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Abstract: This paper studies a topology identification problem of complex networks with dynamics
on different time scales. Using the adaptive synchronization method, some criteria for a successful
estimation are obtained. In particular, by regulating the original network to synchronize with an
auxiliary chaotic network, this work further explores a way to avoid the precondition of linear
independence. When the adaptive controller fails to achieve the outer synchronization, an impulsive
control method is used. In the end, we conclude with three numerical simulations. The results
obtained in this paper generalize continuous, discrete with arbitrary time step size and mixed cases.
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1. Introduction

Complex networks are becoming increasingly popular in the study of networked
dynamic systems, including disease transmission networks, metabolic networks, social
networks, communication networks, the Internet, and so on [1]. In these networks, topology
structure describes the coupling states between nodes and plays a key role in the generation
of collective dynamic behaviors [2–4]. However, in reality, many network topologies are
sometimes unknown or uncertain. For instance, if a malfunction occurs in a communication
network, power grid, or the Internet, it is very important to locate the faulty position [5].
As a result, network topology identification is worth investigating.

In the past decade, many methods have been studied for topology identification, such
as the chaotic ant swarm algorithm [6], ROC curve analysis [7], and outer synchronization [8].
Among them, the synchronization-based topology identification method [5,8–13] has gained
a lot of attention. In brief, this method first takes the unknown topology network as the
driver network, and then constructs an auxiliary network with a coupling estimator and
adaptive controllers as the response network. The topology is inferred by the coupling
estimator when outer synchronization is achieved between the drive network and the
response network. The synchronization-based method has been employed to investigate
various network models, such as delayed networks, fractional networks, and multi-
layer networks, see [14–18]. In [19–23], different forms of outer synchronization have
been considered for topology identification, for example, adaptive lag synchronization,
anticipatory synchronization, and generalized outer synchronization. In [24–26], several
control methods have been exploited for network synchronization. It is worth mentioning
that most references were considered under an assumption of linear independence of
inner coupling function, which means the identification would fail if the partial or full
inner synchronization occurs on the network, see [27]. This motivates some researchers to
deal with this problem. In [18], Zhao et al. added sinusoidal interference signals to the
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original network to destroy the inner synchronization. In [28], Zhu et al. added a regulation
mechanism to the network to be identified and constructed an auxiliary network consisting
of isolated nodes of periodic nonlinear dynamical behavior. In [29], Liu et al. regulated the
original network to synchronize with an auxiliary network composed of isolated chaotic
systems to avoid the inner synchronization.

It should be noted that most existing relevant literature on the structure identification
of complex dynamical networks is considered for continuous systems. Given that in the real
world, the dynamics of networks are not only continuous, but also discrete, and sometimes
even hybrid. For instance, a computer control system is a discrete system. Furthermore,
the signal transmission in such networks is not continuous, but intermittent. With this
motivation, the theory of time scale, which unifies continuous and discrete cases into one
theoretical framework, provides a new idea for the study of this problem. Recently, this
novel mathematical theory has been applied to various researches [30–35], especially in
the synchronization of complex networks. Some general results about synchronization
conclusions [16,32,36] and control criteria [35,37,38] have been generated.

Inspired by the identification works in [5,8,9,27,39], and the improved methods
in [28,29], we investigate the topology identification of complex networks with different
time scales in this paper. The main contributions are summarized as follows:

1. We discuss the topology identification of complex networks on the theory of time
scales, which makes the proposed criteria more general. These criteria not only applies
to the continuous cases, but also to the discrete cases with arbitrary time step, and
even to the intermittent cases;

2. To overcome the identification failure caused by the inner synchronization of complex
network, we improve the synchronization-based method on time scales by constructing
a chaotic auxiliary network;

3. An impulsive control method is developed ensuring that the outer synchronization is
between the original network and the auxiliary network. Impulsive control criteria
are offered on time scales.

The paper is organized as follows. We begin by recalling some preliminaries in
Section 2. The topology identification of complex dynamical networks is discussed in
Section 3. A new topology identification model and an impulsive control method are
proposed in Section 4. In Section 5, numerical simulations are performed.

2. Preliminaries

In this section, some basics on time scales and notations are introduced. For a
monograph on time scales, we recommend the interested reader to [40].

LetR,Z andNbe the set of the real numbers, integers, and natural numbers, respectively.
A time scale T is an arbitrary non-empty closed subset of R. Denote hZ B {hk : h ∈ N, k ∈ Z}.
N+ B N \ {0}. µ : T→ [0,∞) is a graininess function which is defined by

µ(t) B σ(t) − t, (1)

where σ(t) B inf{r ∈ T : r > t} is the forward jump operator. t is right-dense if σ(t) = t
and right-scattered if σ(t) > t. ‖ · ‖ denotes the usual Euclidean norm. ⊗ is the Kronecker
product which is defined by

A⊗ B =


a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB


for a matrix A = (ai j) ∈ Rp×q and any matrix B. Iq stands for a q× q identity matrix.



Mathematics 2022, 10, 1755 3 of 14

Definition 1 ([40]). A function p : T→ R is regressive provided

1 + µ(t)p(t) , 0 for all t ∈ T.

The set of all regressive functions is denoted by R.

Definition 2 ([40]). We define the set R+ of all positively regressive elements of R by

R
+ B R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Definition 3 ([40]). Let p, q ∈ R+. We define the time scale circle plus ⊕ by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ T.

Definition 4 ([40]). Let x : T→ Rm. Then, the time scale derivative x∆ is defined by

x∆(t) =


lim

r→t,r∈T

x(t) − x(r)
t− r

if t is right-dense,

x(σ(t)) − x(t)
µ(t)

if t is right-scattered.

Definition 5 ([40]). Let f : T→ R. We define the Cauchy integral by∫ r

s
f (t)∆t = F(s) − F(r) for all r, s ∈ T,

where F∆(t) = f (t) for all t ∈ [r, s].

Lemma 1 ([40]). Assume functions ψ,ω : T→ Rm, ψ and ω are differentiable at t ∈ T. Then, the
following identities hold:

ψ(σ(t)) = ψ(t) + µ(t)ψ∆(t),

(ψω)∆(t) = ψ∆(t)ω(t) +ψ(t)ω∆(t) + µ(t)ψ∆(t)ω∆(t).

Definition 6 ([40]). If p ∈ R and t, s ∈ T, then the only solution of the initial value problem

y∆ = p(t)y, y(s) = 1

is called the time scales exponential function and denoted by ep(t, s).

Lemma 2 ([40]). If p ∈ R+, then

y∆
≤ p(t)y for all t ∈ T

implies
y(t) ≤ y(t0)ep(t, t0) for all t ∈ T.

Lemma 3 ([41]). If p ∈ R+, then

ep(t, s) ≤ exp
{∫ t

s
p(τ)∆τ

}
for all t > s.

Lemma 4 ([42]). The linear matrix inequality (LMI)[
Q(x) S(x)
ST(x) R(x)

]
> 0
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is equivalent to
Q(x) > 0 and R(x) − ST(x)Q−1(x)S(x) > 0,

where Q(x) = QT(x) and R(x) = RT(x).

3. A Complex Network Model and Its Topology Identification

Consider a general time scale dynamical complex network of N dynamical nodes,
each of which is an m-dimensional dynamical system on time scale T. The network is
characterized by

x∆
i (t) = f (xi(t)) +

N∑
j=1

ci jh(x j(t)), i = 1, 2, · · · , N, (2)

where t ∈ T, xi : T→ Rm, xi = (xi1, · · · , xim)
T is the state vector of the i-th node, f : Rm

→ Rm

is a nonlinear vector function representing the node dynamics, h : Rm
→ Rm is the

inner coupling function. The outer coupling matrix C = (ci j) ∈ RN×N is defined as
cii = −

∑N
j=1, j,i ci j. Here, ci j = c ji > 0 (i , j) if there is a connection between node i and j.

Otherwise, ci j = c ji = 0 (i , j). One can easily see that the topology identification of (2) is
dominated by matrix C.

We assume that the state vector xi is observable and can be fully measured. Function
f and h are determined. To recover the unknown matrix C, one can take (2) as the drive
network and construct a time scale response network as

y∆
i (t) = f (yi(t)) +

N∑
j=1

di j(t)h(y j(t)) + µi(t),

µi(t) = − ki(t)(yi(t) − xi(t)),

d∆
i j(t) = − (yi(t) − xi(t))

Th(x j(t)),

(3)

where i, j = 1, 2, · · · , N, t ∈ T, yi : T→ Rm, yi = (yi1, · · · , yim)
T is the state vector of the i-th

node. The outer coupling matrix D(t) = (di j(t)) ∈ RN×N is the estimation of the matrix C
at time t ∈ T, dii = −

∑N
j=1, j,i di j, di j = d ji (i , j). µi(t) is the i-th adaptive controller. ki(t) is

a positive bounded function.
Let ei(t) B yi(t) − xi(t). We have the error dynamical network

e∆
i (t) = f (yi(t)) − f (xi(t)) +

N∑
j=1

(
di j(t)h(y j(t)) − ci jh(x j(t))

)
− ki(t)ei(t), i = 1, 2, · · · , N. (4)

Assumption 1. Assume that there exist positive constants α and β satisfying

‖ f (x) − f (y)‖ ≤ α‖x− y‖,

‖h(x) − h(y)‖ ≤ β‖x− y‖,

for any x, y ∈ Rm.

Definition 7. The error dynamical network (4) achieves asymptotic stability at zero solution if

ei(t)→ 0 as t→∞, i = 1, · · · , N, t ∈ T.

Definition 8. The topology of network (2) can be identified if

lim
t→∞

(
di j(t) − ci j

)
= 0, i, j = 1, 2, · · · , N, t ∈ T.

Lemma 5. If the error dynamical network (4) achieves asymptotic stability at zero solution and the
vectors h(x j), j = 1, 2, · · · , N, are linearly independent at the zero solution, then the topology of
network (2) can be identified.



Mathematics 2022, 10, 1755 5 of 14

Proof. If lim
t→∞

ei(t) = 0, then from (4), we have

lim
t→∞

N∑
j=1

(
di j(t)h(y j(t)) − ci jh(x j(t))

)
= lim

t→∞

 N∑
j=1

(
di j(t) − ci j

)
h(x j(t))

 = 0.

Since h(x j) are linearly independent, di j(t) converges to ci j as t → ∞, concluding
the proof. �

Theorem 1. Let K(t) = diag(k1(t), k2(t), · · · , kN(t)). Assume there exist constant ζ > 0 and
θ ∈ R+ : T→ R such that the matrix −(2IN − µK)K +

(
ζ(α2 + β2) − θ

)
IN is invertible and∫ t

t0

θ(τ)∆τ→ −∞ as t→∞. (5)

For all t ∈ T, if we have

Ω =


−(2IN − µK)K +

(
ζ(α2 + β2) − θ

)
IN IN − µK (IN − µK)D (IN − µK)(D−C)

IN − µK (µ− ζ)IN µD µ(D−C)
D(IN − µK) µD µDTD− ζIN µDT(D−C)

(D−C)(IN − µK) µ(D−C) µ(D−C)TD µ(D−C)T(D−C)

 ≤ 0, (6)

then the error dynamical network (4) achieve asymptotical stability at zero solution.

Proof. Set V(t) B
∑N

i=1 eT
i (t)ei(t), t ∈ T. We have

V∆ =
N∑

i=1

((
eT

i

)∆
ei +

(
eT

i

)σ
e∆

i

)
=2

N∑
i=1

eT
i ( f (yi) − f (xi)) + 2

N∑
i=1

eT
i

N∑
j=1

di j
(
h(y j) − h(x j)

)
+ 2

N∑
i=1

eT
i

N∑
j=1

(di j − ci j)h(x j) − 2
N∑

i=1

ki(yi − xi)
T(yi − xi)

+ µ

 N∑
i=1

( f (yi) − f (xi))
T( f (yi) − f (xi)) + 2

N∑
i=1

( f (yi) − f (xi))
T

N∑
j=1

di j
(
h(y j) − h(x j)

)
+ 2

N∑
i=1

( f (yi) − f (xi))
T

N∑
j=1

(
di j − ci j

)
h(x j) − 2

N∑
i=1

ki( f (yi) − f (xi))
T(yi − xi)

+
N∑

i=1

N∑
j=1

di j
(
h(y j) − h(x j)

)T
N∑

j=1

di j
(
h(y j) − h(x j)

)
+ 2

N∑
i=1

N∑
j=1

di j(t)
(
h(y j(t)) − h(x j(t))

)T
N∑

j=1

(
di j(t) − ci j

)
h(x j(t))

+
N∑

i=1

N∑
j=1

(
di j − ci j

)
hT(x j)

N∑
j=1

(
di j − ci j

)
h(x j) − 2

N∑
i=1

ki

N∑
j=1

(
di j − ci j

)
hT(x j)(yi − xi)

−2
N∑

i=1

ki

N∑
j=1

di j
(
h(y j) − h(x j)

)T
(yi − xi) +

N∑
i=1

k2
i (yi − xi)

T(yi − xi)

, t ∈ T.
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We introduce the notations

E(t) = (eT
1 (t), eT

2 (t), · · · , eT
N(t))

T, t ∈ T,

G1(t) = (gT
11(t), gT

12(t), · · · , gT
1N(t))

T, t ∈ T,

G2(t) = (gT
21(t), gT

22(t), · · · , gT
2N(t))

T, t ∈ T, (7)

H(X(t)) = (hT(x1(t)), hT(x2(t)), · · · , hT(xN(t)))T, t ∈ T,

where g1i(t) B f (yi(t)) − f (xi(t)), t ∈ T and g2i(t) B h(yi(t)) − h(xi(t)), t ∈ T, i =
1, 2, · · · , N.

From Assumption 1, we have

ζ
(
GT

1 G1 + GT
2 G2

)
= ζ

 N∑
i=1

gT
1ig1i +

N∑
i=1

gT
2ig2i


≤ ζ

(
α2 + β2

)
ETE, t ∈ T. (8)

Then, we have

V∆
− θV ≤2ETG1 + 2ET(D⊗ Im)G2 + 2ET((D−C) ⊗ Im)H(X) − 2ET((K − θIN) ⊗ Im)E

+ ζ
(
α2 + β2

)
ETE− ζ

(
GT

1 G1 + GT
2 G2

)
+ µ

[
GT

1 G1 + 2GT
1 (D⊗ Im)G2 + 2GT

1 ((D−C) ⊗ Im)H(X)

− 2GT
1 (K ⊗ Im)E + GT

2

(
DTD⊗ Im

)
G2 + 2GT

2

(
DT(D−C) ⊗ Im

)
H(X)

− 2ET(KD⊗ Im)G2 + HT(X)
(
(D−C)T(D−C) ⊗ Im

)
H(X)

−2ET(K(D−C) ⊗ Im)H(X) + ET
(
K2
⊗ Im

)
E
]

≤QT(Ω ⊗ Im)Q, t ∈ T,

where Q =
(
ET, GT

1 , GT
2 , HT(X)

)T
. By (6), V∆

− θV ≤ QT(Ω ⊗ Im)Q ≤ 0, i.e.,

V∆
≤ θV, t ∈ T. (9)

Since θ ∈ R+, using Lemma 2, we have

0 ≤ V(t) ≤ eθ(t, t0)V(t0), t ∈ T, (10)

where t > t0. Without loss of generality, we assume the initial value V(t0) , 0. According
to Lemma 3, it follows that

0 ≤ eθ(t, t0) ≤ exp
{∫ t

t0

θ(τ)∆τ
}

, t ∈ T. (11)

From (5) and (11), we have eθ(t, t0) → 0 as t → ∞. This leads to V(t) → 0 as t → ∞.
Since the non-negativity of V(t), we have ei → 0 as t→∞. Thus, we conclude that the error
systems (4) achieve asymptotic stability at their zero solution. �

Remark 1. If the condition (6) holds, due to Lemma 4, we have

−(2IN − µK)K +
(
ζ(α2 + β2) − θ

)
IN < 0, t ∈ T.

Then,
θ(t) > λmax

(
−(2IN − µK)K + ζ(α2 + β2)IN

)
, t ∈ T, (12)

where λmax(·) is the maximum eigenvalue function.
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4. Modified Topology Identification Based on Impulsive Synchronization

We can see that from Lemma 5 it would not be convenient to reveal the topology
of network (2) by using the linear independence of h. In this section, we make some
improvement for Lemma 5.

Consider the same dynamical network (2). In order to identify the unknown outer
coupling matrix C, we construct an auxiliary network consisting of N isolated nodes

ŷi(t)∆ = f (ŷi(t)), i = 1, 2, · · · , N,

where ŷi : T → Rm, ŷi = (ŷi1, · · · , ŷim)
T is the state vector of the i-th node. We employ

a chaotic system as node dynamics so that the state of the node will be chaotic. The
word “chaos” is commonly used to describe a state of disorder. However, there is no
universally accepted mathematical definition of chaos. One widely used definition states
that a dynamical system must exhibit the features that it is sensitive to initial conditions
and topologically transitive. One knows that the state ŷi is bounded. We set the initial
states of the nodes to be different from each other. Thus, the states ŷi, i = 1, 2, · · · , N, are
linearly independent. We rewrite the adaptive controller µi(t) as follows:

µi(t) = ki(t)(ŷi(t) − xi(t)) −
N∑

j=1

d̂i j(t)h(ŷ j(t)), (13)

where d̂∆
i j(t) = −(ŷi(t) − xi(t))

Th(x j(t)). Then, we apply µi(t) on the original network,
which results in

x∆
i (t) = f (xi(t)) −

N∑
j=1

(
d̂i j(t)h(ŷ j(t)) − ci jh(x j(t))

)
+ ki(t)(ŷi(t) − xi(t)). (14)

Again, let êi(t) = ŷi(t) − xi(t). We obtain the error dynamical system

ê∆
i (t) = f (ŷi(t)) − f (xi(t)) +

N∑
j=1

(
d̂i j(t)h(ŷ j(t)) − ci jh(x j(t))

)
− ki(t)êi(t), i = 1, 2, · · · , N, (15)

which has the same representation as e∆
i (t) in (4). Hence, Theorem 1 can also be used

for (15). Moreover, we apply impulsive controllers onto the drive network (14), thus the
controlled drive network can be expressed as x∆

i (t) = f (xi(t)) −
∑N

j=1

(
d̂i j(t)h(ŷ j(t)) − ci jh(x j(t))

)
+ ki(t)(ŷi(t) − xi(t)), t , tl,

xi
(
t+l

)
= xi

(
t−l

)
+ Bi(tl)

(
xi
(
t−l

)
− ŷi

(
t−l

))
, t = tl,

(16)

where l ∈ N, the discrete time sequence of impulses satisfies

t1 < t2 < · · · < tl < · · · with lim
l→∞

tl = ∞.

xi
(
t+l

)
= limt→t+l

xi(t), xi
(
t−l

)
= limt→t−l

xi(t). Bi(tl) ∈ Rm×m are impulsive gains at tl, and

Bi(t) = 0 for t , tl, i = 1, 2, · · · , N, l ∈ N. Here, we assume ŷi(tl) = ŷi
(
t+l

)
= ŷi

(
t−l

)
,

xi(tl) = xi
(
t−l

)
. Then, the impulsive error system is written as ê∆

i (t) = f (ŷi(t)) − f (xi(t)) +
∑N

j=1

(
d̂i j(t)h(ŷ j(t)) − ci jh(x j(t))

)
− ki(t)êi(t), t , tl,

êi
(
t+l

)
= (Im + Bi(tl))êi

(
t−l

)
, t = tl,

(17)

where êi
(
t+l

)
B limt→t+l

êi(t) and êi
(
t−l

)
B limt→t−l

êi(t).
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Theorem 2. Let φi(t) = λmax
(
(Im + Bi(t))

T(Im + Bi(t))
)

and φ(t) = max(φ1(t),φ2(t), · · · ,
φN(t)). Assume θ ∈ R+ : T→ R. If there exists δ > 1, such that

δφ(tl)eθ(tl, tl−1) < 1 for all t ∈ T, l ∈ N, (18)

then the impulsive system (17) is asymptotically stable at the zero solution.

Proof. We consider the function V(t) B
∑N

i=1 êT
i (t)êi(t). It follows from (9) and (10) that

V∆(t) ≤ θ(t)V(t), t ∈ [tl−1, tl), (19)

and
V(t) ≤ eθ(t, tl−1)V

(
t+l−1

)
, t ∈ [tl−1, tl). (20)

It can be obtained from the second equation of (17) that

V
(
t+l−1

)
=

N∑
i=1

[
(Im + Bi(tl−1))êi

(
t−l−1

)]T[
(Im + Bi(tl−1))êi

(
t−l−1

)]
=

N∑
i=1

êT
i

(
t−l−1

)[
(Im + Bi(tl−1))

T(Im + Bi(tl−1))
]
êi
(
t−l−1

)
≤

N∑
i=1

φi(tl−1)êT
i

(
t−l−1

)
êi
(
t−l−1

)
(21)

≤ φ(tl−1)
N∑

i=1

êT
i

(
t−l−1

)
êi
(
t−l−1

)
= φ(tl−1)V

(
t−l−1

)
.

Next, we choose l = 1, the Equation (20) can be written as

V(t) ≤ eθ(t, t0)V
(
t+0

)
, t ∈ [t0, t1).

Hence, we have
V(t1) ≤ eθ(t1, t0)V

(
t+0

)
and

V
(
t+1

)
≤ φ(t1)V(t1) ≤ φ(t1)eθ(t1, t0)V

(
t+0

)
.

For t ∈ [t1, t2), we have

V(t) ≤ eθ(t, t1)V
(
t+1

)
≤ eθ(t, t1)φ(t1)eθ(t1, t0)V

(
t+0

)
and

V
(
t+2

)
≤ φ(t2)V(t2) ≤ φ(t2)eθ(t2, t1)φ(t1)eθ(t1, t0)V

(
t+0

)
.

Consequently, one can get a more general inequality

V(t) ≤ eθ(t, tl)φ(t)eθ(tl, tl−1) · · ·φ(t2)eθ(t2, t1)φ(t1)eθ(t1, t0)V
(
t+0

)
, t ∈ [tl, tl+1).

Using the condition (18), we can now have

V(t) ≤ eθ(t, tl)
1
δl

V
(
t+0

)
. (22)

Due to δ > 1, it leads to
V(t)→ 0 as l→∞.

Therefore, we have ê(t)→ 0 as t→∞, concluding the proof. �
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5. Numerical Examples

In this section, three numerical examples with different time scales are given to verify
our theoretical results. Precisely, examples show how the topology of dynamical networks

are identified with T = R, T = hZ and T =
∞⋃

j=0
[ j(a + b), j(a + b) + a], a, b > 0, respectively.

For simplicity, we consider the networks consisting of four identical dynamical nodes.
Without loss of generality, the inner coupling function is simplified as h(x j) = x j and the
coefficient of adaptive controller is set as ki = 1, i = 1, 2, · · · , N. All examples are simulated
by random initial values. We can find the appropriate ζ, such that ζ

(
α2 + β2

)
= 1.

Example 1. In this example, we consider the continuous case and suppose T = R, such that
µ(t) ≡ 0. The chaotic Chen oscillator is taken to simulate each node of the network: for i = 1, 2, 3, 4,
f (xi) = (35(xi2 − xi1);−7xi1 − xi1xi3 + 28xi2; xi1xi2 − 3xi3). The unknown outer coupling matrix
C is preset to c1,2 = c2,1 = 4, c1,3 = c3,1 = 7, c1,4 = c4,1 = 3, c2,3 = c3,2 = 6, c2,4 = c4,2 = 0,
c3,4 = c4,3 = 2. The topology structure is shown in Figure 1. According to Remark 1, we have
θ(t) > −1. Therefore, the conditions in Theorem 1 can be satisfied when θ(t) ∈ (−1, 0). Figure 2
shows the results of our simulation whenT = R. As can be seen, the estimated value di j continuously
approaches the preset value ci j without additional control. The network topology is successfully
identified.

Example 2. In this example, we consider the discrete case and suppose T = 2Z, such that
µ(t) ≡ 2. The chaotic Hénon map is taken to simulate each node of the network: For i = 1, 2, 3, 4,
f (xi) =

(
1 + xi2 − 1.4x2

i1; 0.3xi1
)
. The unknown outer coupling matrix C is preset to c1,2 = c2,1 = 2,

c1,3 = c3,1 = 6, c1,4 = c4,1 = 2, c2,3 = c3,2 = 7, c2,4 = c4,2 = 6, c3,4 = c4,3 = 1. The topology
structure is shown in Figure 3. According to Remark 1, we have θ(t) > 1. From (18), if we choose
Bi(t`) = diag(−0.88,−0.88), i = 1, 2, 3, 4, θ = 2 and δ = 1.27, then we have ∆` ≤ 2.0008.
Without loss of generality, we choose ∆` = 2. Figure 4 shows the results of our simulation when
T = 2Z. As can be seen, the estimated value di j approaches the actual value ci j discretely with
impulsive control every 2 s. The network topology is successfully identified.

Example 3. In this example, we suppose T =
∞⋃

j=0
[ j(a + b), j(a + b) + a], a, b > 0. Specifically,

we let a = 2 and b = 2 then T =
∞⋃

j=0
[4 j, 4 j + 2]. The graininess function of T is given by

µ(t) =


0, if t ∈

∞⋃
j=0

[4 j, 4 j + 2),

2, if t ∈
∞⋃

j=0

{4 j + 2}.

We consider the same unknown outer coupling matrix C as indicated in Example 1. The
chaotic Chen oscillator is taken to simulate each node of the network: For i = 1, 2, 3, 4, f (xi) =(
10(xi2 − xi1); 28xi1 − xi1xi3 − xi2; xi1xi2 −

8
3 xi3

)
. In this case, θ(t) can be chosen by any value

between −1 and 0 when µ(t) = 0. When µ(t) = 2, θ(t) > 1. From (18), if we choose Bi(t`) =
diag(−0.88,−0.88,−0.88), i = 1, 2, 3, 4, θ = 2 and δ = 1.1, then we have ∆` ≤ [2.0726] = 2,
which means that impulsive control occurs at each time point of multiples of 2. Figure 5 shows
the results of our simulation for this case. As can be seen, the estimated value di j approaches the
preset value ci j intermittently with impulsive control every 2 s. The network topology is successfully
identified.
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Figure 1. Topology structure of the dynamical network in Example 1 and 3.
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Figure 2. Topology identification for the dynamical network in Example 1.
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Figure 3. Topology structure of the dynamical network in Example 2.
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Figure 4. Topology identification for the dynamical network in Example 2.
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Figure 5. Topology identification for the dynamical network in Example 3.

6. Conclusions

In this paper, a topology identification problem of complex dynamical networks on
different time scales is studied. We have investigated the outer synchronization between
the original network and the auxiliary network on time scales. General synchronization
criteria have been proposed according to the matrix inequality and time scale regressive
condition. Moreover, we have applied the adaptive controller on the original network
and taken the impulsive method to synchronize with the auxiliary chaotic network. An
impulsive criterion has been derived to ensure the outer synchronization. Three examples
on different time scales have been given to verify our results. The proposed ideas and
methods can be extended to the topology identification problem of other complex networks.
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