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Abstract: We consider the Stokes problem with the homogeneous Dirichlet boundary condition
in a polygonal domain with one re-entrant corner on its boundary. We define an Rν-generalized
solution of the problem in a nonsymmetric variational formulation. Such defined solution allows us
to construct numerical methods for finding an approximate solution without loss of accuracy. In the
paper, the existence and uniqueness of an Rν-generalized solution in weighted sets is proved.
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1. Introduction

Boundary value problems with singularity play an important role in fracture mechan-
ics [1,2]. The singularity can be caused both by the degeneracy of the coefficients and
the right-hand sides of the equation (see [3–6]) and by the presence of re-entrant corners
on the boundary of a polygonal domain (see, [7–10]). The singularity of the differential
problem affects the accuracy of finding an approximate solution numerically, since the
error depends on the regularity of the solution [11]. An efficient numerical method with a
special mesh refinement to the boundary for the problems with degeneracy of the solution
on the entire boundary of the domain has been developed. The method allows us to find
a solution without a loss of accuracy at a rate of O(h) with respect to the grid step h in
the norm of the weighted Sobolev space [12,13]. Several numerical methods for problems
with a singularity caused by the presence of re-entrant corners at the boundary have been
developed. The methods make it possible to reduce the influence of the singularity on the
accuracy of finding an approximate solution. An overview of such approaches is given
in [14]. Let us select from them the weighted finite element method (FEM), which is based
on the definition of an Rν-generalized solution that takes into account the asymptotics of
the solution behavior [15–18] in the vicinity of the singularity point and introducing special
weighted basis functions [19,20]. This allows us to find approximate solutions without a
loss of accuracy.

The solution (w, p) of the Stokes problem in a domain with a re-entrant corner in polar
coordinates (r, ϕ) is a linear combination of singular components and a regular one. The
singular ones of the components of vector function w and function p have asymptotic be-
haviors rλi and rλi−1 respectively, where λi are eigenvalues of the Stokes operator satisfying
the following equation in the case of homogeneous Dirichlet boundary conditions.

λ2
i sin2 ω− sin2(λiω) = 0, λi ∈ C, λi 6= 0.

In particular, if the re-entrant corner ω is equal to 3π
2 , then the smallest positive eigen-

value that characterizes the behavior of the solution in a neighborhood of the re-entrant

Mathematics 2022, 10, 1752. https://doi.org/10.3390/math10101752 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10101752
https://doi.org/10.3390/math10101752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3702-1126
https://orcid.org/0000-0002-7585-4559
https://doi.org/10.3390/math10101752
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10101752?type=check_update&version=2


Mathematics 2022, 10, 1752 2 of 14

corner is approximately equal to 0.544483. In this case, the solution (components of the
velocity field) belongs to space W1+0.544483−ε

2 (Ω), where ε is an arbitrary positive number.
According to the principle of consistent estimates [11], the classical FEM allows one to find
an approximate solution at a rate not higher thanO(h0.544). We have developed a weighted
FEM for the Stokes problem [21,22], which allows us to find an approximate solution with
a rate O(h) independently on the value of the re-entrant corner at the boundary. The
approach is based on the introduction of the concept of an Rν-generalized solution. The
existence and uniqueness of which in weighted sets is studied in this paper. The solution
proposed by us is determined in the nonsymmetric mixed variational formulation of the
problem: find a pair of functions (w, p) such that the following identities:

a(w, v) + b1(v, p) = l(v), (1)

b2(w, q) = 0 (2)

hold, for arbitrary pairs of functions (v, q). Moreover, a(w, v) is not in symmetric bilinear
form, and forms b1(., .) and b2(., .) are not equal to each other and do not coincide with the
standard form b(., .) (see [23]). The question of existence and uniqueness in the abstract
mixed variational formulation (1), (2) was previously studied in [24,25] and generalized [26]
for the presence of bilinear form c(p, q) 6= 0 in Equation (2). In the present study, the
existence and uniqueness of the Rν-generalized solution in weighted sets is proved based
on auxiliary statements (see [27,28]).

The paper has the following structure. In Section 2, the Stokes problem is posed, and
the necessary notation has been introduced. The concept of an Rν-generalized solution is
presented in a nonsymmetric mixed variational formulation of the problem. In Section 3,
relying on the proved auxiliary assertions, we establish the existence and uniqueness of
the Rν-generalized solution in weighted sets. An estimate for the norms of the solution is
obtained using the norm of the right-hand side function. Conclusions and useful remarks
are made in Section 4.

2. Problem Statement

Let R2 be the two-dimensional Euclidean space a d x = (x1, x2) be its arbitrary element.
Denote by Ω ⊂ R2 a non-convex polygonal domain with one re-entrant corner ω ∈ (π, 2π)
on boundary ∂Ω with a vertex at origin O = (0, 0). Let Ω̄ = Ω ∪ ∂Ω be its closure.

We consider the Stokes problem: find the velocity of the fluid w = w(x) = (w1(x),
w2(x)) and pressure p = p(x), which satisfy the system of differential equations and
boundary conditions.

−4w +∇p = f, in Ω, (3)

div w = 0, in Ω, (4)

w = 0, on ∂Ω. (5)

Due to the fact that, on boundary ∂Ω, there is a corner ω greater than π, although
the solution (w, p) of the Stokes problem (3)–(5) is analytic in Ω\(0, 0), but ∇w and p are
singular at the origin. In particular, w 6∈ W2

2(Ω) and p 6∈W1
2 (Ω). As a result, it is necessary

to determine the Rν-generalized solution of problem (3)–(5) in special sets. The main idea
behind this solution is based on the introduction of the weighted function ρ(x) satisfying
the following conditions in Ω̄: ρ(x) = (x2

1 + x2
2)

1/2 if x ∈ Ωδ and ρ(x) = δ; otherwise,
we have the variational formulation of the problem to some degree ν. Here and later, let
Ωδ be the intersection of a circle with a radius δ, δ > 0, and center at origin O = (0, 0)
with closure Ω̄. The degree ν of the weighted function ρ(x) depends on function f = f(x)
of the right-hand side of Equation (3) and the value of re-entrant corner ω on ∂Ω. The
presence of function ρν(x) in the variational formulation suppresses the singularity and
allows Rν-generalized solution components wν and pν to belong to sets of the weighted
spaces W2

2,ν(Ω) and W1
2,ν(Ω), respectively (see below for definitions). Let us introduce the

necessary spaces and sets of functions. For more details, see [28].
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Let Dlz(x) = ∂|l|z(x)

∂x
l1
1 ∂xl2

2

, where l = (l1, l2), |l| = l1 + l2, li are non-negative integers,

i ∈ {1, 2} and dx = dx1dx2.
Denote by L2,β(Ω) and Wk

2,β(Ω) the spaces of functions z(x) with bounded norms:

‖z‖L2,β(Ω) =
( ∫

Ω

ρ2β(x) z2(x)dx
)1/2

(6)

and

‖z‖Wk
2,β(Ω) =

(
‖z‖2

L2,β(Ω) + ∑
1≤|l|≤k

∫
Ω

ρ2β(x)|Dlz(x)|2dx
)1/2

(7)

respectively. Let |z|Wk
2,β(Ω) =

(
∑
|l|=k

∫
Ω

ρ2β(x)|Dlz(x)|2dx
)1/2

be the seminorm of Wk
2,β(Ω).

Denote by Wk,0
2,β(Ω) the closure with respect to the norm (7) of the set of infinitely differen-

tiable compactly supported functions in Ω.
Next, we define the conditions where functions z(x) obey the following:

0 < C1 ≤ ‖z‖L2,β(Ω\Ωδ)
, (8)

|z(x)| ≤ C2δβ−τρτ−β(x), x ∈ Ωδ, (9)

|D1z(x)| ≤ C2δβ−τρτ−β−1(x), x ∈ Ωδ, (10)

where C2 is a positive constant, and τ is a small positive parameter independent from β, δ
and z(x).

Denote by L2,β(Ω, δ) the set of functions z(x) from the space L2,β(Ω), satisfying condi-
tions (8) and (9) with bounded norm (6). Define its subset L0

2,β(Ω, δ) = {z(x) ∈ L2,β(Ω, δ) :

‖ρβ z‖L1(Ω) = 0} with limited norm (6).
Let W1

2,β(Ω, δ) be the set of functions z(x) from the space W1
2,β(Ω) satisfying con-

ditions (8)–(10) with limited norm (7). Denote by W1,0
2,β(Ω, δ) the set of functions from

the space W1,0
2,β(Ω) satisfying conditions (8)–(10) with bounded norm (7). Moreover, the

linear combination of functions from L2,β(Ω, δ) (W1,0
2,β(Ω, δ)) also belongs to set L2,β(Ω, δ)

(W1,0
2,β(Ω, δ)).

We will highlight in bold the sets of vector functions; that is, L2,β(Ω, δ) = {z(x) =

(z1(x), z2(x)) : zi(x) ∈ L2,β(Ω, δ)} with bounded vector norm ‖z‖L2,β(Ω) =
(
‖z1‖2

L2,β(Ω) +

‖z2‖2
L2,β(Ω)

)1/2
. A similar selection takes place for sets of vector functions W1

2,β(Ω, δ)

(W1,0
2,β(Ω, δ)) with vector norm (7).

Next, we define the bilinear and linear forms as follows.

a(u, v) =
∫
Ω

[
∇u : ∇(ρ2νv)

]
dx, (11)

b1(v, s) = −
∫
Ω

s div (ρ2νv)dx, b2(u, q) = −
∫
Ω

(ρ2ν q) div u dx,

l(v) =
∫
Ω

f · (ρ2νv)dx.
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Definition 1. The pair (wν, pν) ∈ W1,0
2,ν(Ω, δ)× L0

2,ν(Ω, δ) is called an Rν-generalized solution
of problem (3)–(5) if for all pairs (z, g) ∈ W1,0

2,ν(Ω, δ)× L0
2,ν(Ω, δ), the integral identities of the

following:
a(wν, z) + b1(z, pν) = l(z), b2(wν, g) = 0 (12)

hold, where f ∈ L2,γ(Ω, δ), ν ≥ γ ≥ 0.

In contrast to the classical variational formulation of the Stokes problem (3)–(5), bilinear
forms b1(·, ·) and b2(·, ·) in Equation (12) are not equal to each other and standard bilinear
form b(·, ·) (see [23]). Thus, the variational statement (12) is a nonsymmetric one. Guided
by this fact, in order to prove the existence and uniqueness Rν-generalized solution of the
problem, we need to use the following sets of functions (see [28]).

K1 = {v ∈ W1,0
2,ν(Ω, δ) : ∀s ∈ L0

2,ν(Ω, δ), b1(v, s) = −
∫
Ω

s div (ρ2νv)dx = 0}.

K2 = {u ∈ W1,0
2,ν(Ω, δ) : ∀q ∈ L0

2,ν(Ω, δ), b2(u, q) = −
∫
Ω

(ρ2ν q) div u dx = 0}.

In particular, the second one must contain the first component of the Rν-generalized
solution, namely wν.

3. Existence and Uniqueness of an Rν-Generalized Solution
3.1. Supplementary Statements

Lemma 1. (Friedrichs’s inequality). For any z ∈W1,0
2,0 (Ω, δ), the inequality of the following:

‖z‖L2,0(Ω) ≤ C3‖∇z‖L2,0(Ω) (13)

holds, where C3 is a positive constant that does not depend on z.

Lemma 2 ([28]). For any z ∈ L2,ν(Ω) satisfying the conditions (8) and (9), the inequality of the
following: ∫

Ωδ

ρ2(ν−1)z2dx ≤ C2
4δ2ν‖z‖2

L2,ν(Ω) (14)

holds, where C4 is a positive constant equal to C2
C1

√
ϕ1−ϕ0

2τ , ϕ1 − ϕ0 is the value of the corner ω

change in polar coordinates.

Lemma 3 ([28]). Function z ∈ W1,0
2,ν (Ω, δ) if and only if ρνz ∈ W1,0

2,0 (Ω, δ) and the following
inequalities:

‖∇(ρνz)‖2
L2,0(Ω) ≤ 2‖∇z‖2

L2,ν(Ω) + 2ν2C2
4δ2ν‖z‖2

L2,ν(Ω), (15)

|z|2W1
2,ν(Ω)

≤ 2‖∇(ρνz)‖2
L2,0(Ω) + 2ν2C2

4δ2ν‖ρνz‖2
L2,0(Ω) (16)

hold.

Theorem 1 ([28]). Let ν > 0, then there exists δ0 = δ0(ν) > 0 such that for any δ ∈ (0, δ0),

any function u ∈ K2, represented as
(

∂ψ
∂x2

,− ∂ψ
∂x1

)
, function v =

(
ρ−2ν ∂(ρ2νψ)

∂x2
,−ρ−2ν ∂(ρ2νψ)

∂x1

)
belongs to the set K1, and an estimate of the following:

‖v‖W1
2,ν(Ω) ≤ C5‖u‖W1

2,ν(Ω) (17)

holds, where C5 = max{
√

2 + 16ν2C2
3C2

4δ2ν+2(1 + τ)−1,
√

3 + 48ν2C2
3C2

4δ2ν(48C2
3 + 1)}.
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Theorem 2 ([28]). There exists ε1 > 0, such that, for ν > 0, there exists δ1 = δ1(ε1, ν) > 0,

such that for any δ ∈ (0, δ1), any function u =
(

∂ψ
∂x2

,− ∂ψ
∂x1

)
∈ K2 and for v ∈ K1, represented as(

ρ−2ν ∂(ρ2νψ)
∂x2

,−ρ−2ν ∂(ρ2νψ)
∂x1

)
, the inequality of the following:

1
4
‖∇(ρνu)‖2

L2,0(Ω) ≤ a(u, v) (18)

holds, where δ1 < δ0.

Theorem 3 ([28]). Let ν > 0, then there exists δ2 = δ2(ν) = min{δ0(ν),
√

1+τ
8 } > 0, such

that for any δ ∈ (0, δ2), arbitrary function v ∈ K1, represented as
(

ρ−2ν ∂(ρ2νψ)
∂x2

,−ρ−2ν ∂(ρ2νψ)
∂x1

)
,

function u =
(

∂ψ
∂x2

,− ∂ψ
∂x1

)
belongs to the set K2, and an estimate of the following:

‖u‖W1
2,ν(Ω) ≤ C6‖v‖W1

2,ν(Ω) (19)

holds, where a constant C6 is equal to
√

4 + 48ν2C2
4δ2ν(48C2

3 + 1).

Theorem 4 ([28]). There exists ε2 > 0, such that for ν > 0 there exists δ3 = δ3(ε2, ν) > 0, such

that for arbitrary δ ∈ (0, min{δ2, δ3}), any function v =
(

ρ−2ν ∂(ρ2νψ)
∂x2

,−ρ−2ν ∂(ρ2νψ)
∂x1

)
∈ K1 and

for u ∈ K2, represented as
(

∂ψ
∂x2

,− ∂ψ
∂x1

)
, the inequality of the following:

1
4
‖∇(ρνv)‖2

L2,0(Ω) ≤ a(u, v) (20)

holds.

Let us formulate statements that define the LBB-conditions of the bilinear forms
b1(v, s) and b2(u, q), v, u ∈ W1,0

2,ν(Ω, δ) and s, q ∈ L0
2,ν(Ω, δ).

Theorem 5. Let ν>0; then there exists δ4=δ4(ν)>0, such that for any δ ∈ (0, δ4), the inequalities
of the following:

∀s ∈ L0
2,ν(Ω, δ) : sup

v∈W1,0
2,ν(Ω,δ)

b1(v, s)
‖v‖W1

2,ν(Ω) · ‖s‖L2,ν(Ω)
≥ β1 > 0, (21)

∀q ∈ L0
2,ν(Ω, δ) : sup

u∈W1,0
2,ν(Ω,δ)

b2(u, q)
‖u‖W1

2,ν(Ω) · ‖q‖L2,ν(Ω)
≥ β2 > 0 (22)

hold, where β1 and β2 constants that do not depend on v, s and u, q, respectively.

Proof. Inequality (22) is proved in [27]. The inequality (21) is established in the same way.

3.2. Relationship between Functions v ∈ K1 and u ∈ K2 and The Nonsymmetric Bilinear form
a(u, v) : Continuity of Bilinear and Linear Forms

Let us prove a theorem relating the norms of the functions v ∈ K1 and u ∈ K2 in space
W1,0

2,ν(Ω) with a nonsymmetric bilinear form a(u, v) (see Equation (11)).

Theorem 6. There exist ε1 > 0 and ε2 > 0 such that, for ν > 0, there exists δ5 = min{δ0, δ1, δ2,
δ3} > 0, such that for arbitrary δ ∈ (0, δ5), the following inequalities:

∀u ∈ K2 : sup
v∈K1

a(u, v)
‖v‖W1

2,ν(Ω)

≥ α‖u‖W1
2,ν(Ω), (23)
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∀v ∈ K1 : sup
u∈K2

a(u, v)
‖u‖W1

2,ν(Ω)

≥ α‖v‖W1
2,ν(Ω) (24)

hold, where a constant α = min{ 1
C7

, 1
C8
} and C7 = 4C5(2 + (1 + 2ν2C2

4δ2ν)C2
3), C8 = 4C6(2 +

(1 + 2ν2(1 + 2ν)2C2
4δ2ν)C2

3).

Proof. 1. For an arbitrary function u ∈ K2 defined in the formulations of Theorem 1, we
apply estimate (16) of Lemma 3 combined with inequality (13) of Lemma 1, and we have
the following.

‖u‖2
W1

2,ν(Ω)
= ‖u‖2

L2,ν(Ω) + |u|
2
W1

2,ν(Ω)
≤ ‖ρνu‖2

L2,0(Ω) + 2‖∇(ρνu)‖2
L2,0(Ω)+

+2ν2C2
4δ2ν‖ρνu‖2

L2,0(Ω) = 2‖∇(ρνu)‖2
L2,0(Ω) + (1 + 2ν2C2

4δ2ν)‖ρνu‖2
L2,0(Ω) ≤

≤ 2‖∇(ρνu)‖2
L2,0(Ω) + (1 + 2ν2C2

4δ2ν)C2
3‖∇(ρνu)‖2

L2,0(Ω),

thus

‖u‖2
W1

2,ν(Ω)
≤ (2 + (1 + 2ν2C2

4δ2ν)C2
3)‖∇(ρνu)‖2

L2,0(Ω). (25)

Applying Theorems 1 and 2 and their estimates (17) and (18), respectively, to Equation (25),
for the function v ∈ K1, defined in the formulation of Theorem 1, we obtain a sequence
of inequalities:

‖v‖W1
2,ν(Ω) · ‖u‖W1

2,ν(Ω) ≤ C5‖u‖2
W1

2,ν(Ω)
≤

≤ 4C5(2 + (1 + 2ν2C2
4δ2ν)C2

3)‖∇(ρνu)‖2
L2,0(Ω) ≤ C7a(u, v),

such that the following is the case:

‖v‖W1
2,ν(Ω) · ‖u‖W1

2,ν(Ω) ≤ C7a(u, v), (26)

where C7 is a constant equal to 4C5(2 + (1 + 2ν2C2
4δ2ν)C2

3).
2. For an arbitrary function v ∈ K1, defined in the formulation of Theorem 3, by

analogy with item 1, we conclude the following.

‖v‖2
W1

2,ν(Ω)
≤ (2 + (1 + 2ν2(1 + 2ν)2C2

4δ2ν)C2
3)‖∇(ρνv)‖2

L2,0(Ω). (27)

Applying Theorems 3 and 4 and their estimates (19) and (20), respectively, to Equa-
tion (27), for the function u ∈ K2, defined in the formulation of Theorem 3, we obtain a
sequence of inequalities:

‖u‖W1
2,ν(Ω) · ‖v‖W1

2,ν(Ω) ≤ C6‖v‖2
W1

2,ν(Ω)
≤

≤ 4C6(2 + (1 + 2ν2(1 + 2ν)2C2
4δ2ν)C2

3)‖∇(ρνu)‖2
L2,0(Ω) ≤ C8a(u, v),

such that

‖v‖W1
2,ν(Ω) · ‖u‖W1

2,ν(Ω) ≤ C8a(u, v), (28)

where C8 is a constant equal to 4C6(2 + (1 + 2ν2(1 + 2ν)2C2
4δ2ν)C2

3).
3. We perform the following sequence of reasoning. Divide both parts (26) and (28)

into positive quantities C7‖v‖W1
2,ν(Ω) and C8‖u‖W1

2,ν(Ω), respectively. We define the least
upper bound over all functions v ∈ K1 and u ∈ K2 in the first and second inequalities,
respectively. Let α = min{ 1

C7
, 1

C8
}. Hence, we obtain estimates (23) and (24).

Theorem 6 is proved.
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Let us prove the continuity of the bilinear forms a(·, ·), b1(·, ·), b2(·, ·) and the linear
form l(·).

Theorem 7. For ν > 0 the following statements hold:

(1) For any functions u, v ∈ W1,0
2,ν(Ω, δ) :

a(u, v) ≤ C9‖u‖W1
2,ν(Ω) · ‖v‖W1

2,ν(Ω), (29)

where C9 = 8(1 + ν2C2
3C2

4δ2ν)(1 + ν2C2
4δ2ν);

(2) For arbitrary functions s ∈ L0
2,ν(Ω, δ) and v ∈ W1,0

2,ν(Ω, δ) :

b1(v, s) ≤ C10‖v‖W1
2,ν(Ω) · ‖s‖L2,ν(Ω), (30)

where C10 = 2
√

2 + 3ν2C2
4δ2ν;

(3) For any functions q ∈ L0
2,ν(Ω, δ) and u ∈ W1,0

2,ν(Ω, δ) :

b2(u, q) ≤ C11‖u‖W1
2,ν(Ω) · ‖q‖L2,ν(Ω), (31)

where C11 =
√

2;
(4) For arbitrary functions v ∈ W1,0

2,ν(Ω, δ) and f ∈ L2,γ(Ω, δ), ν ≥ γ ≥ 0 :

l(v) ≤ C12‖v‖W1
2,ν(Ω) · ‖f‖L2,γ(Ω), (32)

where C12 =
√

2C13, and C13 are constants in the estimate of norms for functions under
embedding L2,γ(Ω, δ) to L2,ν(Ω, δ).

Proof. (1) Consider arbitrary functions u, v ∈ W1,0
2,ν(Ω, δ) and the following:

[
a(u, v)

]2
=
[∫

Ω

2

∑
i,j=1

∂ui
∂xj

∂(ρ2νvi)

∂xj
dx
]2

,

then [
a(u, v)

]2
≤ 2

[∫
Ω

2

∑
j=1

∂u1

∂xj

∂(ρ2νv1)

∂xj
dx
]2

+ 2
[∫

Ω

2

∑
j=1

∂u2

∂xj

∂(ρ2νv2)

∂xj
dx
]2
≤

≤ 4
2

∑
i,j=1

[∫
Ω

∂ui
∂xj

∂(ρ2νvi)

∂xj
dx
]2

= 4
2

∑
i,j=1

Si,j,

such that [
a(u, v)

]2
≤ 4

2

∑
i,j=1

Si,j, (33)

where Si,j has the following form.

Si,j =
[∫

Ω

∂ui
∂xj

∂(ρ2νvi)

∂xj
dx
]2

. (34)

Insofar as we have the following:

∂(ρνui)

∂xj
= ρν

(∂ui
∂xj

)
+
(∂ρν

∂xj

)
ui,
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then

∂ui
∂xj

= ρ−ν ∂(ρνui)

∂xj
− ρ−ν

(∂ρν

∂xj

)
ui, (35)

and

∂(ρ2νvi)

∂xj
=
(∂ρν

∂xj

)(
ρνvi

)
+ ρν ∂(ρνvi)

∂xj
. (36)

Let us substitute the right-hand parts (35) and (36) instead of their left-hand parts to
Equation (34); then, by applying the Cauchy–Schwarz inequality, we have the following.

Si,j =
[∫

Ω

(
ρ−ν ∂(ρνui)

∂xj
− ρ−ν

(∂ρν

∂xj

)
ui

) ((∂ρν

∂xj

)(
ρνvi

)
+ ρν ∂(ρνvi)

∂xj

)
dx
]2

=

=
[∫

Ω

(∂(ρνui)

∂xj

)(∂ρν

∂xj
vi

)
dx +

∫
Ω

(∂(ρνui)

∂xj

)(∂(ρνvi)

∂xj

)
dx−

∫
Ω

(∂ρν

∂xj
ui

)(∂ρν

∂xj
vi

)
dx−

−
∫
Ω

(∂ρν

∂xj
ui

)(∂(ρνvi)

∂xj

)
dx
]2
≤ 4

[(∫
Ω

(∂(ρνui)

∂xj

)(∂ρν

∂xj
vi

)
dx
)2

+

+
(∫

Ω

(∂(ρνui)

∂xj

)(∂(ρνvi)

∂xj

)
dx
)2

+

+
(∫

Ω

(∂ρν

∂xj
ui

)(∂ρν

∂xj
vi

)
dx
)2

+
(∫

Ω

(∂ρν

∂xj
ui

)(∂(ρνvi)

∂xj

)
dx
)2]
≤

≤ 4
[(∫

Ω

(∂(ρνui)

∂xj

)2
dx
)(∫

Ω

(∂ρν

∂xj

)2
v2

i dx
)
+
(∫

Ω

(∂(ρνui)

∂xj

)2
dx
)(∫

Ω

(∂(ρνvi)

∂xj

)2
dx
)
+

+
(∫

Ω

(∂ρν

∂xj

)2
u2

i dx
)(∫

Ω

(∂ρν

∂xj

)2
v2

i dx
)
+
(∫

Ω

(∂ρν

∂xj

)2
u2

i dx
)(∫

Ω

(∂(ρνvi)

∂xj

)2
dx
)]

.

Let us summarize Si,1 and Si,2 using inequality a1b1+ a2b2 ≤ (a1+ a2)(b1+ b2),
ak, bk ≥ 0; we conclude the following.

2

∑
j=1

Si,j ≤ 4
[(∫

Ω

[(∂ρν

∂x1

)2
+
(∂ρν

∂x2

)2]
v2

i dx
)
·
(∫

Ω

[(∂(ρνui)

∂x1

)2
+
(∂(ρνui)

∂x2

)2]
dx
)
+

+
(∫

Ω

[(∂(ρνui)

∂x1

)2
+
(∂(ρνui)

∂x2

)2]
dx
)
·
(∫

Ω

[(∂(ρνvi)

∂x1

)2
+
(∂(ρνvi)

∂x2

)2]
dx
)
+

+
(∫

Ω

[(∂ρν

∂x1

)2
+
(∂ρν

∂x2

)2]
u2

i dx
)
·
(∫

Ω

[(∂ρν

∂x1

)2
+
(∂ρν

∂x2

)2]
v2

i dx
)
+

+
(∫

Ω

[(∂ρν

∂x1

)2
+
(∂ρν

∂x2

)2]
u2

i dx
)
·
(∫

Ω

[(∂(ρνvi)

∂x1

)2
+
(∂(ρνvi)

∂x2

)2]
dx
)]

.

For an arbitrary β, we have the following.

∂ρβ

∂xi
=

{
βρβ−2xi, x ∈ Ωδ,
0, x ∈ Ω̄ \Ωδ,

(37)
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Apply (37) with β = ν; then, we have the following.

(∂ρν

∂x1

)2
+
(∂ρν

∂x2

)2
=

{
ν2ρ2ν−2, x ∈ Ωδ,
0, x ∈ Ω̄ \Ωδ,

(38)

Using the inequality (14) of Lemma 2 for ui and vi and the definition of the L2,0(Ω)
norm for ∇(ρνui) and ∇(ρνvi), we have the following:

2

∑
j=1

Si,j ≤ 4ν2C2
4δ2ν‖vi‖2

L2,ν(Ω) · ‖∇(ρ
νui)‖2

L2,0(Ω) + 4‖∇(ρνui)‖2
L2,0(Ω) · ‖∇(ρ

νvi)‖2
L2,0(Ω)+

+4
[
ν2C2

4δ2ν
]2
‖ui‖2

L2,ν(Ω) · ‖vi‖2
L2,ν(Ω) + 4ν2C2

4δ2ν‖ui‖2
L2,ν(Ω) · ‖∇(ρ

νvi)‖2
L2,0(Ω) =

= 4
[
ν2C2

4δ2ν‖ui‖2
L2,ν(Ω) + ‖∇(ρ

νui)‖2
L2,0(Ω)

]
·
[
ν2C2

4δ2ν‖vi‖2
L2,ν(Ω) + ‖∇(ρ

νvi)‖2
L2,0(Ω)

]
,

such that the following is the case.

2

∑
j=1

Si,j ≤ 4
[
ν2C2

4δ2ν‖ui‖2
L2,ν(Ω) + ‖∇(ρ

νui)‖2
L2,0(Ω)

]
×

×
[
ν2C2

4δ2ν‖vi‖2
L2,ν(Ω) + ‖∇(ρ

νvi)‖2
L2,0(Ω)

]
. (39)

Applying equalities ‖ui‖L2,ν(Ω) = ‖ρνui‖L2,0(Ω), ‖vi‖L2,ν(Ω) = ‖ρνvi‖L2,0(Ω) and in-
equality (13) of Lemma 1 for evaluating the right-hand side (39), we derive the following.

2

∑
j=1

Si,j ≤ 4
(

1 + ν2C2
3C2

4δ2ν
)2
‖∇(ρνui)‖2

L2,0(Ω) · ‖∇(ρ
νvi)‖2

L2,0(Ω). (40)

Let us sum the inequalities (40) over variable i, i = 1, 2, and substitute it into Equation (33).
Using inequality a1b1 + a2b2 ≤ (a1 + a2)(b1 + b2), ak, bk ≥ 0, we have a sequence
of inequalities:

[
a(u, v)

]2
≤ 16

(
1 + ν2C2

3C2
4δ2ν

)2 2

∑
i=1

[
‖∇(ρνui)‖2

L2,0(Ω) · ‖∇(ρ
νvi)‖2

L2,0(Ω)

]
≤

≤ 16
(

1 + ν2C2
3C2

4δ2ν
)2[ 2

∑
i=1
‖∇(ρνui)‖2

L2,0(Ω)

]
·
[ 2

∑
i=1
‖∇(ρνvi)‖2

L2,0(Ω)

]
,

so that the following is the case.

[
a(u, v)

]2
≤ 16

(
1 + ν2C2

3C2
4δ2ν

)2[ 2

∑
i=1
‖∇(ρνui)‖2

L2,0(Ω)

]
·
[ 2

∑
i=1
‖∇(ρνvi)‖2

L2,0(Ω)

]
. (41)

Due to inequality (15) of Lemma 3 for the factors of the right-hand side (41), we derive
the following.[

a(u, v)
]2
≤ 64

(
1 + ν2C2

3C2
4δ2ν

)2(
1 + ν2C2

4δ2ν
)2
‖u‖2

W1
2,ν(Ω)

· ‖v‖2
W1

2,ν(Ω)
.

It remains to take the square root of both sides of the last inequality. The estimate (29)
is proven.
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(2) Consider arbitrary functions s ∈ L0
2,ν(Ω, δ), v ∈ W1,0

2,ν(Ω, δ) and the following.

[
b1(v, s)

]2
=
[∫

Ω

s
(∂(ρ2νv1)

∂x1
+

∂(ρ2νv2)

∂x2

)
dx
]2

. (42)

Insofar as the following is the case:

∂(ρ2νvi)

∂xi
= ρν

(∂ρν

∂xi

)
vi + ρν ∂(ρνvi)

∂xi
, i = 1, 2,

then, using this and the Cauchy–Schwarz inequality, we have a sequence of estimates:

(∫
Ω

s
∂(ρ2νvi)

∂xi
dx
)2
≤ 2

(∫
Ω

ρ2νs2dx
)
·
(∫

Ω

(∂ρν

∂xi

)2
v2

i dx
)
+ 2
(∫

Ω

ρ2νs2dx
)
×

×
(∫

Ω

(∂(ρνvi)

∂xi

)2
dx
)
≤ 2‖s‖2

L2,ν(Ω) ·
(∫

Ω

[ 2

∑
i=1

(∂ρν

∂xi

)2]
v2

i dx +
∫
Ω

2

∑
i=1

(∂(ρνvi)

∂xi

)2
dx
)

,

such that the following is the case.

(∫
Ω

s
∂(ρ2νvi)

∂xi
dx
)2
≤ 2‖s‖2

L2,ν(Ω)

(∫
Ω

[ 2

∑
i=1

(∂ρν

∂xi

)2]
v2

i dx +
∫
Ω

2

∑
i=1

(∂(ρνvi)

∂xi

)2
dx
)

. (43)

Using representation (38) and inequality (14) of Lemma 2, we conclude the following.

∫
Ω

[ 2

∑
i=1

(∂ρν

∂xi

)2]
v2

i dx = ν2
∫

Ωδ

ρ2(ν−1)v2
i dx ≤ ν2C2

4δ2ν‖vi‖2
L2,ν(Ω).

Applying this to estimate the first term of the second factor on the right-hand side (43),
we have the following.

(∫
Ω

s
∂(ρ2νvi)

∂xi
dx
)2
≤ 2‖s‖2

L2,ν(Ω) ·
(

ν2C2
4δ2ν‖vi‖2

L2,ν(Ω) + ‖∇(ρ
νvi)‖2

L2,0(Ω)

)
. (44)

Let us use inequality (15) of Lemma 3 for the last term of the second factor on the

right-hand side (44); then, we estimate value
[
b1(v, s)

]2
in Equation (42):

[
b1(v, s)

]2
≤ 2

[(∫
Ω

s
∂(ρ2νv1)

∂x1
dx
)2

+
(∫

Ω

s
∂(ρ2νv2)

∂x2
dx
)2]
≤

≤ 4‖s‖2
L2,ν(Ω) ·

(
ν2C2

4δ2ν‖v‖2
L2,ν(Ω) + 2|v|2W1

2,ν(Ω)
+ 2ν2C2

4δ2ν‖v‖2
L2,ν(Ω)

)
≤

≤ 4
(

2 + 3ν2C2
4δ2ν

)
‖s‖2

L2,ν(Ω) · ‖v‖
2
W1

2,ν(Ω)
,

such that the following is the case.[
b1(v, s)

]2
≤ 4

(
2 + 3ν2C2

4δ2ν
)
‖s‖2

L2,ν(Ω) · ‖v‖
2
W1

2,ν(Ω)
.

It remains to take the square root of both parts of the last inequality. The estimate (30)
is set.
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(3) Consider arbitrary functions q ∈ L0
2,ν(Ω, δ), u ∈ W1,0

2,ν(Ω, δ) and the following.

[
b2(u, q)

]2
=
[∫

Ω

ρ2νq
(∂u1

∂x1
+

∂u2

∂x2

)
dx
]2

. (45)

Using the Cauchy–Schwarz inequality, we have the following.(∫
Ω

(
ρνq
)(

ρν
(∂ui

∂xi

))
dx
)2
≤
(∫

Ω

ρ2νq2dx
)
·
(∫

Ω

ρ2ν
(∂ui

∂xi

)2
dx
)
≤

≤ ‖q‖2
L2,ν(Ω) ·

(∫
Ω

ρ2ν
[( ∂ui

∂x1

)2
+
( ∂ui

∂x2

)2]
dx
)
≤ ‖q‖2

L2,ν(Ω) · ‖ui‖2
W1

2,ν(Ω)
,

Applying this, to evaluate the right-hand side (45), we conclude the following:

[
b2(u, q)

]2
≤ 2

2

∑
i=1

[∫
Ω

ρ2νq
(∂ui

∂xi

)
dx
]2
≤ 2‖q‖2

L2,ν(Ω) · ‖u‖
2
W1

2,ν(Ω)
,

then the following is obtained.[
b2(u, q)

]2
≤ 2‖q‖2

L2,ν(Ω) · ‖u‖
2
W1

2,ν(Ω)
.

It remains to take the square root of both parts of the last estimate. Inequality (31) is
established.

(4) Consider arbitrary functions v ∈ W1
2,ν(Ω, δ), f ∈ L2,γ(Ω, δ), ν ≥ γ ≥ 0 and the

following.

[
l(v)

]2
=
[ 2

∑
i=1

∫
Ω

ρ2ν fividx
]2
≤ 2

2

∑
i=1

[∫
Ω

ρ2ν fividx
]2

. (46)

For i = 1, 2, we have the following:[∫
Ω

ρ2ν fividx
]2
≤ ‖ fi‖2

L2,ν(Ω) · ‖vi‖2
L2,ν(Ω) ≤ C2

13‖ fi‖2
L2,γ(Ω) · ‖vi‖2

W1
2,ν(Ω)

,

then [
l(v)

]2
≤ 2C2

13

2

∑
i=1

[
‖ fi‖2

L2,γ(Ω) · ‖vi‖2
W1

2,ν(Ω)

]
≤

≤ 2C2
13

[ 2

∑
i=1
‖ fi‖2

L2,γ(Ω)

]
·
[ 2

∑
i=1
‖vi‖2

W1
2,ν(Ω)

]
= 2C2

13‖f‖2
L2,γ(Ω) · ‖v‖

2
W1

2,ν(Ω)
,

such that the following is obtained.[
l(v)

]2
≤ 2C2

13‖f‖2
L2,γ(Ω) · ‖v‖

2
W1

2,ν(Ω)
.

It remains to take the square root of both parts of the last inequality. The estimate (32)
is set.

Theorem 7 is proved.

3.3. Existence and Uniqueness Theorem for Rν-Generalized Solution

Let us prove a theorem on the existence and uniqueness of an Rν-generalized solu-
tion (wν, pν) ∈ W1,0

2,ν(Ω, δ)× L0
2,ν(Ω, δ) of the Stokes problem (3)–(5) in a nonsymmetric

variational formulation (12).
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Theorem 8. Let the following conditions be satisfied for ν > 0:

(1) The bilinear forms a(u, v), b1(v, s), b2(u, q) and the linear form l(v) are continuous for
arbitrary functions u, v ∈ W1,0

2,ν(Ω, δ), s, q ∈ L0
2,ν(Ω, δ) and f ∈ L2,γ(Ω, δ), ν ≥ γ ≥ 0,

and we have inequalities (29)–(32);
(2) There exists δ6 = min{δ4, δ5} > 0, such that for any δ ∈ (0, δ6), the estimates (21)–(24) of

the following:

∀s ∈ L0
2,ν(Ω, δ) : sup

v∈W1,0
2,ν(Ω,δ)

b1(v, s)
‖v‖W1

2,ν(Ω) · ‖s‖L2,ν(Ω)
≥ β1 > 0,

∀q ∈ L0
2,ν(Ω, δ) : sup

u∈W1,0
2,ν(Ω,δ)

b2(u, q)
‖u‖W1

2,ν(Ω) · ‖q‖L2,ν(Ω)
≥ β2 > 0

∀u ∈ K2 : sup
v∈K1

a(u, v)
‖v‖W1

2,ν(Ω)

≥ α‖u‖W1
2,ν(Ω),

∀v ∈ K1 : sup
u∈K2

a(u, v)
‖u‖W1

2,ν(Ω)

≥ α‖v‖W1
2,ν(Ω)

hold; then, for an arbitrary function f ∈ L2,γ(Ω, δ), γ ≤ ν, there is a unique Rν-generalized
solution (wν, pν) ∈ W1,0

2,ν(Ω, δ)× L0
2,ν(Ω, δ) of the Stokes problem (3)–(5) in statement (12).

There is a positive constant C14 = C12
α

(
1 + α+C9

β1

)
that satisfies the following inequality.

‖wν‖W1
2,ν(Ω) + ‖pν‖L2,ν(Ω) ≤ C14‖f‖L2,γ(Ω). (47)

Proof. Due to the fulfillment of inequalities (21)–(24), we can apply Theorem 2.1 in com-
bination with Remark 2.1 (see [24]), which was proved for an abstract mixed problem in
a nonsymmetric formulation, to our variational formulation (12). Then, there is a unique
Rν-generalized solution (wν, pν) ∈ W1,0

2,ν(Ω, δ)× L0
2,ν(Ω, δ).

Let us prove estimate (47).

1. Consider an arbitrary function v ∈ K1 and then b1(v, pν) = 0 and a(wν, v) = l(v).
Using sequentially estimates (23) (wν ∈ K2) and (32), we conclude the following:

α‖wν‖W1
2,ν(Ω) ≤ sup

v∈K1

a(wν, v)
‖v‖W1

2,ν(Ω)

= sup
v∈K1

l(v)
‖v‖W1

2,ν(Ω)

≤

≤ sup
v∈K1

C12‖v‖W1
2,ν(Ω) · ‖f‖L2,γ(Ω)

‖v‖W1
2,ν(Ω)

= C12‖f‖L2,γ(Ω),

such that the following is the case.

‖wν‖W1
2,ν(Ω) ≤

C12

α
‖f‖L2,γ(Ω). (48)

2. Consider an arbitrary function v ∈ W1,0
2,ν(Ω, δ). Using sequentially the estimates (21),

(29), (32) and (48), we derive the following:

β1‖pν‖L2,ν(Ω) ≤ sup
v∈W1,0

2,ν(Ω,δ)

b1(v, pν)

‖v‖W1
2,ν(Ω)

= sup
v∈W1,0

2,ν(Ω,δ)

l(v)− a(wν, v)
‖v‖W1

2,ν(Ω)

≤

≤ C12‖f‖L2,γ(Ω) + C9‖wν‖W1
2,ν(Ω) ≤ C12

(
1 +

C9

α

)
‖f‖L2,γ(Ω),
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then we have the following.

‖pν‖L2,ν(Ω) ≤
C12

β1

(
1 +

C9

α

)
‖f‖L2,γ(Ω). (49)

3. Summarize the right-hand and left-hand parts of inequalities (48) and (49), respec-
tively; we have

‖wν‖W1
2,ν(Ω) + ‖pν‖L2,ν(Ω) ≤

C12

α

(
1 +

α + C9

β1

)
‖f‖L2,γ(Ω).

Theorem 8 is proved.

4. Conclusions

In the presented paper, the concept of an Rν-generalized solution of the Stokes problem
with a homogeneous Dirichlet boundary condition in a polygonal domain with one re-
entrant corner on its boundary is introduced. The variational formulation of the problem is
nonsymmetric. The existence and uniqueness of the Rν-generalized solution of the Stokes
problem in weighted sets is established. An estimate of its norm in terms of the norm of
the right-hand side function is obtained.

The results of the paper can be extended to the case of a polygonal domain with several
re-entrant corners on its boundary. Apply the approach to solve other fluid dynamics
problems with corner singularity. In particular, for linearized Navier–Stokes equations in
rotation and convective forms, see [29,30]. To perform this, we need to prove estimates (23)
and (24) of Theorem 6 and (29) of Theorem 7 that correspond to these problems. Consider
cases of other boundary conditions that are different from the homogeneous Dirichlet
condition, which is a no-slip behavior of the fluid on the fixed walls (for example, Neumann,
Robin and periodic or mixed boundary conditions, including inhomogeneous ones). An
established fact of the existence and uniqueness of an Rν-generalized solution in weighted
sets is that, firstly, it will make it possible to create efficient numerical methods without
a loss of accuracy for hydrodynamic problems with a corner singularity. Secondly, it
will help us in obtaining a priori estimates for the convergence rate of an approximate
Rν-generalized solution to an exact one in the norms of weighted spaces. Thirdly, it will
promote the determination of the optimal sets of parameters ν and δ to achieve the required
order of accuracy, as well as finding the body of optimal parameters depending on the
value of the re-entrant corner. In particular, this was established for the Lame system in a
domain with a re-entrant corner equal to 2π, which is a mathematical model for the crack
problem (see [14,20]).
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