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1. Introduction

Let R stand for the real number field and

H = {u0 + u1i + u2j + u3k|i2 = j2 = k2 = ijk = −1, u0, u1, u2, u3 ∈ R}.

H is called the Hamilton quaternion algebra, which is a non-commutative division ring.
Hamilton quaternions and Hermitian quaternion matrices have been utilized in statistics
of quaternion random signals [1], quaternion matrix optimization problems [2], signal and
color image processing, face recognition [3,4], and so on.

Sylvester and Sylvester-type matrix equations have a large number of applications in
different disciplines and fields. For example, the Sylvester matrix equation

A1X + XB1 = C1 (1)

and the Sylvester-type matrix equation

A1X + YB1 = C1 (2)

have been applied in singular system control [5], system design [6], perturbation theory [7],
sensitivity analysis [8], Hα-optimal control [9], linear descriptor systems [10], and control
theory [11]. Roth [12] gave the Sylvester-type matrix Equation (2) for the first time over the
polynomial integral domain. Baksalary and Kala [13] established the solvability conditions
for Equation (2) and gave an expression of its general solution. In addition, Baksalary and
Kala [14] derived the necessary and sufficient conditions for a two-sided Sylvester-type
matrix equation

A11X1B11 + C11X2D11 = E11 (3)

to be consistent. Özgüler [15] studied (3) over a principal ideal domain. Wang [16] investi-
gated (3) over an arbitrary regular ring with an identity element.

Due to the wide applications of quaternions, the investigations on Sylvester-type
matrix equations have been extended to H in the last decade (see, e.g., [17–24]). They are
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applied for signal processing, color-image processing, and maximal invariant semidefinite
or neutral subspaces, etc. (see, e.g., [25–28]). For instance, the general solution to Sylvester-
type matrix Equation (2) can be used in color-image processing. He [29] derived the matrix
Equation (2) as an essential finding. Roman [25] established the necessary and sufficient
conditions for Equation (1) to have a solution. Kychei [30] investigated Cramer’s rules
to drive the necessary and sufficient conditions for Equation (3) to be solvable. As an
extension of Equations (2) and (3), Wang and He [31] gave the solvability conditions and
the general solution to the Sylvester-type matrix equation

A1X1 + X2B1 + C3X3D3 + C4X4D4 = E1 (4)

over the complex number field C, which can be generalized to H and applicable in some
Sylvester-type matrix equations over H (see, e.g., [29,32]).

We know that in system and control theory, the more unknown matrices that a matrix
equation has, the wider its application will be. Consequently, for the sake of developing
theoretical studies and the applications mentioned above of Sylvester-type matrix equation
and their generalizations, in this paper, we aim to establish some necessary and sufficient
conditions for the Sylvester-type matrix equation

A1X1 + X2B1 + A2Y1B2 + A3Y2B3 + A4Y3B4 = B (5)

to have a solution in terms of the rank equalities and Moore–Penrose inverses of some
coefficient quaternion matrices in Equation (5) over H. We derive a formula of its general
solution when it is solvable. It is clear that Equation (5) provides a proper generalization of
Equation (4), and we carry out an algorithm with a numerical example to calculate the gen-
eral solution of Equation (5). As a special case of Equation (5), we also obtain the solvability
conditions and the general solution for the two-sided Sylvester-type matrix equation

A11Y1B11 + A22Y2B22 + A33Y3B33 = T1. (6)

To the best of our knowledge, so far, there has been little information on the solv-
ability conditions and an expression of the general solution to Equation (6) by using
generalized inverses.

As usual, we use A∗ to denote the conjugate transpose of A. Recall that a quaternion
matrix A, for η ∈ {i, j, k}, is said to be η-Hermitian if A = Aη∗ , where Aη∗ = −ηA∗η [33].
For more properties and information on η∗-quaternion matrices, we refer to [33]. We know
that η-Hermitian matrices have some applications in linear modeling and statistics of
quaternion random signals [1,33]. As an application of Equation (5), we establish some
necessary and sufficient conditions for the quaternion matrix equation

A1X1 + (A1X1)
η∗ + A2Y1 Aη∗

2 + A3Y2 Aη∗

3 + A4Y3 Aη∗

4 = B (7)

to be consistent. Moreover, we derive a formula of the general solution to Equation (7)
where B = Bη∗ , Yi = Yη∗

i (i = 1, 3) over H.
The rest of this paper is organized as follows. In Section 2, we review some definitions

and lemmas. In Section 3, we establish some necessary and sufficient conditions for
Equation (5) to have a solution. In addition, we give an expression of its general solution to
Equation (5) when it is solvable. In Section 4, as an application of Equation (5), we consider
some solvability conditions and the general solution to Equation (7), where Yi = Yη∗

i
(i = 1, 3). Finally, we give a brief conclusion to the paper in Section 5.

2. Preliminaries

Throughout this paper, Hm×n stands for the space of all m× n matrices over H. The
symbol r(A) denotes the rank of A. I and 0 represent an identity matrix and a zero matrix
of appropriate sizes, respectively. In general, A† stands for the Moore–Penrose inverse
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of A ∈ Hl×k, which is defined as the solution of AYA = A, YAY = Y, (AY)∗ = AY
and (YA)∗ = YA. Moreover, LA = I − A† A and RA = I − AA† represent two projectors
along A.

The following lemma is due to Marsaglia and Styan [34], which can be generalized
to H.

Lemma 1 ([34]). Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hj×k and E ∈ Hl×i be given.
Then, we have the following rank equality:

r
(

A BLD
REC 0

)
= r

A B 0
C 0 E
0 D 0

− r(D)− r(E).

Lemma 2 ([35]). Let A ∈ Hm×n be given. Then,

(1) (Aη)† = (A†)η , (Aη∗)† = (A†)η∗ .

(2) r(A) = r(Aη∗) = r(Aη) = r(Aη Aη∗) = r(Aη∗Aη).

(3) (LA)
η∗ = −η(LA)η = (LA)

η = LA∗ = RAη∗ .

(4) (RA)
η∗ = −η(RA)η = (RA)

η = RA∗ = LAη∗ .

(5) (AA†)η∗ = (A†)η∗Aη∗ = (A† A)η = Aη(A†)η .

(6) (A† A)η∗ = Aη∗(A†)η∗ = (AA†)η = (A†)η Aη .

Lemma 3 ([16]). Let Aii, Bii and Ci (i = 1, 2) be given matrices with suitable sizes over H.
A1 = A22LA11 , T = RB11 B22, F = B22LT , G = RA1 A22. Then, the following statements
are equivalent:

(1) The system
A11X1B11 = C1, A22X1B22 = C2 (8)

has a solution.
(2)

Aii A†
iiCiB†

iiBii = Ci (i = 1, 2)

and
G(A†

22C2B†
22 − A†

11C1B†
11)F = 0.

(3)

r
(

Aii Ci
)
= r(Aii), r

(
Ci
Bii

)
= r(Bii) (i = 1, 2),

r

A11 C1 0
A22 0 −C2
0 B11 B22

 = r
(

A11
A22

)
+ r(B11, B22).

Lemma 4 ([13]). Let A1, B1 and C1 be given matrices with suitable sizes. Then, the Sylvester-type
Equation (2) is solvable if and only if

RA1 C1LB1 = 0.

In this case, the general solution to Equation (2) can be expressed as

X = A†
1C1 − A†

1U1B1 + LA1U2, Y = RA1 C1B†
1 + A1 A†

1U1 + U3RB1 ,

where U1, U2, and U3 are arbitrary matrices with appropriate sizes.
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Lemma 5 ([31]). Let A1, B1, C3, D3, C4, D4 and E1 be given matrices over H. Put

A = RA1 C3, B = D3LB1 , C = RA1 C4, D = D4LB1 ,

E = RA1 E1LB1 , M = RAC, N = DLB, S = CLM.

Then, the following statements are equivalent:
(1) Equation (4) has a solution.
(2)

RMRAE = 0, ELBLN = 0, RAELD = 0, RELB = 0.

(3)

r
(

E1 C4 C3 A1
B1 0 0 0

)
= r(B1) + r(C4, C3, A1),

r


E1 A1
D3 0
D4 0
B1 0

 = r

D3
D4
B1

+ r(A1),

r

E1 C3 A1
D4 0 0
B1 0 0

 = r(A1, C3) + r
(

D4
B1

)
,

r

E1 C4 A1
D3 0 0
B1 0 0

 = r(A1 C4) + r
(

D3
B1

)
.

In this case, the general solution to Equation (4) can be expressed as

X1 = A†
1(E1 − C3X3D3 − C4X4D4)− A†

1T7B1 + LA1 T6,

X2 = RA1(E1 − C3X3D3 − C4X4D4)B†
1 + A1 A†

1T7 + T8RB1 ,

X3 = A†EB† − A†CM†EB† − A†SC†EN†DB† − A†ST2RN DB† + LAT4 + T5RB,

X4 = M†ED† + S†SC†EN† + LMLST1 + LMT2RN + T3RD,

where T1, ..., T8 are arbitrary matrices with appropriate sizes over H.

3. Some Solvability Conditions and a Formula of the General Solution

In this section, we establish the solvability conditions and a formula of the general
solution to Equation (5). We begin with the following lemma, which is used to reach the
main results of this paper.

Lemma 6. Let A11, B11, C11, and D11 be given matrices with suitable sizes over H, A11LA22 = 0
and RB11 B22 = 0. Set

A1 = A22LA11 , C11 = C2 − A22 A†
11C1B†

11B22. (9)

Then, the following statements are equivalent:
(1) The system (8) is consistent.
(2)

RAii Ci = 0, CiLBii = 0 (i = 1, 2), RA1 C11 = 0.

(3)

Aii A†
iiCiB†

iiBii = Ci (i = 1, 2), C1B†
11B22 = A11 A†

22C2.
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(4)

r(Aii, Ci) = r(Aii), r
(

Bii
Ci

)
= r(Bii) (i = 1, 2),

r

C1 0 A11
0 −C2 A22

B11 B22 0

 = r
(

A22
)
+ r(B11).

In this case, the general solution to system (8) can be expressed as

X1 = A†
11C1B†

11 + LA11 A†
22C2B†

22 + LA22 V1 + V2RB11 + LA11 V3RB22 , (10)

where V1, V2, and V3 are arbitrary matrices with appropriate sizes over H.

Proof. (1)⇔ (2) It follows from Lemma 3 that

G(A†
22C2B†

22 − A†
11C1B†

11)F = 0

⇔RA1(A1 + A22 A†
11 A11)A†

22C2B†
22 − A†

11C1B†
11B22 = 0

⇔RA1 A22 A†
11 A11 A†

22C2B†
22B22 − A22 A†

11C1B†
11B22 = 0

⇔RA1 A22 A†
11 A11 A†

22 A22 A†
22C2B†

22B22 − A22 A†
11C1B†

11B22 = 0

⇔RA1(A22 − A1)A†
22 A22 A†

22C2B†
22B22 − A22 A†

11C1B†
11B22 = 0

⇔RA1 C2 − A22 A†
11C1B†

11B22 = 0⇔ RA1 C11 = 0,

where G and F are given in Lemma 3.
(1)⇒ (3) If the system (8) has a solution, then there exists a solution X0 such that

A11X0B11 = C1, A22X0B22 = C2.

It is easy to show that

RAii Ci = 0, CiLBii = 0 (i = 1, 2).

Thus, Aii A†
iiCiB†

iiBii = Ci (i = 1, 2). It follows from RB11 B22 = 0, A11LA22 = 0 that

C1B†
11B22 = A11X0B11B†

11B22 = A11X0B22 = A11 A†
22 A22X0B22 = A11 A†

22C2.

(3)⇒ (2) Since A22 − A1 = A22 A†
11 A11 and C1B†

11B22 = A11 A†
22C2, we have that

RA1 C11 = RA1 C2 − RA1 A22 A†
11C1B†

11B22 = RA1 C2 − RA1 A22 A†
11 A11 A†

22C2

= RA1 C2 − RA1(A22 − A1)A†
22C2 = RA1 C2 − RA1 A22 A†

22C2 = 0.

(2)⇔ (4) It follows from RB11 B22 = 0 and A11LA22 = 0 that

r(B22, B11) = r(B11),
(

A11
A22

)
= r(A22).
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By Lemma 1,

RAii Ci = 0⇔ r(RAii Ci) = 0⇔ r(Aii, Ci) = r(Aii) (i = 1, 2),

CiLBii = 0⇔ r(CiLBii ) = 0⇔ r
(

Bii
Ci

)
= r(Bii) (i = 1, 2),

RA1 C11 = 0⇔ r(RA1 C11) = 0⇔ r(C11, A1) = r(A1)

⇔ r
(

C11 A22LA11
RB11 B22 0

)
= r(A22LA11) + r(RB11 B22)

⇔ r

C2 − A22 A†
11C1B†

11B22 A22 0
B22 0 B11
0 A11 0

 = r
(

A11
A22

)
+ r(B11, B22)

⇔ r

C1 0 A11
0 −C2 A22

B11 B22 0

 = r
(

A11
A22

)
+ r(B11, B22) = r(A22) + r(B11).

We now prove that X1 in (10) is the general solution of the system (8). We prove it in
two steps. We show that X1 is a solution of system (8) in Step 1. In Step 2, if the system (8)
is consistent, then the general solution to system (8) can be expressed as (10).

Step 1. In this step, we show that X1 is a solution of system (8). Substituting X1 in (10)
into the system (8) yields

A11X1B11 = A11X0B11, A22X1B22 = A22X0B22, (11)

where X0 = A†
11C1B†

11 + LA11 A†
22C2B†

22. Since RA11 C1 = 0 and C1LB11 = 0, we have that

A11X0B11 = A11 A†
11C1B†

11 + LA11 A†
1 A22 A†

22C11B†
22B11

= A11 A†
11C1B†

11B11 + A11LA11 A†
1C11 − RA22 C11B†

22B11 = A11 A†
11C1B†

11B11

= −RA11 C1B†
11B11 − C1LB11 + C1 = C1.

By

RB11 B22 = 0, RA22 C22 = 0, C2LB22 = 0 and C1B†
11B22 = A11 A†

22C2,

we have that

A22X0B22 = A22(A†
11C1B†

11 + LA11 A†
22C2B†

22)B22

= A22 A†
11C1B†

11B22 + A22 A†
22C2B†

22B22 − A22 A†
11 A11 A†

22C2B†
22B22

= C2 + A22 A†
11C1B†

11B22 − A22 A†
11C1B†

11B22 = C2.

Thus, A11X1B11 = C1, A22X1B22 = C2. X1 is a solution of system (8).
Step 2. In this step, we show that the general solution to the system (8) can be expressed

as (10). It is sufficient to show that for an arbitrary solution, say, X01 of (8), X01 can be
expressed in form (10). Put

V1 = X01B22B†
22, V2 = X01, V3 = X01B11B†

11.
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It follows from B22 = B11B†
11B22 and A11 = A11 A†

22 A22 that

X1 = A†
11C1B†

11 + LA11 A†
22C2B†

22 + LA22 V1 + V2RB11 + LA11 V3RB22

= A†
11C1B†

11 + LA11 A†
22C2B†

22 + LA22 X01B22B†
22 + X01RB11 + LA11 X01B11B†

11RB22

= A†
11C1B†

11 + LA11 A†
22C2B†

22 + X01B22B†
22 − A†

22 A22X01B22B†
22 + X01 − X01B11B†

11

+ X01B11B†
11RB22 − A†

11 A11X01B11B†
11RB22

= A†
11C1B†

11 + LA11 A†
22C2B†

22 − X01RB11 B22B†
22 + X01 − A†

22 A22X01B22B†
22

− A†
11 A11X01B11B†

11 + A†
11 A11X01B11B†

11B22B†
22

= X01 + A†
11 A11X01B11B†

11B22B†
22 − A†

11 A11 A†
22 A22X01B22B†

22

= X01 + A†
11 A11X01B22B†

22 − A†
11 A11X01B22B†

22 = X01.

Hence, X01 can be expressed as (10). To sum up, (10) is the general solution of the
system (8).

Now, we give the fundamental theorem of this paper.

Theorem 1. Let Ai, Bi, and B (i = 1, 4) be given quaternion matrices with appropriate sizes over
H. Set

RA1 A2 = A11, RA1 A3 = A22, RA1 A4 = A33, B2LB1 = B11, B22LB11 = N1,

B3LB1 = B22, B4LB1 = B33, RA11 A22 = M1, S1 = A22LM1 , RA1 BLB1 = T1,
(12)

C = RM1 RA11 , C1 = CA33, C2 = RA11 A33, C3 = RA22 A33, C4 = A33,

D = LB11 LN1 , D1 = B33, D2 = B33LB22 , D3 = B33LB11 , D4 = B33D,

E1 = CT1, E2 = RA11 T1LB22 , E3 = RA22 T1LB11 , E4 = T1D,

(13)

C11 = (LC2 , LC4), D11 =

(
RD1

RD3

)
, C22 = LC1 , D22 = RD2 , C33 = LC3 ,

D33 = RD4 , E11 = RC11 C22, E22 = RC11 C33, E33 = D22LD11 , E44 = D33LD11 ,

M = RE11 E22, N = E44LE33 , F = F2 − F1, E = RC11 FLD11 , S = E22LM,

(14)

F11 = C2LC1 , G1 = E2 − C2C†
1 E1D†

1 D2, F22 = C4LC3 , G2 = E4 − C4C†
3 E3D†

3 D4,

F1 = C†
1 E1D†

1 + LC1 C†
2 E2D†

2 , F2 = C†
3 E3D†

3 + LC3 C†
4 E4D†

4 .
(15)

Then, the following statements are equivalent:
(1) Equation (5) is consistent.
(2)

RCi Ei = 0, EiLDi = 0 (i = 1, 4), RE11 ELE44 = 0. (16)

(3)

r
(

B A2 A3 A4 A1
B1 0 0 0 0

)
= r(B1) + r(A2, A3, A4, A1), (17)

r

 B A2 A4 A1
B3 0 0 0
B1 0 0 0

 = r(A2, A4, A1) + r
(

B3
B1

)
, (18)

r

 B A3 A4 A1
B2 0 0 0
B1 0 0 0

 = r(A3, A4, A1) + r
(

B2
B1

)
, (19)
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r


B A4 A1
B2 0 0
B3 0 0
B1 0 0

 = r

B2
B3
B1

+ r(A4, A1), (20)

r

 B A2 A3 A1
B4 0 0 0
B1 0 0 0

 = r(A2, A3, A1) + r
(

B4
B1

)
, (21)

r


B A2 A1
B3 0 0
B4 0 0
B1 0 0

 = r

B3
B4
B1

+ r(A2, A1), (22)

r


B A3 A1
B2 0 0
B4 0 0
B1 0 0

 = r

B2
B4
B1

+ r(A3, A1), (23)

r


B A1
B2 0
B3 0
B4 0
B1 0

 = r


B2
B3
B4
B1

+ r(A1), (24)

r



B A2 A1 0 0 0 A4
B3 0 0 0 0 0 0
B1 0 0 0 0 0 0
0 0 0 −B A3 A1 A4
0 0 0 B2 0 0 0
0 0 0 B1 0 0 0

B4 0 0 B4 0 0 0


(25)

= r


B3 0
B1 0
0 B2
0 B1

B4 B4

+ r
(

A2 A1 0 0 A4
0 0 A3 A1 A4

)
.

Proof. (1)⇔ (2) Equation (5) can be written as

A1X1 + X2B1 = B− (A2Y1B2 + A3Y2B3 + A4Y3B4). (26)

Clearly, Equation (5) is solvable if and only if Equation (26) has a solution. By Lemma 4,
Equation (26) is consistent if and only if there exist Yi (i = 1, 3) in Equation (26) such that

RA1 [B− (A2Y1B2 + A3Y2B3 + A4Y3B4)]LB1 = 0, (27)

i.e.,
A11Y1B11 + A22Y2B22 + A33Y3B33 = T1, (28)

where Aii, Bii(i = 1, 3), and T1 are defined by (12). In addition, when Equation (26) has a
solution, we get the following:

X1 = A†
1(B− A2Y1B2 − A3Y2B3 − A4Y3B4)− A†

1U1B1 + LA1U2,

X2 = RA1(B− A2Y1B2 − A3Y2B3 − A4Y3B4)B†
1 + A1 A†

1U1 + U3RB1 ,

where Ui (i = 1, 3) are any matrices with appropriate dimensions over H. Hence, Equation (26)
has a solution if and only if there exist Yi (i = 1, 3) in Equation (26) such that Equation (28)
is solvable. According to Equation (28), we have that

A11Y1B11 + A22Y2B22 = T1 − A33Y3B33. (29)
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Hence, Equation (28) is consistent if and only if Equation (29) is solvable. It follows from
Lemma 5 that Equation (29) has a solution if and only if there exists Y3 in Equation (29)
such that

RM1 RA11(A33Y3B33 − T1) = 0, RA11(T1 − A33Y3B33)LB22 = 0,

RA22(T1 − A33Y3B33)LB11 = 0, (T1 − A33Y3B33)LB11 LN1 = 0,
(30)

i.e.,
C1Y3D1 = E1, C2Y3D2 = E2, C3Y3D3 = E3, C4Y3D4 = E4, (31)

where Ci, Di, Ei (i = 1, 4) are defined by (13). When Equation (29) is solvable, we have that

Y1 = A†
11TB†

11 − A†
11 A22M†

1 TB†
11 − A†

11S1 A†
22TN†

1 B22B†
11

− A†
11S1U4RN1 B22B†

11 + LA11U5 + U6RB11 ,

Y2 = M†
1 TB†

22 + S†
1S1 A†

22TN†
1 + LM1 LS1U7 + U8RB22 + LM1U4RN1 ,

where Aii, Bii (i = 1, 3), M1, N1, S1, T1 are defined by (12), T = T1 − A33Y3B33 and
Uj (j = 4, 8) are any matrices with the appropriate dimensions over H.

It is easy to infer that

C1LC2 = 0, RD1 D2 = 0, C3LC4 = 0, RD3 D4 = 0. (32)

Thus, according to Lemma 6, we have that the system (31) is consistent if and only if

RCi Ei = 0, EiLDi = 0 (i = 1, 2, 3, 4), RF11 G1 = 0, RF22 G2 = 0. (33)

In this case, the general solution to system (31) can be expressed as

Y3 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , (34)

Y3 = F2 − LC4W1 −W2RD3 − LC3W3RD4 , (35)

where F1, F2 are defined by (15) and Vi, Wi (i = 1, 3) are any matrices with the appropriate
dimensions over H. Thus, system (31) has a solution if and only if (33) holds and there exist
Vi, Wi (i = 1, 3) such that (34) equals to (35), namely

(LC2 , LC4)

(
V1
W1

)
+ (V2, W2)

(
RD1

RD3

)
+ LC1 V3RD2 + LC3W3RD4 = F,

i.e.,

C11

(
V1
W1

)
+ (V2, W2)D11 + C22V3D22 + C33W3D33 = F, (36)

where F, Cii and Dii (i = 1, 3) are defined by (14). It follows from Lemma 5 that Equation (36)
has a solution if and only if

RMRE11 E = 0, ELE33 LN = 0, RE11 ELE44 = 0, RE22 ELE33 = 0. (37)

In this case, the general solution to Equation (36) can be expressed as

V1 = (Im, 0)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11U12

]
,

W1 = (0, Im)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11U12

]
,
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W2 =
[

RC11(F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

]( 0
In

)
,

V2 =
[

RC11(F− C22V3D22 − C33W3D33)D†
11 + C11(C11)

†U11 + U21RD11

](In
0

)
,

V3 = E†
11FE†

33 − E†
11E22M†FE†

33 − E†
11SE†

22FN†E44E†
33

− E†
11SU31RN E44E†

33 + LE11U32 + U33RE33 ,

W3 = M†FE†
44 + S†SE†

22FN† + LMLSU41 + LMU31RN −U42RE44 ,

where U11, U12, U21, U31, U32, U33, U41, and U42 are any matrices with the suitable di-
mensions over H. M, E, N, S, C11, D11, and Eii (i = 1, 4) are defined by (14), m is the
column number of A4 and n is the row number of B4. We summarize up that (28) has a
solution if and only if (33) and (37) hold. Hence, Equation (5) is solvable if and only if (33)
and (37) hold.

In fact, RC2 E2 = 0, E1LD1 = 0⇒ RF11 G1 = 0; RC4 E4 = 0, E3LD3 = 0⇒ RF22 G2 = 0;
RC3 E3 = 0, E1LD1 = 0 ⇒ RMRE11 E = 0; RC4 E4 = 0, E1LD1 = 0 ⇒ ELE33 LN = 0;
RC4 E4 = 0, E2LD2 = 0⇒ RE22 ELE33 = 0. The specific proof is as follows.

Firstly, we prove that RC2 E2 = 0, E1LD1 = 0⇒ RF11 G1 = 0; RC4 E4 = 0, E3LD3 = 0⇒
RF22 G2 = 0. It follows from Lemma 1 and elementary transformations that

RC1 E1 = 0⇔ r(E1, C1) = r(C1) = r(CT1, CA33) = r(CA33) ⇔
r(T1, A33, A11, A22) = r(A33, A11, A22),

(38)

RC2 E2 = 0⇔ r(E2, C2) = r(C2)⇔ r
(

T1 A33 A11
B22 0 0

)
= r(A33, A11) + r(B22), (39)

RC3 E3 = 0⇔ r(E3, C3) = r(C3)⇔ r
(

T1 A33 A22
B11 0 0

)
= r(A33, A22) + r(B11), (40)

RC4 E4 = 0⇔ r(E4, C4) = r(C4)⇔ r

 T1 A33
B11 0
B22 0

 = r(A33) + r
(

B11
B22

)
, (41)

E1LD1 = 0⇔ r
(

E1
D1

)
⇔ r

(
T1 A11 A22
B33 0 0

)
= r(A11, A22) + r(B33), (42)

E2LD2 = 0⇔ r
(

E2
D2

)
= r(D2)⇔ r

 T1 A11
B33 0
B22 0

 = r
(

B33
B22

)
+ r(A11), (43)

E3LD3 = 0⇔ r
(

E3
D3

)
= r(D3)⇔ r

 T1 A22
B33 0
B11 0

 = r
(

B33
B11

)
+ r(A22), . (44)

E4LD4 = 0⇔ r
(

E4
D4

)
= r(D4)⇔ r


T1
B33
B11
B22

 = r

B33
B11
B22

. (45)

It follows from Lemma 6 and (32) that RF11 G1 = 0 and RF22 G2 = 0 are equivalent to

r

E1 0 C1
0 −E2 C2

D1 D2 0

 = r
(

C1
C2

)
+ r(D1, D2), (46)

r

E3 0 C3
0 −E4 C4

D3 D4 0

 = r
(

C3
C4

)
+ r(D3, D4). (47)
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According to Lemma 1, we have that

(46)

⇔ r


T1 0 0 A11 A22 0
0 −T1 A33 0 0 A11

B33 0 0 0 0 0
0 B22 0 0 0 0

 = r
(

0 A11 A22 0
A33 0 0 A11

)
+ r
(

B33 0
0 B22

)

⇔ r


T1 A11 A22 0 0 0
B33 0 0 0 0 0
0 0 0 T1 A33 A11
0 0 0 B22 0 0

 = r
(

A11 A22 0 0
0 0 A33 A11

)
+ r
(

B33 0
0 B22

)
.

(48)

Thus, it follows from (48) that (46) holds when (39) and (42) hold. Similarly, if (41) and (44)
hold, then (47) holds.

Secondly, we prove that RC3 E3 = 0, E1LD1 = 0⇒ RMRE11 E = 0; RC4 E4 = 0, E1LD1 =
0 ⇒ ELE33 LN = 0; RC4 E4 = 0, E2LD2 = 0 ⇒ RE22 ELE33 = 0. According to Lemma 5
and (32), we have that (37) are equivalent to

r

 F LC1 LC3

RD1 0 0
RD3 0 0

 = r(LC1 , LC3) + r
(

RD1

RD3

)
, (49)

r

 F LC2 LC4
RD2 0 0
RD4 0 0

 = r(LC2 , LC4) + r
(

RD2

RD4

)
, (50)

r

 F LC1 LC4
RD1 0 0
RD4 0 0

 = r(LC1 , LC4) + r
(

RD1

RD4

)
, (51)

r

 F LC2 LC3

RD2 0 0
RD3 0 0

 = r(LC2 , LC3) + r
(

RD2

RD3

)
, (52)

respectively. By Lemma 1, we have that

(49)

⇔ r


F I I 0 0
I 0 0 D1 0
I 0 0 0 D3
0 C1 0 0 0
0 0 C3 0 0

 = r
(

I D1 0
I 0 D3

)
+ r

 I I
C1 0
0 C3



⇔ r

E1 0 C1
0 −E3 C3

D1 D3 0

 = r
(

C1
C3

)
+ r(D1, D3).

(53)

Similarly, we can show that (50)–(52) are equivalent to

r

E1 0 C1
0 −E4 C4

D1 D4 0

 = r
(

C1
C4

)
+ r(D1, D4), (54)

r

E2 0 C2
0 −E3 C3

D2 D3 0

 = r
(

C2
C3

)
+ r(D2, D3), (55)
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r

E2 0 C2
0 −E4 C4

D2 D4 0

 = r
(

C2
C4

)
+ r(D2, D4). (56)

Substituting Ci, Di, and Ei (i = 1, 3) in (13) into the rank equality (53) and by Lemma 1,
we have that

(53)

⇔ r


T1 0 0 A11 A22 0
0 −T1 A33 0 0 A22

B33 0 0 0 0 0
0 B11 0 0 0 0

 = r
(

0 A11 A22 0
A33 0 0 A22

)
+ r
(

B33 0
0 B11

)

⇔ r


T1 A11 A22 0 0 0
B33 0 0 0 0 0
0 0 0 T1 A33 A22
0 0 0 B11 0 0

 = r
(

A11 A22 0 0
0 0 A33 A22

)
+ r
(

B33 0
0 B11

)
.

(57)

Hence, it follows from (40) and (42) that (57) holds. Similarly, we can prove that when (41), (42)
hold and (41), (43) hold, we can get that (54) and (56) hold, respectively. Thus, Equation (28)
has a solution if and only if (16) holds. That is to say, Equation (5) has a solution if and only
if (16) holds.

(2)⇔ (3) We prove the equivalence in two parts. In the first part, we want to show
that (38) to (45) are equivalent to (17) to (24), respectively. In the second part, we want to
show that (55) is equivalent to (25).

Part 1. We want to show that (38) to (45) are equivalent to (17) to (24), respectively. It
follows from Lemma 1 and elementary operations to (38) that

(38)⇔ r(RA1 BLB11 , RA1 A4, RA1 A2, RA1 A3) = r(RA1 A4, RA1 A2, RA1 A3)

⇔ r
(

B A4 A2 A3 A1
B1 0 0 0 0

)
= r(A4, A2, A3, A1) + r(B1)⇔ (17).

Similarly, we can show that (39) to (41) are equivalent to (18) to (20), respectively. Now,
we turn to prove that (42) is equivalent to (19). It follows from the Lemma 1 and elementary
transformations that

(42)⇔ r
(

RA1 BLB1 RA1 A2 RA1 A3
B4LB1 0 0

)
= r(RA1 A2, RA1 A3) + r(B4LB1)

⇔ r

 B A2 A3 A1
B4 0 0 0
B1 0 0 0

 = r(A2, A3, A1) + r
(

B4
B1

)
⇔ (21).

Similarly, we can show that (43) to (45) are equivalent to (22) to (24). Hence, (38) to
(45) are equivalent to (17) to (24), respectively.

Part 2. We want to show that (55)⇔ (25). It follows from Lemma 1 and elementary
operations to (55) that

(55)⇔

⇔ r

RA11 T1LB22 0 RA11 A33
0 −RA22

T1LB11 RA22 A33
B33LB22 B33LB11 0

 = r
(

RA11 A33
RA22 A33

)
+ r(B33LB22 , B33LB11 )

⇔ r


T1 0 A11 0 A33
0 −T1 0 A22 A33

B22 0 0 0 0
0 B11 0 0 0

B33 B33 0 0 0

 = r

B22 0
0 B11

B33 B33

+ r
(

A11 0 A33
0 A22 A33

)
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⇔ r


B3 0
0 B2

B4 B4
B1 0
0 B1

+ r
(

A2 0 A4 A1 0
0 A3 A4 0 A1

)

= r



B 0 A2 0 A4 A1 0
0 −B 0 A3 A4 0 A1

B3 0 0 0 0 0 0
0 B2 0 0 0 0 0

B4 B4 0 0 0 0 0
B1 0 0 0 0 0 0
0 B1 0 0 0 0 0


⇔ (25).

Hence, (38) to (45) and (55) are equivalent to (17) to (25), respectively.

Next, we give the formula of general solution to matrix Equation (5) by using Moore–
Penrose. According to Theorem 1, we get the following theorem:

Theorem 2. Let matrix Equation (5) be solvable. Then, the general solution to matrix Equation (5)
can be expressed as

X1 = A†
1(B− A2Y1B2 − A3Y2B3 − A4Y3B4)− A†

1U1B1 + LA1U2,

X2 = RA1(B− A2Y1B2 − A3Y2B3 − A4Y3B4)B†
1 + A1 A†

1U1 + U3RB1 ,

Y1 = A†
11TB†

11 − A†
11 A22M†

1 TB†
11 − A†

11S1 A†
22TN†

1 B22B†
11

− A†
11S1U4RN1 B22B†

11 + LA11U5 + U6RB11 ,

Y2 = M†
1 TB†

22 + S†
1S1 A†

22TN†
1 + LM1 LS1U7 + U8RB22 + LM1U4RN1 ,

Y3 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , or Y3 = F2 − LC4W1 −W2RD3 − LC3W3RD4 ,

where T = T1 − A33Y3B33, Ui(i = 1, 8) are arbitrary matrices with appropriate sizes over H,

V1 = (Im, 0)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11U12

]
,

W1 = (0, Im)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11U12

]
,

W2 =
[

RC11(F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

]( 0
In

)
,

V2 =
[

RC11(F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

](In
0

)
,

V3 = E†
11FE†

33 − E†
11E22M†FE†

33 − E†
11SE†

22FN†E44E†
33 − E†

11SU31RN E44E†
33 + LE11U32 + U33RE33 ,

W3 = M†FE†
44 + S†SE†

22FN† + LMLSU41 + LMU31RN −U42RE44 ,

U11, U12, U21, U31, U32, U33, U41, and U42 are arbitrary matrices with appropriate sizes over H,
m is the column number of A4 and n is the row number of B4.

Algorithm with a Numerical Example

In this section, we give Algorithm 1 with a numerical example to illustrate the
main results.

Algorithm 1 Algorithm for computing the general solution of Equation (5)

(1) Input the quaternion matrices Ai, Bi (i = 1, 4) and B with conformable shapes.
(2) Compute all matrices given by (12)–(15).
(3) Check equalities in (16) or (17)–(25). If not, it returns inconsistent.
(4) Else, compute Xi Yj(i = 1, 2, j = 1, 3).
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Example 1. Consider the matrix Equation (5). Put

A1 =

(
i 0
0 0

)
, B1 =

(
0 i
0 0

)
, A2 =

(
0 0
i 0

)
, B2 =

(
0 0
0 i

)
, A3 =

(
1 i
0 0

)
,

B3 =

(
1 j
0 0

)
, A4 =

(
1 k
0 0

)
, B4 =

(
0 0
k i

)
, B =

(
3i i− 1
0 j

)
.

Computation directly yields

r
(

B A2 A3 A4 A1
B1 0 0 0 0

)
= r(B1) + r(A2, A3, A4, A1) = 3,

r

 B A2 A4 A1
B3 0 0 0
B1 0 0 0

 = r(A2, A4, A1) + r
(

B3
B1

)
= 4,

r

 B A3 A4 A1
B2 0 0 0
B1 0 0 0

 = r(A3, A4, A1) + r
(

B2
B1

)
= 4,

r


B A4 A1
B2 0 0
B3 0 0
B1 0 0

 = r

B2
B3
B1

+ r(A4, A1) = 3,

r

 B A2 A3 A1
B4 0 0 0
B1 0 0 0

 = r(A2, A3, A1) + r
(

B4
B1

)
= 4,

r


B A2 A1
B3 0 0
B4 0 0
B1 0 0

 = r

B3
B4
B1

+ r(A2, A1) = 3,

r


B A3 A1
B2 0 0
B4 0 0
B1 0 0

 = r

B2
B4
B1

+ r(A3, A1) = 3,

r


B A1
B2 0
B3 0
B4 0
B1 0

 = r


B2
B3
B4
B1

+ r(A1) = 3,

r



B A2 A1 0 0 0 A4
B3 0 0 0 0 0 0
B1 0 0 0 0 0 0
0 0 0 −B A3 A1 A4
0 0 0 B2 0 0 0
0 0 0 B1 0 0 0
B4 0 0 B4 0 0 0


= r


B3 0
B1 0
0 B2
0 B1
B4 B4

+ r
(

A2 A1 0 0 A4
0 0 A3 A1 A4

)
= 7.

All rank equalities in (17) to (25) hold. Hence, according to Theorem 1, Equation (5) has a
solution. Moreover, by Theorem 2, we have that

X1 =

(
1 i
0 0

)
, X2 =

(
1 j
0 0

)
, Y1 =

(
i j
0 0

)
, Y2 =

(
i k
0 0

)
, Y3 =

(
i j
k 0

)
.
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Remark 1. Chu et al. gave potential applications of the maximal and minimal ranks in the
discipline of control theory (e.g., [36–38]). We may consider the rank bounds of the general solution
of Equation (5).

4. The General Solution to Equation with η-Hermicity

In this section, as an application of (5), we establish some necessary and sufficient
conditions for quaternion matrix Equation (7) to have a solution and derive a formula of its
general solution involving η-Hermicity.

Theorem 3. Let Ai (i = 1, 4) and B be given matrices with suitable sizes over H, B = Bη∗ . Set

RA1 A2 = A11, RA1 A3 = A22, RA1 A4 = A33, RA11 A22 = M1, S1 = A22LM1 ,

RA1 B(RA1 )
η∗ = T1, C = RM1 RA11 , C1 = CA33, C2 = RA11 A33,

C3 = RA22 A33, C4 = A33, E1 = CT1, E2 = RA11 T1(RA22 )
η∗ , E3 = RA22 T1(RA11 )

η∗ , E4 = T1Cη∗ ,

C11 = (LC2 , LC4 ), C22 = LC1 , C33 = LC3 , E11 = RC11 C22, E22 = RC11 C33,

M = RE11 E22, N = (RE22 E11)
η∗ , F = F2 − F1, E = RC11 F(RC11 )

η∗ , S = E22LM,

F11 = C2LC1 , G1 = E2 − C2C†
1 E1(C

η∗

4 )†Cη∗

3 , F22 = C4LC3 , G2 = E4 − C4C†
3 E3(C

η∗

2 )†Cη∗

1 ,

F1 = C†
1 E1(C

η∗

4 )† + LC1 C†
2 E2(C

η∗

3 )†, F2 = C†
3 E3(C

η∗

2 )† + LC3 C†
4 E4(C

η∗

1 )†.

Then, the following statements are equivalent:
(1) Equation (7) is consistent.
(2) RCi Ei = 0 (i = 1, 4), RE22 E(RE22)

η∗ = 0.
(3)

r

(
B A2 A3 A4 A1

Aη∗

1 0 0 0 0

)
= r(A1) + r(A2, A3, A4, A1),

r

 B A2 A3 A1

Aη∗

4 0 0 0
Aη∗

1 0 0 0

 = r(A2, A3, A1) + r(A4, A1),

r

 B A2 A4 A1

Aη∗

3 0 0 0
Aη∗

1 0 0 0

 = r(A2, A4, A1) + r(A3, A1),

r

 B A3 A4 A1

Aη∗

2 0 0 0
Aη∗

1 0 0 0

 = r(A3, A4, A1) + r(A2, A1),

r



B 0 A2 0 A4 A1 0
0 −B 0 A3 A4 0 A1

Aη∗

3 0 0 0 0 0 0
0 Aη∗

2 0 0 0 0 0
Aη∗

4 Aη∗

4 0 0 0 0 0
Aη∗

1 0 0 0 0 0 0
0 Aη∗

1 0 0 0 0 0


= 2r

(
A2 0 A4 A1 0
0 A3 A4 0 A1

)
.
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In this case, the general solution to Equation (7) can be expressed as

X1 =
X̂1 + (X̂2)

η∗

2
, Y1 =

Ŷ1 + (Ŷ1)
η∗

2
, Y2 =

Ŷ2 + (Ŷ2)
η∗

2
, Y3 =

Ŷ3 + (Ŷ3)
η∗

2
,

X̂1 = A†
1(C1 − A2Y1 Aη∗

2 − A3Y2 Aη∗

3 − A4Y3 Aη∗

4 ) + LA1 U2,

X̂2 = RA1 (C1 − A2Y1 Aη∗

2 − A3Y2 Aη∗

3 − A4Y3 Aη∗

4 )(A†
1)

η∗ + A1 A†
1U1 + U3R

Aη∗
1

,

Ŷ1 = A†
11T(A†

11)
η∗ − A†

11 A22 M†
1 T(A†

11)
η∗ − A†

11U4 A†
22T(M†

1)
η∗ (A†

22)
η∗ + LA11 U5 + U6R

Aη∗
11

,

Ŷ2 = M†
1 T(A†

22)
η∗ + S†

1S1 A†
22T(M†

1)
η∗ + LM1 LS1 U7 + U8R

Aη∗
22
+ LM1 U4R

Mη∗
1

,

Ŷ3 = F1 + LC2 V1 + V2R
Cη∗

4
+ LC1 V3R

Cη∗
3

, or Ŷ3 = F2 − LC4 W1 −W2R
Cη∗

2
− LC3 W3R

Cη∗
1

,

where T = T1 − A33Y3(A33)
η∗ ,

V1 = (Im, 0)
[
C†

11(F− C22V3Cη∗

33 − C33W3Cη∗

22 )− C†
11U11Cη∗

11 + LC11U12

]
,

W1 = (0, Im)
[
C†

11(F− C22V3Cη∗

33 − C33W3Cη∗

22 )− C†
11U11Cη∗

11 + LC11U12

]
,

W2 =
[

RC11(F− C22V3Cη∗

33 − C33W3Cη∗

22 )(C
η∗

11 )
† + C11C†

11U11 + U21Lη∗

C11

]( 0
In

)
,

V2 =
[

RC11(F− C22V3Cη∗

33 − C33W3Cη∗

22 )(C
η∗

11 )
† + C11C†

11U11 + U21Lη∗

C11

](In
0

)
,

V3 = E†
11F(Eη∗

22 )
† − E†

11E22M†F(Eη∗

22 )
† − E†

11SE†
22FN†Eη∗

11 (Eη∗

22 )
†

− E†
11SU31RN Eη∗

11 (Eη∗

22 )
† + LE11U32 + U33Lη∗

E22
,

W3 = M†F(Eη∗

11 )
† + S†SE†

22FN† + LMLSU41 + LMU31RN −U42Lη∗

E11
,

U11, U12, U21, U31, U32, U33, U41, and U42 are any matrices with suitable dimensions over H.

Proof. It is easy to show that (7) has a solution if and only if the following matrix equation
has a solution:

A1X̂1 + X̂2 Aη∗

1 + A2Ŷ1 Aη∗

2 + A3Ŷ2 Aη∗

3 + A4Ŷ3 Aη∗

4 = B. (58)

If (7) has a solution, say, (X1, Y1, Y2, Y3), then

(X̂1, X̂2, Ŷ1, Ŷ2, Ŷ3) := (X1, Xη∗

1 , Y1, Y2, Y3)

is a solution of (58). Conversely, if (58) has a solution, say

(X̂1, X̂2, Ŷ1, Ŷ2, Ŷ3).

It is easy to show that (7) has a solution

(X1, Y1, Y2, Y3) :=

(
X̂1 + (X̂2)

η∗

2
,

Ŷ1 + (Ŷ1)
η∗

2
,

Ŷ2 + (Ŷ2)
η∗

2
,

Ŷ3 + (Ŷ3)
η∗

2

)
.

Letting A1 and B1 vanish in Theorem 1, it yields to the following result.
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Corollary 1. Let Aii, Bii (i = 1, 3), and T1 be given matrices with appropriate sizes over H. Set

M1 = RA11 A22, N1 = B22LB11 , S1 = A22LM1 ,

C = RM1 RA11 , C1 = CA33, C2 = RA11 A33, C3 = RA22 A33, C4 = A33,

D = LB11 LN1 , D1 = B33, D2 = B33LB22 , D3 = B33LB11 , D4 = B33D,

E1 = CT1, E2 = RA11 T1LB22 , E3 = RA22 T1LB11 , E4 = T1D,

C11 = (LC2 , LC4), D11 =

(
RD1

RD3

)
, C22 = LC1 , D22 = RD2 , C33 = LC3 ,

D33 = RD4 , E11 = RC11 C22, E22 = RC11 C33, E33 = D22LD11 , E44 = D33LD11 ,

M = RE11 E22, N = E44LE33 , F = F2 − F1, E = RC11 FLD11 , S = E22LM,

F11 = C2LC1 , G1 = E2 − C2C†
1 E1D†

1 D2, F22 = C4LC3 , G2 = E4 − C4C†
3 E3D†

3 D4,

F1 = C†
1 E1D†

1 + LC1 C†
2 E2D†

2 , F2 = C†
3 E3D†

3 + LC3 C†
4 E4D†

4 .

Then, the following statements are equivalent:
(1) Equation (6) is consistent.
(2) RCi Ei = 0, EiLDi = 0 (i = 1, 4), RE22 ELE33 = 0.
(3)

r(T1, A11, A22, A33) = r(A11, A22, A33),

r


T1
B11
B22
B33

 = r

B11
B22
B33

, r
(

T1 A11 A22
B33 0 0

)
= r(A11, A22) + r(B33),

r
(

T1 A11 A33
B22 0 0

)
= r(A11, A33) + r(B22),

r
(

T1 A33 A22
B11 0 0

)
= r(A33, A22) + r(B11), r

 T1 A33
B11 0
B22 0

 = r
(

B11
B22

)
+ r(A33),

r


T1 0 A11 0 A33
0 −T1 0 A22 A33

B22 0 0 0 0
0 B11 0 0 0

B33 B33 0 0 0

 = r

B22 0
0 B11

B33 B33

+ r
(

A11 0 A33
0 A22 A33

)
,

r

 T1 A22
B11 0
B33 0

 = r
(

B11
B33

)
+ r(A22), r

 T1 A11
B33 0
B22 0

 = r
(

B33
B22

)
+ r(A11).

In this case, the general solution to Equation (6) can be expressed as

Y1 = A†
11TB†

11 − A†
11 A22M†

1 TB†
11 − A†

11S1 A†
22TN†

1 B22B†
11

− A†
11S1U4RN1 B22B†

11 + LA11U5 + U6RB11 ,

Y2 = M†
1 TB†

22 + S†
1S1 A†

22TN†
1 + LM1 LS1U7 + U8RB22 + LM1U4RN1 ,

Y3 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , or Y3 = F2 − LC4W1 −W2RD3 − LC3W3RD4 ,

where T = T1 − A33Y3B33, Ui(i = 1, ..., 8) are any matrices with suitable dimensions over H,

V1 = (Im, 0)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11 U12

]
,

W1 = (0, Im)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11 U12

]
,
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W2 =
[

RC11 (F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

]( 0
In

)
,

V2 =
[

RC11 (F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

](In

0

)
,

V3 = E†
11FE†

33 − E†
11E22 M†FE†

33 − E†
11SE†

22FN†E44E†
33 − E†

11SU31RN E44E†
33 + LE11 U32 + U33RE33 ,

W3 = M†FE†
44 + S†SE†

22FN† + LM LSU41 + LMU31RN −U42RE44 ,

U11, U12, U21, U31, U32, U33, U41, and U42 are any matrices with suitable dimensions over H.

5. Conclusions

We have established the solvability conditions and an exact formula of a general
solution to quaternion matrix Equation (5). As an application of Equation (5), we also have
established some necessary and sufficient conditions for Equation (7) to have a solution
and derived a formula of its general solution involving η-Hermicity. The quaternion matrix
Equation (5) plays a key role in studying the solvability conditions and general solutions
of other types of matrix equations. For example, we can use the results on Equation (5) to
investigate the solvability conditions and the general solution of the following system of
quaternion matrix equations

A2Y1 = C2, Y1B2 = D2,

A3Y2 = C3, Y2B3 = D3,

A4Y3 = C4, Y3B4 = D4,

G1Y1H1 + G2Y2H2 + G3Y3H3 = G

where Y1, Y2 and Y3 are unknown quaternion matrices and the others are given.
It is worth mentioning that the main results of (5) are available over not only R and C

but also any division ring. Moreover, inspired by [39], we can investigate Equation (5) in
tensor form.
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