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Abstract: The accuracy of short-term traffic flow prediction is one of the important issues in the
construction of smart cities, and it is an effective way to solve the problem of traffic congestion. Most
previous studies could not effectively mine the potential relationship between the temporal and
spatial dimensions of traffic data flow. Due to the large variability in the traffic flow data of road
conditions, we analyzed it with “dynamic”, using a dynamic-aware graph neural network model for
the hidden relationships between space-time in the deep learning segment. In this paper, we propose
a dynamic perceptual graph neural network model for the temporal and spatial hidden relationships
of deep learning segments. This model mixes temporal features and spatial features with graphs
and expresses them. The temporal features and spatial features are connected to each other to learn
potential relationships, so as to more accurately predict the traffic speed in the future time period, we
performed experiments on real data sets and compared with some baseline models. The experiments
show that the method proposed in this paper has certain advantages.

Keywords: traffic flow; deep learning; graph neural network; forecasting

MSC: 90B20

1. Introduction

Traffic flow prediction is conducive to the mitigation of traffic congestion and the
development of smart cities. The improvement of short-time traffic flow prediction accuracy
has important implications for travel route planning. Traffic flow prediction is affected
by many factors, such as weather, traffic accidents and other unpredictable factors. Better
learning about spatiotemporal traffic data relationships is an important factor in predicting
accuracy [1]. In recent deep learning based approaches, most of the researchers consider
the correlation between temporal and spatial dimensions data separately. Some approaches
propose a layered method to learn the data correlation between temporal and spatial
dimensions, and then integrate the calculation results of each layer [2–4]. In this way, the
data correlation of the spatial and temporal dimensions of the traffic data stream may be
insufficiently mined [1]. However, graph neural network(GNN) method in the field of
deep learning has powerful ability to learn complex data relationships and mine potential
features [5,6]. We might be able to closely link the spatiotemporal data of the traffic data
stream based on the ability of GNN, and predict the traffic more accurately by learning the
value information hidden in it.

In recent years, deep learning methods have been widely used in traffic flow predic-
tion problems. such as Convolutional Neural Network (CNN) [7], Long Short-Term Mem-
ory (LSTM) [8], Recurrent Neural Network (RNN) [9,10], deep and embedding learning
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approach (DELA) [4], deep belief networks (DBN) [11], stacked autoencoder Levenberg–
Marquardt [2]. These are the most popular methods in the field of deep learning. They can
handle non-linear problems well and deeply mine the previous potential associations of
the data. These methods have been widely used in various fields, especially in traffic flow
forecasting work. However, Most methods ignore the importance of the spatiotemporal
correlation of traffic data. Some methods of spatiotemporal traffic prediction still have
insufficient methods for feature selection and extraction of spatiotemporal data [1]. Some
methods can only work if the amount of data is large enough [12]. Much work remains
to improve the accuracy of predictions. In the past few years, graph neural networks
have been widely used and researched. It has strong ability to handle non-linear and
deep mining of complex relationships between data. It has excellent performance in text,
medicine, image analysis, etc. [5].

This paper proposes a new spatio-temporal relationship learning model. This model
aims to mine the hidden relationships of different sections at different time periods, and
solves the problem that many models lack the ability to learn spatio-temporal relationships.
The model expresses the relationship between road sections as a directed graph. The
embedding process of the nodes is divided into two parts, which are the node relationship
node embedding and the node embedding of the road sections at different times. The
model focuses on studying the spatiotemporal relationship of road sections in different
time periods. The effect of the model is tested on multiple real traffic datasets, and other
baseline models are compared. The model proposed in this paper shows good prediction
results. The second section describes and analyzes the current traffic flow prediction
methods, compares the advantages and disadvantages of different methods, and highlights
some of the current spatiotemporal graph neural network methods and their shortcomings.
The third section describes the detailed process of the proposed method, including the
construction of directed graphs, the embedding process of two types of nodes, and the
prediction process. The fourth section describes the performance of the proposed method
on real data sets, and analyzes the performance between different algorithms. The fourth
section summarizes the work of this paper and proposes future research work.The model
can be used to study real-time traffic conditions, reasonable road planning, intelligent
dispatch of signal lights, real-time analysis of traffic flow, timely prediction of possible
traffic accidents, and it can also be used apply to departments that require road data and
traffic monitoring. For decades, experts and scholars around the world have developed a
variety of short-term traffic flow prediction models using methods from various disciplines,
and we have consulted the literature and summarized them, which can be roughly divided
into four types of models: predictive models based on intelligence theory, predictive
models based on nonlinear theory, predictive models based on linear statistics, and traffic
simulation models. In this paper, we mainly study the neural network model of the
predictive model based on intelligence theory. At present, there are differences in traffic
flow prediction studies at home and abroad. Due to the late start of traffic flow prediction
in China, some model algorithms are not very applicable, such as people using regression
method and speed density traffic flow model to predict traffic conditions. This method has
the advantages of flow rate linear regression maturity, simple detection equipment, small
size and reasonable price; But its drawbacks are also very obvious, mainly in real time.

2. Related Work

Traffic flow prediction can effectively deal with the problem of traffic congestion.
Traffic flow prediction is closely related to time series and the spatial distribution of
roads. It processes a large amount of traffic data and analyzes the potential correlation
between complex traffic environment data. The traffic prediction model will use the
collected historical traffic flow data as input data, and process the model to output future
traffic flow. Such models include differential integrated moving average autoregressive
model (ARIMA) [13], k-Nearest Neighbor algorithm (k-NN) [14], Multilayer Perceptron
(MLP) [15], Neural Network Model and Kalman filter (KF) [16]. It is not difficult to see
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from many literatures that there are currently a variety of algorithms applied to intelligent
traffic flow prediction problems. These methods can be roughly divided into three types
of methods: model statistics, traditional machine learning, and deep learning, and deep
learning methods. Model statistical methods include multiple linear regression methods,
exponential smoothing methods, and differential integrated moving average autoregressive
models. Machine learning methods include k-nearest neighbor algorithm (k-nn) [14],
Markov [17], and artificial neural network (ANN) [18]. Wu and at all proposed a new traffic
flow prediction model Based on GNN, Bi-GRCN, which combines GCN and Bi-GRU. By
using real traffic data and comparing Bi-GRCN with other neural network models and
traditional traffic prediction methods. They came to experimental conclusions; compared
to GCN and GRU, Bi-GRCN has higher accuracy and better traffic prediction performance.
Bi-GRCN is also more effective than traditional traffic prediction methods HA, ARIMA
and SVR [19]. Jiang and his colleagues present an effective multi-step traffic prediction
model, ABSTGCN-EF, which combines GCN and AEN. They added a meaningful time slot
notation mechanism to the model. The results show that the model ABSTGCN-EF has great
potential in exploring the structure of space-time, and at the same time, it also has better
modeling capabilities and may have stable performance in longer prediction tasks [20].
Zakarya also proposed a novel deep spatiotemporal neural network model DHSTNet,
and the DHSTNet model they proposed considered LSTM and CNN models to achieve
the advantages of spatiotemporal features. They also benefited from GCN-DHSTNet,
which further developed a graph convolutional network that allowed it to capture both
spatio-temporal features as well as external branches. By comparing two real-world traffic
datasets, we can see the superiority of the GCN-DHSTNet model over the most advanced
models available [21].

3. Statistical Methods

In the early days of traffic flow prediction, statistical models dominated, and the
method was usually based on the assumption of specific functions for certain variables.
These methods are simple and efficient, and can predict the distribution and cycle infor-
mation of traffic flow data. However, the prediction of traffic flow is affected by multiple
factors, and simple statistical models cannot deeply dig the potential relationships between
various aspects of data, leading to problems such as insufficient prediction accuracy. The
representative statistical model methods include differential integrated moving average
autoregressive model (ARIMA) [13], exponential smoothing method, Holt-Winter [22]
method and other improved methods Dantas et al. [23], Abadi et al. [24], Williams and
Hoel [25]. When analyzing historical data such as traffic flow, traffic speed, and travel time
based on statistical model construction methods, many assumptions are often proposed.
These assumptions are generally based on the existing characteristics of historical data, and
historical traffic data are also given to future traffic data. Data characteristics: for example:
traffic rate, weather conditions, and road congestion in historical time, but this type of
method does not take into account changes caused by future weather conditions, road
visibility, and traffic accidents.

3.1. Traditional Machine Learning Methods

Machine learning methods can be roughly divided into supervised learning, unsuper-
vised learning, etc. Supervised learning has feature and label, even if the data are unlabeled,
it can also be determined by learning the relationship between features and labels, and it can
generate a function to map the input to the appropriate output through the correspondence
between the existing part of the input data and the output data.In contrast, unsupervised
learning has only features, no labels, and it divides data into several classes (clusters)
through their intrinsic connections and similarities. At the same time, it can also learn some
characteristics from the data according to a certain measure according to the characteristics
of the data itself. Widely used supervised learning techniques include ANN [26], Support
Vector Machines (SVM) [27], Bayesian Methods [28], and k-Nearest Neighbors (k-NN) [29],
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while popular unsupervised learning techniques include k-means [30], autoencoder [31],
principal component analysis (PCA) [32], DBN [11] For each data set, a set of attributes
called features will be extracted as input to the ML model. In addition, if the data has high
dimensionality, it is difficult to extract the correct features. Similarly, feature evaluation and
extraction based on manually labeled data is also a time-consuming task. According to the
above research, traffic flow prediction technology can be roughly divided into: parametric
algorithm and non-parametric algorithm.

Parametric algorithms (model-based algorithms) consist of a fixed number of param-
eters that are based on certain assumptions about the format of the data. The parameter
algorithms that make static assumptions greatly reduce the computational difficulty and
complex traffic data relationships. In addition, uncertainty, so it does not apply to traffic
datasets. In contrast, non-parametric algorithms are not constrained by various assumed
parameters. In these algorithms, the data are not assumed to follow any distribution or
model. While the parametric approach is useful when observed traffic patterns change
regularly, errors are expected in the presence of periodic variations and irregular noise.
Therefore, nonparametric methods are more popular in forecasting due to the presence of
complex and nonlinear patterns in traffic flows. Popular nonparametric methods include
models such as SVM, SVR, wavelet analysis, ANN, DL, and time series models, with KF
and linear regression being typical parametric methods. In addition, Bayesian networks
can be used to process traffic flow data because of its variability and the ability to calculate
predicted averages quickly. In addition, the model can update predictions when new data
are available. Bayesian networks enable a probability distribution between the input and
output of traffic flow data. The authors in [33] designed a Bayesian model that uses spatial
historical traffic data from adjacent road links to predict traffic flow in road segments. In
addition, in order to add spatiotemporal information, the authors in [34] designed Bayesian
networks by using Pearson correlation coefficients to select input variables. In addition,
refs. [35–37] have used Bayesian networks for traffic flow prediction [19].

3.2. Deep Learning Methods

Artificial neural networks have been served as a powerful method for mathematical
modeling of traffic data. The capabilities provided by artificial neural networks include
self-learning, self-organization, and pattern recognition. They can also perform nonlinear
approximation learning between input and output spaces. As nonparametric methods,
they do not make any type of assumptions about the distribution of the data. In addition,
the parallel structure of artificial neural networks makes their implementation on parallel
computers very efficient. In the unsupervised DL algorithm, it was found that the DBN
model can extract random features without the need to manually extract features. The
author [38] use DBNs to learn robustness and nonlinearity from flow-in data. This paper
proposes a two-layer deep learning model that combines the regression layer at the top
with the DBN at the bottom. This approach supports Multitasking Learning (MTL), where
different tasks are integrated and models are trained together. To get better predictions,
MTL uses the idea of weight sharing in DBN [39]. Here, the sigmoidal regression function
is used at the top to perform supervised fine-tuning. Experiments show that the overall
performance can be improved by the MTL scheme. Similarly, for experimental authors,
DBNs with different depths and number of nodes were used. In addition, the author in [40]
proposed a DBN-based traffic flow prediction model. A variant of The Demoster-Shafer
evidence theory that uses The Demoster conditional rules, combines predictive beliefs
in data history structures with anomalous event data modules. Here, the supervised BP
algorithm is used to implement multitasking learning. In addition, due to the dynamic
nature of traffic data, traffic flow does not always follow the same pattern throughout
the day. For example, the density of traffic during the day is greater than the density of
traffic at night. In this case, ref. [41] Zhang et al. genetic algorithm was used to extract the
optimal hyperparameters of DBN at different time intervals. In addition, the authors in [42]
discussed the effects of pre-training with different DBNs.
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4. Methodology

As the problem of traffic forecasting is getting more and more attention and a large
amount of hardware for traffic data collection is currently being invested in traffic monitor-
ing, the amount of traffic data continues to increase. We need efficient computing models
for analyzing traffic data. At present, there are many models for analyzing and predicting
traffic flow. GraphSAGE is a model that uses neighbor node aggregation to efficiently learn
nodes. It has good computational efficiency and command in classification problems, sys-
tem recommendations, and drug detection. Satisfactory performance. However, the data
objects it processes mainly have non-time series and strong order characteristics. Traffic
flow data has strong time series characteristics, and the potential relationship between
time and space is more complicated. Therefore, GraphSAGE cannot handle such problems
well. This paper proposes a new type of spatio-temporal graph neural network for learning
and predicting traffic flow. This model borrows the idea of the GraphSAGE model and
constructs a directed graph to represent the spatio-temporal relationship between routes.
Skip-gram [43] method to perform unsupervised learning on a certain road segment to
predict the traffic situation at the future moment. The innovation of this model is that Graph
SAGE is an inductive graph learning model that first samples nodes, then aggregates adja-
cent information, and finally processes the final task (such as node classification). Different
from the general matrix decomposition-based graph embedding method, Graph SAGE
uses the characteristics of nodes (such as text, node degree, node attribute description, etc.)
to learn the node embedding pattern (i.e., function, etc.), rather than directly learning the
final node embedding, so it can use a good learning node embedding mode to deal with
unseen nodes and even see new graph structures.

4.1. The Define of STGNN

STGNN’s name is “Space And Time Graph Neural Network”. STGNN is a spa-
tiotemporal GNN framework specifically designed to model a series of data with complex
topologies and time dependencies. This paper mainly predicts the traffic flow under com-
plex road conditions and studies the spatio-temporal relationship between roads. The road
variants included in Figure 1 are complex and substantially consistent with most complex
road conditions, so they can provide a reasonable and effective premise for the research in
this paper. We transform the road structure into a structure represented by a undirected
graph, and turn the problem of predicting road traffic flow into a problem of learning the
correlation between nodes in the graph. We focus on learning the implicit information
about the changes in traffic flow between different sections of the road at different times.
We can predict the traffic flow situation in the future time period based on the historical
traffic data changes of the road sections and the implicit relationship between the road
sections. As shown in Figure 1, it is an example of road structure. We divide all roads into
7 sections, named Route A, Route B, Route C, Route D, Route E, Route F, and Route G. It
contains two crossroads, one of which has a sidewalk. Route C, F and G are from the same
straight road. Route B and D can form a straight road. Route A and E are on the same
road. Route C, B, D and G can communicate with each other route. There is a complex
relationship between routes, which affect each other. In addition, the degree of influence
between the lines is slight, such as the effect between route B and route F is less than route
F and route G. We can observe that route B and F are more closely related, while route F
and G are more alienated.
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Route ARoute A

Route BRoute B

Route CRoute C

Route DRoute D

Route ERoute E

Route FRoute F

Route GRoute G

Figure 1. An example of road structure.

As shown in Figure 2, We represent road relationships as graph relationships, with all
alignments as corresponding nodes in the graph, all the routes as the corresponding nodes
in the graph, and the connectivity between the routes as the lines between the nodes in the
directed graph. We can express the road structure by the following rules:

R = G(N, Es, Ee) (1)

where R denotes the whole road structure, N denotes the all the routes, Es denotes the start
location of the route, Ee denotes the end location of the route. In addition, N contains two
types of nodes, one is the the embedding node of the route, another one is the embedded
representation of the same route at different time periods.

A

C

B

F

D

G

E

Figure 2. Graph structure representation between different road sections.



Mathematics 2022, 10, 1754 7 of 14

As shown in Figure 3, it describes the spatio-temporal relationship of road sections.
The node E1 represents the embedded representation of route E in a certain time. Further-
more, E and E1 both interact with each other and update features. Similarly, this way also
works for G and G1, A and A1, etc. We can use the following equation to represent the
relationship between nodes:

Gst :=(R, Rt)

=(G(N, Es, Ee), Gt(Nt, Est, Eet))
(2)

where Gst denotes the spatio-temporal directly graph, R can be known from the
Equation (1), Rt contains embedded representation of the routes at different time pe-
riods, the nodes are denoted as Nt, such as E1, A1, G1, D1 and so on. Nodes in the same
time period can be connected in both directions. Nodes in different time periods cannot
be connected or can only be unidirectional. Est denotes the start node of Gt, Eet denotes
the end node of Gt. We can observe that E1 and A1, E and A are all connected in both
directions, but E1 and A cannot be directly connected. N and Nt have the same structure.

A

C

B

F

D

G

E

E1

G1
A1

F1

D1

B1

C1

Figure 3. Graphic representation of Spatio-temporal relationship of road sections.

As shown in Figure 3, we can define N = {A, B, C, D, E, F, G}, N1 = {A1, B1, C1, D1, E1,
F1, G1}. We can observe that A ↔ A1, it means A is the start node and A1 is the end
node when A→ A1. Similarly, A↔ F, A↔ E and A↔ G. In addition, we can find that
A1↔ A, A1↔ E1, A1↔ G1 and A1↔ F1. But, we can observe that A1 is not connected
to E, it is expressed as A1 = E. Others related to A1 are denoted as A1 = G, A1 = F.

Next, we can observe from Figure 4 that the E node and the road segment E are
represented at different time periods and the relationship between the nodes at different
time periods. E1 is the embedding of road segment E at time t1, we denote this as follow:

F = {N1, N2, N3, . . . , Ni}
Ni = (VN , Ti), (0 < i, Ti = Ti−1)

(3)

where Ti denotes a time period, VN is the traffic flow features of route N, the value of VN is
different between Ti and Ti−1, Ni is the embedding vector, F denotes the node embedding
vector for all time periods. Although Ti and Ti−1 have the same value, Ni and N(i− 1) is
different. From Equation (3), we know that E1, E2, E3, E4, Ei and Ep are denoted the route
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E embeddding during different time periods. Especially, Ep is the node that denoted in the
future time period.

As shown in Figure 4a shows that E1→ E2, E2→ E3, E3→ E4, E4→ Ei, Ei → Ep,
but Ep 8 Ei, Ei 8 E4, E4 8 E3, E3 8 E2, E2 8 E1. It is shown in Figure 4b that nodes at
different times are serialized, and the closest node Ep in time is the node where we want to
predict the information. We may be able to get the node Ep we want to get from node E
and node Ei.

E

E1

E2

E3

E4

Ei

Ep

E E1 E2

E3E4Ei

Ep

history

predection

(a) (b)

Figure 4. Temporal graph structure for a single node. (a) Graphic representation of Spatio-temporal
relationship of a road section. (b) Representation of traffic flow at different time periods on a
road section.

4.2. The Prediction Process of STGNN

As shown in Figure 5, the spatio-temporal graph neural network mainly includes two
types of node embeddings: the node embedding of the directed graph initialization of the
relationship between the original road segments and the traffic flow node embedding of
the road segments at different times.

The initialization process of constructing a multi-segment segment as a directed graph
is also the embedding process of the segment node. First, find the connectable neighbors
of the new node A. The range of the neighbors is controlled by the value of k. When
k = 1, the nearest effective neighbor to A is selected. These neighbor nodes also have their
own neighbor nodes, and then select the effective neighbor nodes of node A’s neighbor
nodes when k = 2, and can freely control the value of k as needed, and finally perform
an aggregation operation on all selected nodes to obtain the characterization of node
A information.

The traffic flow of the road section at different times can be represented by different
nodes. Assume that node Ati represents the state of node A at time ti. Ati is only related to
the node of ti−1, and Ati is directly related to node A. Set k = 1. When the node Ati needs
to be embedded, first find if there are any other nodes in the time period at t(i−1). If there
is a node connected to the node, select its neighbor node. Similarly, set k = 2 as needed,
and then find the neighbor nodes of the selected neighbor nodes, and so on. Finally, Ati ’s
representation vector is obtained based on the aggregation of these neighbor nodes.
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Finding spatio-temporal 
neighborhoods for new nodes

K=1

Aggregete feature information from the 
spatio-temporal neighborhoods 

K=2 Aggregete Finish

Route node embedding process

Figure 5. The spatio-temporal graph neural network prediction process.

5. Experiments
5.1. Datesets Details

In this section we use two real datasets to verify the validity of the STGNN model.
They are METR-LA and PEMS-BAY. METR-LA is the data collected by the monitors on
the Highway of Los Angeles County. Here we use the data of 207 sensors and select the
data from 1 March 2012 to 30 June 2016 as our experimental data [44,45]; PEMS-BAY is
from California Transportation Agencies. The data of 325 sensors in this data set is from
1 January 2017 to 31 May 2017. We aggregate the readings of the two traffic data in 5 min
units and use the Z-Score method to normalize the data. We also select 70% of data for
training, 20% of data for testing, and the remaining 10% of data for verification [45]. In
order to obtain the attributes of the length of the segment between the sensors, we use the
thresholded Gaussian Kernel Method to build the adjacency matrix [45]. The calculation
formula is shown below:

Wij = exp

(
−

dist
(
vi, vj

)
σ

)
(4)

In our experiments, we set Vij = dist
(
vi, vj

)
, if Vij 5 κ, we set Vij = 0, Wij denotes the

weight of the road from vi to vj, dist
(
vi, vj

)
denotes the distance from sensor vi to sensor vj.

5.2. Comparison Models

We have selected several classic models to compare the performance of the models
proposed in this paper. These models are Historical Average (HA), Auto-Regressive Inte-
grated Moving Average model with Kalman filter (ARIMAkal), Support Vector Regression
(SVR) [46], Feed forward Neural network (FNN), Recurrent Neural Network with fully
connected LSTM hidden units (FC-LSTM) [47].

5.3. Evaluation Indicators

We selected three classic evaluation indicators to evaluate the performance of the
model. We assume that r = {r1, r2, r3, . . . , rn} represents real data and p = {p1, p2, p3, . . . , pn}
represents predicted data, and n denotes the indices of samples, These indicators are
as follows,
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1. RMSE: Root Mean Square Error

RMSE(r, p) =
√

1
|n| ∑

i∈n
(ri − pi)2

2. MAPE: Mean Absolute Percentage Error

MAPE(r, p) = 1
|n| ∑

i∈n

∣∣∣ ri−pi
ri

∣∣∣
3. MAE Mean Absolute Error

MAPE(r, p) = 1
|n| ∑

i∈n
|ri − pi|

5.4. Performance Comparison

As shown in Tables 1 and 2, We divide the data set METR-LA according to three time
intervals, which are 15 min, 30 min and 60 min. Many models are used to test on different
division methods, and the test results are evaluated using three evaluation indicators:
MAE, RMSE, and MAPE. Table 1 lists the data of the model test results. It can be seen that
the STGNN model proposed in this paper has the smallest values on different evaluation
indicators in different time periods, indicating that the effect of the model is optimal,
followed by the DCRNN method. In the same way, we tested the performance of each
model on the dataset PEMS-BAY. The STGNN proposed in this paper performs best among
multiple comparison objects.

From the data in Tables 1 and 2, we can find that as the partitioning time interval
increases, the performance of all models except the HA method decreases. The performance
of all models concerned in this paper on the data set PEMS-BAY is better than that on the
data set METR-LA. All methods have more obvious changes in the MAPE index of the
two datasets.

As shown in Figure 6, we can observe the performance comparison of models over
different time periods on the METR-LA datasets, (a) shows the performance comparison
of multiple algorithms on 15 min time division. Similarly, (b) shows the performance on
30 min time period, (c) denotes the effect on 1 hour time period. We can observe from (a)
that the performance of HA, ARIMAkal, FNN and VAR are similar, these methods is far
worse than FC-LSTM. DCRNN is better than FC-LSTM, STGNN is the best one. From (b),
we can find that the performance of HA and ARIMAkal are similar. In addition, DCRNN
and STGNN are also similar, and STGNN is better than DCRNN on these three evaluation
indicators. SVR and ARIMAkal have the worst performance, STGNN and DCRNN are the
best, and the performance of other methods is centered.

As shown in Figure 7, it shows the performance of the model on the PEMS-BAY dataset.
From (a), we can observe that the value of SVR, ARIMAkal, VAR, DCRNN and STGNN is
similar, and STGNN is the best method. The method other than HA has a small gap in
the evaluation index MAE. From (b) and (c), STGNN is the best method in the evaluation
MAE, RMSE and MAPE, the second one is DCRNN.

As shown in Figures 6 and 7, we can conclude that the performance of the STGNN
method is the best of all reference methods, followed by the DCRNN method. With the
increase of time interval division of multiple methods, the ranking of performance becomes
unstable, such as the FC-LSTM method. However, the ranking of the STGNN and DCRNN
methods is not affected by these factors, and the STGNN method has shown superior
results in experiments.
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Table 1. Performance comparison of traffic speed prediction of multiple models on METR-LA dataset.

Methods 15 min 30 min 1 h
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 4.16 7.80 13.0% 4.16 7.80 13.0% 4.16 7.80 13.0%
ARIMAkal 3.99 8.21 9.6% 5.15 10.45 12.7% 6.90 13.23 17.4%

VAR 4.42 7.89 10.2% 5.41 9.13 12.7% 6.52 10.11 15.8%
SVR 3.99 8.45 9.3% 5.05 10.87 12.1% 6.72 13.76 16.7%
FNN 3.99 7.94 9.9% 4.23 8.17 12.9% 4.49 8.69 14.0%

FC-LSTM 3.44 6.30 9.6% 3.77 7.23 10.9% 4.37 8.69 13.2%
DCRNN 2.77 5.38 7.3% 3.15 6.45 8.8% 3.60 7.59 10.5%
STGNN 2.51 4.93 7.1% 3.12 6.27 7.8% 3.35 6.34 9.8%

Table 2. Performance comparison of traffic speed prediction of multiple models on d PEMS-BAY
dataset.

Methods 15 min 30 min 1 h
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 2.88 5.59 6.8% 2.88 5.59 6.8% 2.88 5.59 6.8%
ARIMAkal 1.62 3.30 3.5% 2.33 4.76 5.4% 3.38 6.50 8.3%

VAR 1.74 3.16 3.6% 2.32 4.25 5.0% 2.93 5.44 6.5%
SVR 1.85 3.59 3.8% 2.48 5.18 5.5% 3.28 7.08 8.0%
FNN 2.20 4.42 5.19% 2.30 4.63 5.43% 2.46 4.98 5.89%

FC-LSTM 2.05 4.19 4.8% 2.20 4.55 5.2% 2.37 4.96 5.7%
DCRNN 1.38 2.95 2.9% 1.74 3.97 3.9% 2.07 4.74 4.9%
STGNN 1.27 2.73 2.8% 1.36 3.82 3.8% 1.83 4.48 4.6%
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Figure 6. Performance comparison of models over different time periods on the METR-LA datasets.
(a) Performance comparison of models in 15 min time period. (b) Performance comparison of models
in 30 min time period. (c) Performance comparison of models in 60 min time period.
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Figure 7. Performance comparison of models over different time periods on the PEMS-BAY datasets.
(a) Performance comparison of models in 15 min time period. (b) Performance comparison of models
in 30 min time period. (c) Performance comparison of models in 60 min time period.

6. Conclusions

This paper mainly studies the potential relationship between traffic speed and space,
improves the accuracy of traffic speed prediction, and achieves accurate prediction and
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solves the increasing road traffic pressure, increasing traffic accidents and traffic congestion
problems in urban development. This paper focuses on the potential relationship between
space-time of road sections. To this end, we propose a space-time graph neural network
model for deep learning and mining the spatio-temporal implicit relationship of road
sections. The model compares spatiotemporal features and expresses graphs, connecting
temporal and spatial features to understand potential relationships to more accurately
predict the speed of traffic at future times. To more accurately predict the speed of traffic
in future time periods, we conducted experiments on real datasets and compared them
with some baseline models. Experiments show that this method has a novel graph neural
network layer with a location attention mechanism that can better aggregate traffic flow
information from adjacent roads. However, for some reason, the experimental data were
not updated in a timely manner. In future research work, we will be more inclined to
improve the ability of the model to resist noise interference, such as rainy days and traffic
accidents, and continuously improve and update experimental data to ensure the accuracy
of data and conclusions.
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