδ, it follows
from relations (22) and (23) that, for sufficiently small positive δ, the number κ

(
yν0(t)

)
is
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also positive. The linear functional g under consideration is given by formula (13) (see
Lemma 6), in view of (18) we obtain

g(y(t)) > 0. (24)

Thus, we have shown that if the components of the function y satisfy condition (15), (16),
then, for an arbitrary ~σ-positive functional g : Ca([a, b],Rn) → Rn, inequality (24) is
fulfilled. Then in view of Definition 5 this means that y is a quasi-interior element of the
cone Ca([a, b],Rn

~σ). Lemma 8 is proved.

4. Main Result

We are ready to prove our main achievements.

Theorem 2. Assume that the linear operator l = (lk)n
k=1 is~σ-positive. Suppose that there exist

a number α > 1, a function y0 ∈ Ca([a, b],Rn), and a certain integer k ≥ 0 such that the
components of the function (yk,ν)

n
ν=1 of the respective function yk are continuous and satisfy

conditions (15) and (16).
Additionally, there are fulfilled the succeeding differential inequalities

σν

(
Dq

ayk,ν(t)− α(lνyk+m)(t)
)
≥ 0 (25)

for a certain m ≥ 0, all ν = 1, 2, . . . , n, and almost all t ∈ [a, b].
Then the nonhomogeneous non-local boundary-value problem (2) for FFDE (1) has a unique

solution u(·) for arbitrary c ∈ Rn and r ∈ L([a, b],Rn), and this solution is representable in
the form

u(t) = rc(t) + 1
Γ(q)

∫ t
a (t− s)q−1(lrc)(s)ds+

+ 1
Γ(q)

∫ t
a (t− ·)

q−1l
(

1
Γ(q)

∫ ·
a (t− s)q−1(lrc)(ξ)dξ

)
(s)ds + . . . ,

(26)

where the functional series converges uniformly on [a, b] and

rc(t) := c +
1

Γ(q)

∫ t

a
(t− s)q−1r(s)ds, t ∈ [a, b]. (27)

If, furthermore, for all ν = 1, 2, . . . , n and t ∈ [a, b], the inequalities

σν

(
cν +

1
Γ(q)

∫ t

a
(t− s)q−1rν(s)ds

)
≥ 0 (28)

are true, then the components (uν)n
ν=1 of the unique solution u(·) of the initial value problem (2)

for FFDE (1) satisfy the conditions (6).
The homogeneous initial value problem (9) for FFDE (10) has only a trivial solution.

4.1. Proof

Proof of Theorem 2. Let us put

Ca([a, b],Rn) 3 u 7−→ Ia,lu :=
1

Γ(q)

∫ ·
a
(t− s)q−1(lu)(s)ds. (29)

It is known from [20,21] that Ia,l defined by (29) is a linear operator that transforms
the space Ca([a, b],Rn) into itself. The operator is completely continuous (see Theorem 1.8
from [2]).

Now we establish that the spectrum of operator Ia,l contains in the α−m−1-neighborhood
of zero under the assumed conditions, or in other words, ρ(Ia,l) < α−m−1, where α > 1
(under the suppositions of the Theorem).
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The~σ-positivity of the operator l (see Definition 3) guarantees that the corresponding
operator Ia,l : Ca([a, b],Rn

~σ) → Ca([a, b],Rn
~σ). In view of Lemma 5, the mentioned set is

a cone in the Banach space Ca([a, b],Rn). The function yk, involved in Theorem 2, is a
quasi-interior element of the cone Ca([a, b],Rn

~σ) (this fact is proved in Lemma 8). The
condition (26) for the function yk and the corresponding function ym+k ensure the trueness
of the following relations:

σν

(
Dq

ayk,ν(t)− α(lνym+k)(t)
)
≥ 0, s ∈ [a, b], 1 ≤ ν ≤ n. (30)

After integrating both parts of relations (30) from t0 to some arbitrary t ∈ [a, b] and by
considering (17), (29) and Lemma 2, we obtain

σν

(
yk,ν(s)−

α

Γ(q)

∫ t

a
(t− s)q−1(lνym+k)(s)ds

)
≥ 0, t ∈ [a, b], 1 ≤ ν ≤ n.

Examination of the relation (14) of the sequence {yk ≥ 0} and the relation (29) of
the operator Ia,l , allows to conclude that the recent system of inequalities yields the
following inclusion:

α−1yk − Im+1
a,l yk ∈ Ca([a, b],Rn

~σ), t ∈ [a, b]. (31)

Thus, one can apply Theorem 1 with

Y = Ca([a, b],Rn), K = Ca([a, b],Rn
~σ), and p = m + 1

to the operator Ψ = Ia,l (see the relation (29)). Given (31), the conditions (11), (12) of
Theorem 2 are satisfied for the element z = yk with constant β = α−1. Theorem 1 allows
one to claim that the spectral radius ρ(Ia,l) of the operator Ia,l in the space Ca([a, b],Rn)
satisfies the inequality

ρ(Ia,l) ≤
1

αm+1 . (32)

Consequently, it is strictly smaller than one (the inequality α > 1 is supposed in
the theorem).

Now we repeat the well-known Neumann’s theorem.

Theorem 3 (Theorem 2, p. 69 [22]). Let Ia,l be a bounded linear operator on Ca([a, b],Rn).
Suppose that ‖Ia,l‖ < 1. Then 1− Ia,l has a unique bounded linear inverse (1− Ia,l)

−1 which is
given by Neumann’s series

(1− Ia,l)
−1y0 = lim

n→∞
(1 + Ia,l + I2

a,l + . . . + In
a,l)y0, y0 ∈ Ca([a, b],Rn),

where 1 is the identity operator: 1 · y0 = y0.

So, the inequality (32) ensures the uniform convergence on interval [a, b] of the series

u0 = r0 + Ia,lr0 + I2
a,lr0 + . . . (33)

to the unique solution u0 of the equation

u0(t) =
1

Γ(q)

∫ t

a
(t− s)q−1

(
(lu0)(s) + r(s)

)
ds, t ∈ [a, b], (34)

or, respectively (see Lemma 4), to the unique solution of the Cauchy problem

Dq
au0(t) = (lu0)(t) + r(t), t ∈ [a, b], (35)

u0(t0) = 0. (36)
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The function r0 from (33) is given by (27), where c = 0:

r0(t) =
1

Γ(q)

∫ t

a
(t− s)q−1r(s)ds, t ∈ [a, b].

Note that the above statement concerning problems (35) and (36) is true for arbitrary r
from L([a, b],Rn) .

Consider now the nonhomogeneous initial value problems (1) and (2). If u is a solution
of problems (1) and (2), then the function

u0(t) := u(t)− c, t ∈ [a, b],

is obviously a solution of the equation

u0(t) =
1

Γ(q)

∫ t

a
(t− s)q−1(lu0)(s)ds +

1
Γ(q)

∫ t

a
(t− s)q−1

(
r(s) + (lc)(s)

)
ds, (37)

for t ∈ [a, b]. The equality (37) takes the form (34) if r on its right-hand side is replaced
by the function r − lc. This corresponds to an analogous transformation in the original
functional–differential equation (1). Subsequently, the sum of series (26) represents the
solution of problems (1) and (2). Thus, it was shown that the unique solution of the
nonlocal initial value problem (2) for FFDE (1) admits the representation (26). The last
theorem assertion follows from the definition of the operator (29). The invariance of the
set of functions u satisfying condition (6) is given by the problems (1) and (2) solution
representation by series (26) and by the~σ-positivity of the operator l, the corresponding
operator Ia,l . The condition (6) is guaranteeing by the fact that the function rc defined by
formula (27) is confirmed by inequality (28). The theorem is proved.

4.2. Corollary

It is easy to see that the following statement follows from Theorem 2.

Theorem 4. Let the linear operator l in (1) be~σ-positive. Also assume that there exist a number
α > 1 and an absolutely continuous function x = (xν)n

ν=1 : [a, b]→ Rn such that

xν(a) = 0, σνxν(t) > 0 for t ∈ (a, b], ν = 1, 2, . . . , n (38)

is true and, for almost all t from [a, b] and every ν = 1, 2, . . . , n, the following differential inequalities
are satisfied:

σν

(
Dq

a xν(t)− α(lνx)(t)
)
≥ 0. (39)

Then the non-local initial value problem (1), (2) has a unique solution u(·) for arbitrary
r ∈ L([a, b],Rn). Moreover, this solution is representable in the form of the uniformly convergent
series (26). If, furthermore, for all ν = 1, 2, . . . , n and t ∈ [a, b], relations (28) are true for the
vector c and function r in problems (1) and (2), then the fact that condition (38) is satisfied for a
certain solution of the differential inequality (39) implies that the components (uν)n

ν=1 of the unique
solution u(·) of problems (1) and (2) are nonnegative in the sense of (6).

Proof. Obviously, (39) is a particular case of the inequality (26) for k = 0, m = 0, and x0 = y0.
Obviously, the assertion of Theorem 4 is an immediate consequence of Theorem 2.

5. Optimality of the Exact Conditions on the Unique Solvability for IVP for FFDE

Condition (26) and, hence, condition (39) are unimprovable in the sense that, generally
speaking, neither condition can be assumed with α = 1. Let us consider the next example.
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Example 1. Consider the initial value problem (2) for the scalar linear FFDE

D
1
2
a u(t) =

3(t− a)u(β)

4Γ( 1
2 )(β− a)

3
2

, t ∈ [a, b], (40)

u(a) = 0, (41)

where β is a given point from (a, b], q = 1
2 , and Γ-function defined by (5).

We fix an arbitrary absolutely continuous function y0 : [a, b]→ R satisfying the conditions

y0(t) =
4

3Γ( 1
2 )

(t− a)
3
2 u(β)

and construct the corresponding functions y1, y2, . . . determined by formula (14), where the linear
operator l : Ca([a, b],R)→ L([a, b],R) is given by the relation

Ca([a, b], R) 3 u(·) 7−→ (lu)(·) :=
3(· − a)u(β)

4Γ( 1
2 )(β− a)

3
2

.

This operator is obviously σ-positive in the sense of Definition 3.
Now note that condition (39) is satisfied in the form of an equality with α = 1 for

u(t) = λ
4

3Γ( 1
2 )

(t− a)
3
2 , t ∈ [a, b], λ 6= 0, (42)

where λ is an arbitrary positive constant. Moreover, evidently, (42) is a nontrivial solution of the
initial value problems (40) and (41).

So, if α = 1 is admitted in (39), then the the assertion of Theorem 4 is not true, A similar
conclusion is also true for Theorem 2 because the latter contains Theorem 4 as a particular case.

6. Application

Let us consider a fractional functional differential equation

Dq
au(t) =

ti≤t

∑
i=1

fi(t)u(ωi(t)) + r(t), t ∈ [a, b], (43)

where a < t1 < t2 < · · · < tm < b are given, fi ∈ C([a, b], GLn(R)) and ωi ∈ C([a, b], [a, b]),
i = 1, . . . , m. Setting χi(t) in the Equation (43) as the characteristic function of the interval
[ti, b], we have

Dq
au(t) =

m

∑
i=1

χi(t) fi(t)u(ωi(t)) + r(t), t ∈ [a, b].

So, now we can study a general case

Dq
au(t) =

m

∑
i=1

Pi(t)u(ωi(t)) + r(t), t ∈ [a, b], (44)

where Pi, i = 0, 1, . . . , m, are defined by

Pi(t) :=


pi

11(t) pi
12(t) . . . pi

1n(t)
pi

21(t) pi
22(t) . . . pi

2n(t)
...

...
. . .

...
pi

n1(t) pi
n2(t) . . . pi

nn(t)

. (45)
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Next, taking ωi(t) = ti, i = 1, . . . , m, in (43), we obtain

Dq
au(t) =

ti≤t

∑
i=1

fi(t)u(ti) + r(t), t ∈ [a, b], (46)

which is a model with a discrete memory effect.
On the other hand, if Pi ∈ L([0, 1], GLn(R)), a = 0 and ωi(t) = λit for λi ∈ (0, 1)

in (44), we obtain

Dq
0u(t) =

m

∑
i=1

Pi(t)u(λit) + r(t), t ∈ [0, 1], (47)

which is a pantograph-type model. Pantograph equations arise in electrodynamics [23].
Now let us establish conditions sufficient for the unique solvability of the initial

value problem
u(0) = c (48)

for FFDE

D
1
2
0 u(t) =

m

∑
i=1

Pi(t)u(λit) + r(t), t ∈ [0, 1] (49)

where λi ∈ (0, 1), i = 0, 1, . . . , m are constants, function r : [0, 1] → Rn has summable
components, and c ∈ Rn, Pi : [0, 1]→ GLn(R) , i = 0, 1, . . . , m, are defined by (45).

Obviously, Equation (49) is Equation (47) with q = 1
2 .

Let us consider a function

x0(t) = ξt, ξ 6≡ 0, t ∈ [0, 1], (50)

where ξ ∈ Rn.

Theorem 5. Suppose that

ςPi(t)ς ≥ 0 for almost all t ∈ [0, 1], 1 ≤ i ≤ m, (51)

where Pi, i = 1, . . . , m are defined by (45),

ς :=


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

, (52)

and assume that there exist a real number α > 1 and for a vector ξ ∈ Rn such that

σνξν > 0, 1 ≤ ν ≤ n (53)

for almost all t from [0, 1], the following differential inequality is satisfied:

ς
(4ξ

(
t
) 3

2

3Γ( 1
2 )
− α

m

∑
i=1

Pi(t) ξλit
)
≥ 0. (54)

Then the initial value problem (49), (48) has a unique solution u(·) for arbitrary
r ∈ L([0, 1],Rn). Moreover, this solution is representable in the form of the uniformly conve-
rgent series

u(t) =
n

∑
k=0

r[k](t), t ∈ [0, 1], (55)
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where

r[k](t) =
1

Γ( 1
2 )

m

∑
i=1

∫ t

0
(t− s)−

1
2 Pi(s)r[k−1](λis)ds, t ∈ [0, 1]

and

r[0](t) = c +
1

Γ( 1
2 )

∫ t

0
(t− s)−

1
2 r(s)ds.

Moreover, if c and r satisfy condition (28), then the unique solution (55) of problems (49) and (48)
is non-negative in the sense of (6).

For proving Theorem 5, we need the next technical lemma.

Lemma 9. If each of the functions Pi : [0, 1]→ GLn(R), i = 1, 2, . . . , m satisfies inequality (51),
then, for any measurable functions λi ∈ (0, 1), i = 1, 2, . . . , m, the linear operator

C([0, 1],Rn) 3 u 7→ (lu)(·) :=
m

∑
i=1

Pi(·)u(λi·) (56)

is~σ-positive.

Proof of Lemma 9. Assume that all components of a vector function u from the space
C0([0, 1],Rn) satisfy condition (6). Since {σ1, σ2, . . . , σn} ⊂ {−1, 1}, relation (56) yields
the identity

ς(lu)(t) = ς
m

∑
i=1

Pi(t)u(λit) = ς
m

∑
i=1

Pi(t)ςςu(λit) (57)

for t ∈ [0, 1], ς defined by (52), Pi(t) defined by (45). By virtue of (6), we have ςu(t) ≥ 0 for
all t ∈ [0, 1]. Hence, taking assumption (51) into account and using (57), we conclude that,
for almost all t ∈ [0, 1], one has

ς
m

∑
i=1

Pi(t)u(λit) ≥ 0 for almost all t ∈ [0, 1],

i.e., the operator l given by relation (56) is~σ-positive.
Lemma 9 is proved.

Proof of Theorem 5. By virtue of Lemma 9, condition (51) guarantees the~σ-positivity of
operator (56), which defines (49). Inequality (39) is guaranteed by condition (54) if the
operator l : C0([0, 1],Rn) → L([0, 1],Rn) is defined by relation (56), and the function
x0 : [0, 1] → Rn is defined by the relation (50), where ξ is the vector appearing in the
condition of the theorem. In this case, according to (50), we have

D
1
2
0 x0(t) =

4ξ
(

t
) 3

2

3Γ( 1
2 )

.

By assumption, the vector ξ possesses property (53), and, hence, function (50) satisfies
conditions (38). Thus, using Theorem 4, we establish that, for all r ∈ L([0, 1],Rn) the initial
value problem (49), (48) has a unique solution u. Equality (55) obviously follows from (26).
Theorem 5 is proved.

7. Conclusions

Summarizing, we apply a functional–analytical approach for handling certain systems
of linear fractional functional differential equations. More concretely, here are established
exact conditions sufficient for the unique solvability of the initial-value problem for the
system of linear fractional functional differential equations determined by isotone operators.
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For the investigation, we use the method of the test elements intended for the estimation
of the spectral radius of a linear operator. This method is characterized by the fact that,
in many cases, it allows one to estimate the spectral radius of a linear operator based on
knowledge of the value of the operator on a single, suitably chosen element of a space.
The conditions established are unimprovable in a sense. Moreover, the unique solution
is presented in view of Neumann’s series. It is necessary to point out that the mentioned
method works only for~σ-monotone operators. We apply derived abstract results to the
pantograph-type model from electrodynamics.

A possible future work would be to study several coupled FFDEs with different
fractional derivatives. We also intend to extend the method of this paper to such kinds
of systems.
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