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Abstract: Swarm intelligence-based metaheuristic algorithms have attracted the attention of the
research community and have been exploited for effectively solving different optimization problems
of engineering, science, and technology. This paper considers the parameter estimation of the control
autoregressive (CAR) model by applying a novel swarm intelligence-based optimization algorithm
called the Aquila optimizer (AO). The parameter tuning of AO is performed statistically on different
generations and population sizes. The performance of the AO is investigated statistically in various
noise levels for the parameters with the best tuning. The robustness and reliability of the AO are
carefully examined under various scenarios for CAR identification. The experimental results indicate
that the AO is accurate, convergent, and robust for parameter estimation of CAR systems. The
comparison of the AO heuristics with recent state of the art counterparts through nonparametric
statistical tests established the efficacy of the proposed scheme for CAR estimation.

Keywords: swarm intelligence; parameter estimation; controlled autoregressive; aquila optimizer

MSC: 90C31; 93-10

1. Introduction
1.1. Literature Review

In recent years, system identification has gained significant attention in various areas
such as signal processing, parameter estimation, multiple-input multiple-output systems,
etc. [1–4]. Parameter estimation refers to the determination of the best fitness values for each
parameter using local or global optimization techniques. Parameter estimation consists of
three steps: First, construct a mathematical model for a given system such that it replicates
exact behaviour under the same conditions. Second, define a fitness function for a given set
of parameters using various approximations such as least square, weighted least square,
and generalized least square. Third, select an optimization technique for finding the best
fitness values through iteration [5].

The research community has shown great interest in parameter estimation of control
autoregressive (CAR) systems because of their importance and significance in effectively
modelling a variety of engineering problems including power system optimization [6] elec-
tricity load prediction [7] battery charge estimation [8] forecasting groundwater flooding [9]
and CO2 emission forecasting [10]. Various methods for parameter estimation of control
autoregressive (CAR) models are proposed in the literature. Ding et al. [11] decompose a
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CAR model into two subsystems and derive a two-stage multi-innovation gradient-based
iterative algorithm for parameter estimation. Raja et al. [12] use genetic algorithms (GA)
for parameter estimation of a nonlinear Hammerstein controlled autoregressive system by
minimizing the error function between true and estimated parameters. Mehmood et al. [13]
explore the strengths of evolutionary and swarm intelligence for parameter estimation of a
controlled autoregressive moving average model by minimizing mean absolute error and
other measures for parameter estimation. Tariq et al. [14] apply differential evolution-based
algorithms for parameter estimation of Hammerstein systems minimizing the actual and
predicted responses of cost function output errors.

Metaheuristic methods have made significant progress in solving optimization prob-
lems [15–17]. These optimization methods can be classified into four categories. Category
one includes evolutionary algorithms, which involve natural biological behaviour such as
mutation and crossover operation. Numerous algorithms are proposed in this category,
such as genetic algorithms, GAs [18] differential evolution, DE [19] fuzzy evolution [20]
maximum likelihood adaptive differential evolution [21] and tree growth algorithms [22].
Category two includes human-based algorithms, which are inspired from human behaviour
such as collective decision optimization [23] imperialist competitive algorithms [24] and
teaching-learning-based optimization [25]. Category three includes physics-based methods
which use physical laws for solution of optimization problems. A few of the methods in this
area are gravitational search algorithms [26] thermal exchange optimization [27] and multi-
verse optimizers [28]. The final category includes swarm intelligence and animal-inspired
methods for optimization solution. Significant progress has made in this domain as well,
and various methods are proposed such as particle swarm optimization (PSO) [29] artificial
bee colonies [30] lion optimization algorithms [31] and whale optimization algorithms [32].

Among swarm intelligence techniques, the Aquila optimizer (AO) [33] has been
recently proposed for global solutions and applied in solving various real-world optimiza-
tion problems. Elaziz et al. [34] proposed an image classification hybrid framework for
COVID-19 images by combining deep learning and AO for feature selection and dimen-
sionality reduction for CT and X-ray images. Hussan et al. [35] applied AO in harmonic
parameter estimation for an H-bridge inverter by minimizing error with real-time verifi-
cation on digital signal processing launchpad. Khamees et al. [36] applied AO in Weibull
distribution parameter estimation for low error and high correlation coefficients in a
wind energy system.

1.2. Research Contribution

In the current study, the swarm intelligence of the Aquila optimizer, AO, is exploited
for parameter estimation of control autoregressive (CAR) systems. The AO is evaluated
in terms of robustness, correctness, and convergence for different noise levels in the CAR
model. The noticeable contributions are as follows:

• The strength of a swarm intelligence-based Aquila optimizer (AO) heuristic is ex-
ploited for solving parameter estimation in a control autoregressive (CAR) model.

• The convergence, accuracy, and robustness analyses of the AO are conducted for
different noise levels considered in the CAR model.

• Statistical analyses for parameter tuning of the AO as well as for reliability and stability
assessment are conducted for different generations and population sizes.

1.3. Paper Organization

The rest of the paper is prepared as follows: the CAR system model is given in
Section 2. The AO-based methodology is presented in Section 3. The performance analysis
of the CAR model is provided in Section 4. The main conclusions and some future research
directions are listed in Section 5.
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2. Mathematical Model of CAR Systems

Consider the second-order CAR model presented in (1):

R(z)q(t) = S(z)θ(t) +ω(t), (1)

where θ(t) is the input of the model, q(t) is the output of the model, andω(t) is zero mean
white noise. R(z) and S(z) are polynomials given in (2) and (3):

R(z) = 1 + r1z−1 + r2z−2 + . . . + rnr z
−nr , (2)

S(z) = s1z−1 + s2z−2 + . . . + sns z−ns . (3)

Assume that θ(t) = 0, q(t) = 0, ω(t) = 0 for t < 0, and nr and ns are known. The
parameter vectors are given in (4) and (5):

r = [r1, r2, . . . , rnr ]
T ∈ Rnr , (4)

s = [s1, s2, . . . , sns ]
T ∈ Rns . (5)

The corresponding information vectors are given in (6) and (7):

εr(t) = [−q(t− 1),−q(t− 2), . . . ,−q(t− nr)]
T ∈ Rnr , (6)

εs(t) = [θ(t− 1), θ(t− 2), . . . , θ(t− ns)]
T ∈ Rns . (7)

The model presented in (1) can be rewritten as given in (8) and simplified in (9).

q(t) = [1− R(z)]q(t) + S(z) θ(t) +ω(t), (8)

q(t) = εr(t)r + εs(t)s + ω(t). (9)

The overall information and parameter vectors of the CAR model are given as

ε(t) = [εr(t) εs(t)] (10)

α = [r s]. (11)

Then, the identification for CAR system becomes:

q(t) = εT(t)α+ω(t). (12)

3. Methodology

In this section, an AO-based methodology for parameter estimation of a CAR model is
presented. The graphical abstract of the proposed methodology for CAR model is presented
in Figure 1. It provides the overview of the proposed study, which includes the parameter
estimation of a CAR model by applying a swarm intelligence-based Aquila optimizer. The
optimum parameters are evaluated on the basis of the square of the difference between
estimated and true values along with the number of generations as termination criteria.
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3.1. Aquila Optimization (AO) Method

The AO is a swarm intelligence-based method for finding solutions to optimum global
problems [33]. It is applied in various domains such as internet of things (IoT) [37], power
electronics [35], image processing [38], oil production forecasting [39], Francis turbines [40],
hybrid solid oxide fuel cell (SOFC) [41], wind energy [42], and population forecasting [43].
AO is a population-based optimization method inspired by Aquila’s prey-hunting ability.
It uses four hunting techniques and has the ability to switch between these techniques. The
mathematical model, pseudocode, and flowchart are presented below.

3.1.1. Population Initialization

AO starts with the initialization of the population for candidate solutions (W) as given
in (13):

W =

 w1,1 · · · w1,D
...

. . .
...

wNp,1 · · · wNp,D

. (13)

The population is randomly generated using (14):

Wk,l = rand(UBl − LBl) + LBl, k = 1, 2 . . . Np, l = 1, 2 . . . D (14)

where Np is the total population size, and D is the number of decision variables.

3.1.2. The Mathematical Model

The mathematical formulation is divided into four steps which are presented below.

Expanded Exploration (W1)

In the first method, W1, the Aquila explores the prey area by involving a high soar
and a vertical stoop. It is presented in (15):

W1(t + 1) = Wbest(t)×
(

1− t
T

)
+ (WM(t)−Wbest(t)∗rand) (15)
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where W1(t + 1) is the next-iteration solution for W1, Wbest(t) is the best solution,
(
1− t

T
)

is used to control the search space, and WM(t) is the mean of the current solution, which is
calculated using (16):

WM(t) =
1

Np

Np

∑
k=1

Wk(t), ∀ l = 1, 2 . . . D (16)

where Np is the total population size, and D is the number of decision variables.

Narrowed Exploration (W2)

In the second method (W2), upon finding the prey area, the Aquila circles around the
target and uses a method called contour fight with a short glide attack. In W2, AO narrowly
explores the area for preparation of the attack on the target, which is calculated using (17):

W2(t + 1) = Wbest(t)× LEF(DI) + WR(t)− (y−w)∗rand (17)

where W2(t + 1) is the next-iteration solution for W2, DI is the space dimension, WR(t) is
the random solution from [1 Np], and LEF(DI) is the distribution function calculated in (18):

LEF(DI) = d× e× σ
|f|

1
δ

(18)

where d is constant equals 0.01, e and f are random numbers between 0–1. σ is calculated
using (19):

σ =

 Ґ(1 + δ)× sin
(
πδ
2

)
Ґ
(

1+δ
2

)
× δ× 2(

δ−1
2 )

 (19)

where δ is fixed at 1.5. y and w from (17) are calculated as follows.

y = g× cos(θ), (20)

w = g× sin(θ) (21)

where g is between 1–20.
g = g1 + V×DI1, (22)

θ = −ε×DI1 + θ1, (23)

θ1 =
3π
2

(24)

where V is fixed to 0.00565 and ε is fixed to 0.005.

Expanded Exploitation (W3)

In the third method (W3), AO exploits the search space by descending vertically to
discover prey reaction and to land and attack. It is given in (25):

W3(t + 1) = (Wbest(t)−WM(t))× β− rand + ((UB− LB)× rand + LB)× µ (25)

where W3(t + 1) is the next-iteration solution for W3, β and µ are exploitation adjustment
factors, Wbest(t) is the best solution, UB and LB are problem-dependent parameters, and
WM(t) is the mean of the current solution, which is calculated using (16).
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Narrowed Exploitation (W4)

In the fourth method (W4), AO uses the method of walking and grabbing by getting
closer to prey and attacking based on stochastic movement as presented in (26):

W4(t + 1) = QYF×Wbest(t)− (O1 ×W(t)× rand)−O2 × LEF(DI) + rand×O1 (26)

where W4(t + 1) is the next-iteration solution for W4 and QYF is the quality factor, calcu-
lated using (27):

QYF = t
2rand−1
(1−T)2 (27)

O1 and O2 indicate the variations of motion, which are calculated using (28) and (29):

O1 = 2× rand− 1, (28)

O2 = 2×
(

1− t
T

)
(29)

The flowchart for AO is shown in Figure 2.
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The pseudocode of the MLADE is presented in Algorithm 1.

Algorithm 1: Pseudo-code of AO

Initialization:
Initialize the population W and parameters of AO such as σ, β, etc.
WHILE do
Calculate fitness values
Determine the best obtained solution Wbest.
for k = 1 : Np
Update mean value WM(t).
Update w, y, O1,O2 and LEF(DI).

if t ≤
(

2
3

)
∗T

if rand ≤ 0.5
Expanded Exploration (W1)
Update solution using (15).
If (Fitness W1(t + 1) < Fitness W(t))

W(t) = W1(t + 1)
If (Fitness W1(t + 1) < Fitness Wbest(t))

Wbest(t) = W1(t + 1)
end
end
else
Narrowed Exploration (W2)
Update solution using (17).
If (Fitness W2(t + 1) < Fitness W(t))

W(t) = W2(t + 1)
If (Fitness W2(t + 1) < Fitness Wbest(t))

Wbest(t) = W2(t + 1)
end
end
end
else if rand ≤ 0.5
Expanded Exploitation (W3)
Update solution using (25).
If (Fitness W3(t + 1) < Fitness W(t))

W(t) = W3(t + 1)
If (Fitness W3(t + 1) < Fitness Wbest(t))
Wbest(t) = W3(t + 1)
end
end
else
Narrowed Exploitation (W4)
Update solution using (26).
If (Fitness W4(t + 1) < Fitness W(t))

W(t) = W4(t + 1)
If (Fitness W4(t + 1) < Fitness Wbest(t))

Wbest(t) = W4(t + 1)
end
end
end
end
end
end
return Wbest

4. Performance Analysis

In this section, the performance analysis of AO for the CAR model is presented. The
identification of the CAR model is conducted on various noise levels, generations, and
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population sizes. The algorithm is weighed in terms of accuracy, which is measured by the
fitness function presented in (30):

Fitness Function = mean
(
z− ^

z
)2 (30)

where ẑ is the estimated response through the proposed evolutionary algorithms and
z is the desired response. For the simulation study, we considered the second-order CAR
model from [6] as presented in (31) and (32):

R(z) = 1 + 1.35z−1 + 0.75z−2, (31)

S(z) = 1.68z−1 + 2.32z−2. (32)

4.1. Parameter Tuning of AO

Learning optimal weights plays a significant role in boosting the performance of the
AO method. Hence, the aim is to use the best values for the exploitation adjustment factors
(β and µ) for learning the optimum weights W3 using the update rule given in (25). The best
values for both parameters (β and µ) are achieved through hyper-parameter tuning. Using
grid search, various combinations of both β and µ are split into different cases like case 1 to
case 9, and the chosen values of β and µ are presented in Table 1. Hyper-parameter tuning
is performed for different generations and population sizes in a noise-free environment
(zero noise). Each case is executed for three generations, i.e., 1000, 1500, and 2000, and
populations, i.e., 30, 40, and 50, whereas the simulations for a combination of one generation
and one population are performed for 15 runs to accomplish the average fit, best fit, worst
fit, and standard deviation.

Table 1. Parameter-tuning cases for AO analysis.

Case No. β Value µ Value

1 0.9 0.9
2 0.9 0.5
3 0.9 0.1
4 0.5 0.9
5 0.5 0.5
6 0.5 0.1
7 0.1 0.9
8 0.1 0.5
9 0.1 0.1

Different scenarios (cases) reflecting the tuning of β and µ for the optimal weight up-
date mechanism and the average fit, best fit, worst fit, and standard deviation with different
generations and populations are computed and represented in Tables 2–10. Varying β and
µ causes the fit to vary with regard to a change in a generation or a population size, and the
tables show the fitness trends. It is observed from the results given in Tables 2–10 that the
optimal fit for different generations and populations is achieved with case 9, i.e., β = 0.1
and µ = 0.1.

Apart from the fitness results presented in Tables 2–10, the mean fit values achieved
with nine (β and µ) variations, three generations, and three populations are presented in
Table 11. It is observed from the mean fit values in Table 11 that AO obtained the minimum
mean fit for case 9, i.e., 440× 10−6. Therefore, for optimal AO performance, the remain-
ing simulation results are presented with the best hyper-parameter values, i.e., β = 0.1
and µ = 0.1.
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Table 2. AO parameter analysis for case 1.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 1.2× 10−3 1.2× 10−4 3.3× 10−3 8.7× 10−4

40 1.3× 10−3 1.8× 10−4 4.0× 10−3 1.0× 10−3

50 6.9× 10−4 1.4× 10−4 2.4× 10−3 6.1× 10−4

1500
30 1.5× 10−3 4.1× 10−4 4.1× 10−3 1.2× 10−3

40 8.8× 10−4 6.2× 10−5 2.2× 10−3 6.7× 10−4

50 7.0× 10−4 9.0× 10−5 1.6× 10−3 4.7× 10−4

2000
30 6.4× 10−4 1.5× 10−4 2.0× 10−3 4.9× 10−4

40 7.7× 10−4 1.7× 10−4 2.5× 10−3 6.4× 10−4

50 4.5× 10−4 1.2× 10−4 1.1× 10−3 3.1× 10−4

Table 3. AO parameter analysis for case 2.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 4.4× 10−3 3.9× 10−4 12× 10−3 3.5× 10−3

40 2.6× 10−3 4.3× 10−5 16× 10−3 3.9× 10−3

50 2.8× 10−3 8.9× 10−5 11× 10−3 2.9× 10−3

1500
30 2.9× 10−3 1.3× 10−4 9.0× 10−3 3.0× 10−3

40 1.1× 10−3 1.9× 10−5 2.7× 10−3 8.3× 10−4

50 1.1× 10−3 1.2× 10−4 3.1× 10−3 7.9× 10−4

2000
30 1.0× 10−3 1.9× 10−4 2.8× 10−3 7.4× 10−4

40 1.1× 10−3 3.3× 10−4 3.1× 10−3 7.3× 10−4

50 1.6× 10−3 2.2× 10−4 6.5× 10−3 1.7× 10−3

Table 4. AO parameter analysis for case 3.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 1.9× 10−3 1.4× 10−4 5.3× 10−3 1.5× 10−3

40 1.4× 10−3 1.5× 10−4 3.9× 10−3 1.2× 10−3

50 6.9× 10−4 4.1× 10−5 1.8× 10−3 4.9× 10−4

1500
30 1.0× 10−3 1.0× 10−4 5.2× 10−3 1.3× 10−3

40 8.5× 10−4 1.7× 10−4 2.5× 10−3 6.7× 10−4

50 6.4× 10−4 1.1× 10−4 1.8× 10−3 5.2× 10−4

2000
30 8.5× 10−4 1.2× 10−4 2.2× 10−3 5.6× 10−4

40 5.2× 10−4 3.0× 10−5 1.0× 10−3 3.3× 10−4

50 5.6× 10−4 8.2× 10−5 2.4× 10−3 5.7× 10−4

Table 5. AO parameter analysis for case 4.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 4.4× 10−3 3.9× 10−4 12× 10−3 3.5× 10−3

40 2.6× 10−3 4.3× 10−4 16× 10−3 3.9× 10−3

50 2.8× 10−3 8.9× 10−5 11.5× 10−3 2.9× 10−3

1500
30 2.9× 10−3 1.3× 10−4 9.0× 10−3 3.0× 10−3

40 1.1× 10−3 1.9× 10−5 2.7× 10−3 8.3× 10−4

50 1.1× 10−3 1.3× 10−4 3.1× 10−3 7.9× 10−4

2000
30 1.0× 10−3 1.9× 10−4 2.8× 10−3 7.4× 10−4

40 1.1× 10−4 3.3× 10−4 3.1× 10−3 7.3× 10−4

50 1.6× 10−3 2.2× 10−4 6.5× 10−3 1.7× 10−3
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Table 6. AO parameter analysis for case 5.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 1.1× 10−3 1.7× 10−4 3.4× 10−3 8.9× 10−4

40 5.4× 10−4 7.2× 10−5 1.4× 10−3 3.6× 10−4

50 5.7× 10−4 2.3× 10−5 1.2× 10−3 2.9× 10−4

1500
30 6.8× 10−4 6.7× 10−5 1.7× 10−3 5.5× 10−4

40 2.2× 10−4 7.4× 10−6 6.6× 10−4 2.1× 10−4

50 3.7× 10−4 1.3× 10−4 1.2× 10−3 3.3× 10−4

2000
30 3.2× 10−4 3.9× 10−5 9.6× 10−4 3.1× 10−4

40 2.6× 10−4 3.1× 10−5 6.1× 10−4 1.8× 10−4

50 2.1× 10−4 2.1× 10−5 5.6× 10−4 1.5× 10−4

Table 7. AO parameter analysis for case 6.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 1.2× 10−3 1.2× 10−4 3.3× 10−3 8.7× 10−4

40 1.3× 10−3 1.8× 10−4 4.0× 10−3 1.0× 10−3

50 6.9× 10−4 1.4× 10−4 2.4× 10−3 6.1× 10−4

1500
30 1.5× 10−3 4.1× 10−4 4.1× 10−3 1.2× 10−3

40 8.8× 10−4 6.2× 10−5 2.2× 10−3 6.7× 10−4

50 7.0× 10−4 9.0× 10−5 1.6× 10−3 4.7× 10−4

2000
30 6.4× 10−4 1.5× 10−4 2.0× 10−3 4.9× 10−4

40 7.7× 10−4 1.7× 10−4 2.5× 10−3 6.4× 10−4

50 4.5× 10−4 1.2× 10−4 1.1× 10−3 3.1× 10−4

Table 8. AO parameter analysis for case 7.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 1.9× 10−3 1.7× 10−4 5.3× 10−3 1.5× 10−3

40 1.4× 10−3 7.2× 10−5 3.9× 10−3 1.2× 10−3

50 6.9× 10−4 2.3× 10−5 1.8× 10−3 4.9× 10−4

1500
30 1.0× 10−3 6.7× 10−5 5.2× 10−3 1.3× 10−3

40 8.5× 10−4 7.4× 10−6 2.5× 10−3 6.7× 10−4

50 6.4× 10−4 1.3× 10−4 1.8× 10−3 5.2× 10−4

2000
30 8.5× 10−4 3.9× 10−5 2.2× 10−3 5.6× 10−4

40 5.2× 10−4 3.1× 10−5 1.0× 10−3 3.3× 10−4

50 5.6× 10−4 2.1× 10−5 2.4× 10−3 5.7× 10−4

Table 9. AO parameter analysis for case 8.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 7.3× 10−4 2.6× 10−5 3.0× 10−3 9.0× 10−4

40 9.1× 10−4 2.4× 10−4 2.5× 10−3 7.4× 10−4

50 6.9× 10−4 4.3× 10−5 1.7× 10−3 5.3× 10−4

1500
30 5.5× 10−4 3.0× 10−5 1.8× 10−3 4.7× 10−4

40 5.3× 10−4 1.0× 10−4 1.1× 10−3 2.5× 10−4

50 4.8× 10−4 7.8× 10−5 1.6× 10−3 4.6× 10−4

2000
30 4.2× 10−4 8.9× 10−5 1.5× 10−3 3.5× 10−4

40 5.1× 10−4 6.8× 10−5 2.3× 10−3 5.5× 10−4

50 3.7× 10−4 4.8× 10−5 8.6× 10−4 2.1× 10−4
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Table 10. AO parameter analysis for case 9.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 6.9× 10−4 1.1× 10−4 2.6× 10−3 6.2× 10−4

40 4.7× 10−4 4.3× 10−5 1.5× 10−3 3.8× 10−4

50 5.2× 10−4 3.5× 10−5 2.2× 10−3 5.7× 10−4

1500
30 6.7× 10−4 1.4× 10−4 2.3× 10−3 5.7× 10−4

40 4.6× 10−4 2.8× 10−5 1.4× 10−3 4.3× 10−4

50 3.0× 10−4 7.7× 10−5 7.1× 10−3 2.1× 10−4

2000
30 3.3× 10−4 3.6× 10−5 9.6× 10−4 2.3× 10−4

40 1.9× 10−4 3.9× 10−5 5.0× 10−4 1.4× 10−4

50 2.8× 10−4 4.5× 10−5 1.1× 10−3 2.5× 10−4

Table 11. AO parameter tuning mean value analysis.

Cases Mean Fitness Value

Case 1 908× 10−6

Case 2 2.06× 10−3

Case 3 938× 10−6

Case 4 2.06× 10−3

Case 5 479× 10−6

Case 6 908× 10−6

Case 7 938× 10−6

Case 8 581× 10−6

Case 9 440× 10−6

The fitness plots for case 9 with zero noise for three generations and populations
are shown in Figures 3 and 4. The fitness curves with fixed generation size and varying
population size are given in Figure 3a–c, and Figure 4a–c include fitness curves for the
fixed population size and changing generation size. Figures 3 and 4 show that with the
best parameter setting of β = 0.1 and µ = 0.1, the AO strategy achieves minimum fit for a
large number of generations and populations.
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4.2. Statistical Convergence Analysis

In this section, the performance of AO algorithm is assessed by introducing three noise
levels to the CAR model. Moreover, the fit of AO is estimated through three variations
of generation [1000, 1500, 2000] and population [30, 40, 50]. The evaluation metrics used
to assess the performance of AO for CAR are average fit, best fit, worst fit, and standard
deviation (STD).

The performance in terms of fit variations and standard deviations for the three noise
levels, i.e., 0.04, 0.06, and 0.08, is demonstrated in Tables 12–14, respectively. It is witnessed
from Tables 12–14 that the AO fit decreases by increasing population and generation size.
It is noticed from Table 12 that the minimum average fit, best fit, and worst fit achieved
for noise level = 0.04 are 1.7× 10−3, 1.0× 10−3, and 3.0× 10−3, respectively. Similarly, the
three best fit values for noise levels 0.06 and 0.08, given in Tables 13 and 14, are 2.7× 10−3,
2.3× 10−3, and 3.2× 10−3 and 4.5× 10−3, 4.1× 10−3, and 4.9× 10−3, respectively.

Table 12. AO analysis with respect to generation and population sizes at 0.04 noise variance.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 3.8× 10−3 1.0× 10−3 9.3× 10−3 2.7× 10−3

40 2.0× 10−3 1.1× 10−3 3.7× 10−3 7.4× 10−4

50 1.8× 10−3 1.1× 10−3 4.0× 10−3 8.9× 10−4

1500
30 2.0× 10−3 1.1× 10−3 5.3× 10−3 1.1× 10−3

40 1.7× 10−3 1.1× 10−3 3.0× 10−3 6.0× 10−4

50 1.7× 10−3 1.2× 10−3 2.4× 10−3 4.5× 10−4

2000
30 1.9× 10−3 1.1× 10−3 3.2× 10−3 4.8× 10−4

40 1.7× 10−3 1.0× 10−3 3.7× 10−3 8.4× 10−4

50 1.9× 10−3 1.1× 10−3 5.6× 10−3 1.3× 10−3

Table 13. AO analysis with respect to generation and population sizes at 0.06 noise variance.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 4.6× 10−3 2.3× 10−3 10× 10−3 2.4× 10−3

40 3.3× 10−3 2.3× 10−3 4.4× 10−3 6.9× 10−4

50 3.3× 10−3 2.3× 10−3 5.9× 10−3 1.0× 10−3

1500
30 3.6× 10−3 2.4× 10−3 6.5× 10−3 1.3× 10−3

40 3.4× 10−3 2.5× 10−3 8.1× 10−3 1.4× 10−3

50 2.9× 10−3 2.3× 10−3 4.1× 10−3 6.0× 10−4

2000
30 3.1× 10−3 2.3× 10−3 7.1× 10−3 1.2× 10−3

40 2.8× 10−3 2.3× 10−3 3.8× 10−3 4.6× 10−4

50 2.7× 10−3 2.3× 10−3 3.2× 10−3 2.7× 10−4
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Table 14. AO analysis with respect to generation and population sizes at 0.08 noise variance.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

1000
30 6.4× 10−3 4.1× 10−3 13.1× 10−3 2.5× 10−3

40 5.0× 10−3 4.1× 10−3 7.0× 10−3 7.8× 10−4

50 5.0× 10−3 4.1× 10−3 7.1× 10−3 8.6× 10−4

1500
30 5.1× 10−3 4.2× 10−3 8.2× 10−3 1.0× 10−3

40 4.7× 10−3 4.1× 10−3 6.3× 10−3 6.4× 10−4

50 4.8× 10−3 4.0× 10−3 6.8× 10−3 7.1× 10−4

2000
30 4.6× 10−3 4.1× 10−3 4.9× 10−3 2.2× 10−4

40 4.6× 10−3 4.1× 10−3 5.6× 10−3 3.9× 10−4

50 4.5× 10−3 4.1× 10−3 5.0× 10−3 2.5× 10−4

The performance of the AO method in terms of best fit for three noise levels, i.e., 0.04,
0.06, and 0.08, is evaluated for the three variations in a generation, 1000, 1500, and 2000,
and population size, 30, 40, and 50. Figure 5 shows the fitness plots. The fitness curves in
Figure 5a–c represent the best fit of the AO algorithm for noise variance = 0.04. In contrast,
Figure 5d–e show the best fit curves for noise variance = 0.06. Likewise, the best fit plots for
noise variance = 0.08 are given in Figure 5g–i. Figure 5a–i shows that the AO fit for the three
noise levels, i.e., 0.04, 0.06, and 0.08, decreases significantly with increasing generation and
population size as well. However, better fit results are achieved for smaller values of noise
with a greater number of generations and populations.
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Mathematics 2022, 10, 1749 14 of 23

To confirm the natural behaviour of the AO strategy for different noise values, the
performance of the AO method is also verified by fixing the population size (30, 40, or 50)
and changing the generation size (1000, 1500, or 2000) for three values of noise variance
(0.04, 0.06, and 0.08), and the fitness-based learning curves are presented in Figure 6.
Figure 6a–c represent the AO fit with population = 30, and the fitness plots for population
= 40 are given in Figure 6d,e. Figure 6g–i denotes the fitness plots for population = 50.
It is realized from the fitness curves given in Figure 6a–i that for a fixed population and
generation size, the AO fit for low levels of noise, i.e., 0.04 and 0.06, is quite lower than the
fit for high noise, i.e., 0.08. Nevertheless, AO accomplishes the minimum fit for the smallest
noise level, i.e., 0.04, for fixed population size. Therefore, it is confirmed from the curves in
Figure 6 that the performance of AO degrades noticeably for higher noise values.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

Be
st

 F
itn

es
s 

 

Be
st

 F
itn

es
s 

Be
st

 F
itn

es
s 

 
Iterations Iterations Iterations 

(c) (f) (i) 

Figure 5. Fitness plots for AO w.r.t population sizes. (a) T = 1000. (b) T = 1500. (c) T = 2000. (d) T = 
1000. (e) T = 1500. (f) T = 2000. (g) T = 1000. (h) T = 1500. (i) T = 2000. 

To confirm the natural behaviour of the AO strategy for different noise values, the 
performance of the AO method is also verified by fixing the population size (30, 40, or 50) 
and changing the generation size (1000, 1500, or 2000) for three values of noise variance 
(0.04, 0.06, and 0.08), and the fitness-based learning curves are presented in Figure 6. Fig-
ure 6a–c represent the AO fit with population = 30, and the fitness plots for population = 
40 are given in Figure 6d–e. Figure 6g–i denotes the fitness plots for population = 50. It is 
realized from the fitness curves given in Figure 6a–i that for a fixed population and gen-
eration size, the AO fit for low levels of noise, i.e., 0.04 and 0.06, is quite lower than the fit 
for high noise, i.e., 0.08. Nevertheless, AO accomplishes the minimum fit for the smallest 
noise level, i.e., 0.04, for fixed population size. Therefore, it is confirmed from the curves 
in Figure 6 that the performance of AO degrades noticeably for higher noise values. 

Be
st

 F
itn

es
s 

Be
st

 F
itn

es
s 

 

Be
st

 F
itn

es
s 

Iterations Iterations Iterations 
(a) (d) (g) 

Be
st

 F
itn

es
s 

 

Be
st

 F
itn

es
s 

Be
st

 F
itn

es
s 

 
Iterations Iterations Iterations 

(b) (e) (h) 

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 23 
 

 

Be
st

 F
itn

es
s 

Be
st

 F
itn

es
s 

 

Be
st

 F
itn

es
s 

 
Iterations Iterations Iterations 

(c) (f) (i) 

Figure 6. Fitness plots for AO with respect to population sizes. (a) Np = 30. (b) Np = 30. (c) Np = 30. (d) 
Np = 40. (e) Np = 40. (f) Np = 40. (g) Np = 50. (h) Np = 50. (i) Np = 50. 

4.3. Results Comparison with other Heuristics 
To further investigate the exploration and exploitation phase of the AO, it is com-

pared with the arithmetic optimization algorithm (AOA) [44], the sine cosine algorithm 
(SCA) [45], and the reptile search algorithm (RSA) [46] for 15 independent runs with 3 
variations of generation (1000, 1500, 2000) and population (30, 40, 50). Tables 15–17 shows 
the performance of all algorithms in terms of estimated weights and best fit for 0.04, 0.06, 
and 0.08 noise levels. It is seen that the algorithm gives better results at low noise, i.e., 0.04, 
than at high noise. Moreover, for low noise, the estimated weights are closer to the true 
values with minimum fit. 

Table 15. Comparison of AO with AOA, SCA, and RSA against the true values for the CAR model 
at 0.04 noise variance. 

Algorithm Generations (T) Population (Np) Design Parameters Best Fit 𝐫𝟏 𝐫𝟐 𝐬𝟏 𝐬𝟐 

AO 

1000 
30 1.362 0.767 1.692 2.338 1.0 × 10  
40 1.357 0.765 1.706 2.308 1.1 × 10  
50 1.353 0.764 1.712 2.298 1.1 × 10  

1500 
30 1.361 0.759 1.702 2.319 1.1 × 10  
40 1.356 0.768 1.704 2.316 1.1 × 10  
50 1.357 0.759 1.703 2.302 1.2 × 10  

2000 
30 1.366 0.771 1.723 2.321 1.1 × 10  
40 1.359 0.760 1.686 2.329 1.0 × 10  
50 1.348 0.757 1.717 2.284 1.1 × 10  

RSA 

1000 
30 1.190 0.599 1.740 1.855 5.3 × 10  
40 1.376 0.769 1.619 2.418 3.1 × 10  
50 1.201 0.569 1.371 2.042 1.0 × 10  

1500 
30 1.281 0.734 1.663 2.178 1.9 × 10  
40 1.294 0.649 1.384 2.381 2.5 × 10  
50 1.127 0.579 1.704 1.767 8.3 × 10  

2000 
30 1.272 0.704 1.174 2.648 5.4 × 10  
40 1.381 0.769 1.526 2.510 7.5 × 10  
50 1.227 0.708 1.719 2.051 3.3 × 10  

SCA 
1000 

30 1.341 0.715 1.646 2.278 2.9 × 10  
40 1.354 0.774 1.725 2.332 3.4 × 10  
50 1.394 0.766 1.678 2.397 2.6 × 10  

1500 30 1.376  0.759 1.662 2.443 4.7 × 10  

Figure 6. Fitness plots for AO with respect to population sizes. (a) Np = 30. (b) Np = 30. (c) Np = 30.
(d) Np = 40. (e) Np = 40. (f) Np = 40. (g) Np = 50. (h) Np = 50. (i) Np = 50.

4.3. Results Comparison with other Heuristics

To further investigate the exploration and exploitation phase of the AO, it is compared
with the arithmetic optimization algorithm (AOA) [44], the sine cosine algorithm (SCA) [45],
and the reptile search algorithm (RSA) [46] for 15 independent runs with 3 variations
of generation (1000, 1500, 2000) and population (30, 40, 50). Tables 15–17 shows the
performance of all algorithms in terms of estimated weights and best fit for 0.04, 0.06, and
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0.08 noise levels. It is seen that the algorithm gives better results at low noise, i.e., 0.04, than
at high noise. Moreover, for low noise, the estimated weights are closer to the true values
with minimum fit.

Table 15. Comparison of AO with AOA, SCA, and RSA against the true values for the CAR model
at 0.04 noise variance.

Algorithm Generations
(T)

Population
(Np)

Design Parameters
Best Fit

r1 r2 s1 s2

AO

1000
30 1.362 0.767 1.692 2.338 1.0× 10−3

40 1.357 0.765 1.706 2.308 1.1× 10−3

50 1.353 0.764 1.712 2.298 1.1× 10−3

1500
30 1.361 0.759 1.702 2.319 1.1× 10−3

40 1.356 0.768 1.704 2.316 1.1× 10−3

50 1.357 0.759 1.703 2.302 1.2× 10−3

2000
30 1.366 0.771 1.723 2.321 1.1× 10−3

40 1.359 0.760 1.686 2.329 1.0× 10−3

50 1.348 0.757 1.717 2.284 1.1× 10−3

RSA

1000
30 1.190 0.599 1.740 1.855 5.3× 10−2

40 1.376 0.769 1.619 2.418 3.1× 10−3

50 1.201 0.569 1.371 2.042 1.0× 10−1

1500
30 1.281 0.734 1.663 2.178 1.9× 10−2

40 1.294 0.649 1.384 2.381 2.5× 10−2

50 1.127 0.579 1.704 1.767 8.3× 10−2

2000
30 1.272 0.704 1.174 2.648 5.4× 10−2

40 1.381 0.769 1.526 2.510 7.5× 10−3

50 1.227 0.708 1.719 2.051 3.3× 10−2

SCA

1000
30 1.341 0.715 1.646 2.278 2.9× 10−3

40 1.354 0.774 1.725 2.332 3.4× 10−3

50 1.394 0.766 1.678 2.397 2.6× 10−3

1500
30 1.376 0.759 1.662 2.443 4.7× 10−3

40 1.364 0.779 1.572 2.497 2.7× 10−3

50 1.347 0.742 1.626 2.355 9.5× 10−4

2000
30 1.350 0.753 1.694 2.334 2.5× 10−3

40 1.326 0.782 1.600 2.389 4.1× 10−3

50 1.312 0.704 1.691 2.205 2.8× 10−3

AOA

1000
30 1.346 0.866 1.494 2.613 1.9× 10−2

40 1.449 0.881 1.465 2.833 1.7× 10−2

50 1.353 0.769 1.555 2.519 8.3× 10−3

1500
30 1.394 0.762 1.791 2.250 6.6× 10−3

40 1.345 0.726 1.649 2.358 6.2× 10−3

50 1.385 0.800 1.613 2.512 3.5× 10−3

2000
30 1.331 0.677 1.455 2.409 1.5× 10−2

40 1.383 0.724 1.569 2.433 7.8× 10−3

50 1.346 0.742 1.763 2.166 8.6× 10−3

True Values 1.350 0.750 1.680 2.320 0
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Table 16. Comparison of AO with AOA, SCA, and RSA against the true values for the CAR model
at 0.06 noise variance.

Algorithm Generations
(T)

Population
(Np)

Design Parameters
Best Fit

r1 r2 s1 s2

AO

1000
30 1.371 0.771 1.701 2.339 2.3× 10−3

40 1.369 0.777 1.715 2.336 2.3× 10−3

50 1.368 0.773 1.700 2.340 2.3× 10−3

1500
30 1.366 0.771 1.744 2.300 2.4× 10−3

40 1.362 0.761 1.733 2.291 2.5× 10−3

50 1.356 0.769 1.718 2.305 2.3× 10−3

2000
30 1.367 0.770 1.711 2.327 2.3× 10−3

40 1.364 0.776 1.723 2.317 2.3× 10−3

50 1.363 0.772 1.706 2.333 2.3× 10−3

RSA

1000
30 1.200 0.657 1.159 2.531 8.1× 10−2

40 1.202 0.600 1.789 1.882 5.9× 10−2

50 1.183 0.580 1.425 2.118 6.1× 10−2

1500
30 1.120 0.582 1.584 1.850 9.7× 10−2

40 1.253 0.645 1.091 2.681 7.2× 10−2

50 1.265 0.683 1.431 2.396 2.4× 10−2

2000
30 1.102 0.600 1.888 1.557 1.3× 10−1

40 1.353 0.762 1.341 2.726 3.0× 10−2

50 1.342 0.758 1.349 2.610 2.7× 10−2

SCA

1000
30 1.341 0.715 1.646 2.278 6.1× 10−3

40 1.354 0.774 1.725 2.332 4.5× 10−3

50 1.394 0.766 1.678 2.397 3.3× 10−3

1500
30 1.376 0.759 1.662 2.443 3.2× 10−3

40 1.364 0.779 1.572 2.497 2.3× 10−3

50 1.347 0.742 1.626 2.355 2.8× 10−3

2000
30 1.350 0.753 1.694 2.334 2.5× 10−3

40 1.326 0.782 1.600 2.389 2.1× 10−3

50 1.312 0.704 1.691 2.205 2.3× 10−3

AOA

1000
30 1.427 0.870 1.470 2.808 1.0× 10−2

40 1.430 0.811 1.295 2.854 2.3× 10−2

50 1.315 0.737 1.738 2.167 6.0× 10−3

1500
30 1.419 0.789 1.446 2.662 1.2× 10−2

40 1.339 0.779 1.702 2.328 4.5× 10−3

50 1.369 0.794 1.077 3.000 1.1× 10−2

2000
30 1.281 0.789 1.599 2.357 1.4× 10−2

40 1.351 0.684 1.579 2.307 1.2× 10−2

50 1.399 0.806 1.754 2.346 7.6× 10−3

True Values 1.350 0.750 1.680 2.320 0
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Table 17. Comparison of AO with AOA, SCA, and RSA against the true values for the CAR model
at 0.08 noise variance.

Algorithm Generations
(T)

Population
(Np)

Design Parameters
Best Fit

r1 r2 s1 s2

AO

1000
30 1.357 0.772 1.754 2.271 4.1× 10−3

40 1.370 0.772 1.715 2.322 4.1× 10−3

50 1.364 0.771 1.712 2.318 4.1× 10−3

1500
30 1.380 0.784 1.737 2.337 4.2× 10−3

40 1.371 0.778 1.707 2.344 4.1× 10−3

50 1.372 0.776 1.722 2.328 4.0× 10−3

2000
30 1.367 0.776 1.741 2.312 4.1× 10−3

40 1.372 0.775 1.746 2.304 4.1× 10−3

50 1.358 0.776 1.763 2.272 4.1× 10−3

RSA

1000
30 1.143 0.529 1.575 1.928 1.0× 10−1

40 1.148 0.604 2.135 1.461 1.4× 10−1

50 1.141 0.562 1.283 2.256 1.0× 10−1

1500
30 1.120 0.598 1.752 1.709 1.1× 10−1

40 1.277 0.690 1.318 2.498 3.6× 10−2

50 1.293 0.694 1.210 2.656 4.7× 10−2

2000
30 1.205 0.661 1.549 2.053 7.1× 10−2

40 1.323 0.706 1.275 2.556 4.2× 10−2

50 1.304 0.733 1.536 2.333 2.3× 10−2

SCA

1000
30 1.416 0.831 1.623 2.574 7.9× 10−3

40 1.359 0.806 1.688 2.380 6.4× 10−3

50 1.350 0.738 1.705 2.289 4.1× 10−3

1500
30 1.364 0.801 1.602 2.486 4.7× 10−3

40 1.375 0.788 1.679 2.379 4.0× 10−3

50 1.317 0.755 1.695 2.255 5.3× 10−3

2000
30 1.344 0.773 1.623 2.366 3.9× 10−3

40 1.399 0.778 1.658 2.429 4.5× 10−3

50 1.340 0.713 1.667 2.250 5.1× 10−3

AOA

1000
30 1.427 0.870 1.470 2.808 2.1× 10−2

40 1.430 0.811 1.295 2.854 1.0× 10−2

50 1.315 0.737 1.738 2.167 1.1× 10−2

1500
30 1.419 0.789 1.446 2.662 1.4× 10−2

40 1.339 0.779 1.702 2.328 1.3× 10−2

50 1.369 0.794 1.077 3.000 1.3× 10−2

2000
30 1.281 0.789 1.599 2.357 7.6× 10−3

40 1.351 0.684 1.579 2.307 5.7× 10−3

50 1.399 0.806 1.754 2.346 9.8× 10−3

True Values 1.350 0.750 1.680 2.320 0

Tables 18–20 show the performance of the AO, AOA, RSA, and SCA algorithms in
terms of average fit for all noise variances. It is seen that for all noise variances, the AO
algorithm gives better results as compared with RSA, SCA, and AOA for generations
and populations.
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Table 18. Comparison of AO with RSA, SCA, and AOA against average fit for the CAR model
at 0.04 noise variance.

Generations (T) Population (Np) AO RSA AOA SCA

1000
30 3.8× 10−3 6.1× 10−1 4.1× 10−2 1.0× 10−1

40 2.0× 10−3 2.5× 10−1 4.7× 10−2 6.4× 10−2

50 1.8× 10−3 2.7× 10−1 2.8× 10−2 1.0× 10−1

1500
30 2.0× 10−3 5.0× 10−1 3.0× 10−2 1.2× 10−1

40 1.7× 10−3 2.9× 10−1 3.3× 10−2 5.9× 10−2

50 1.7× 10−3 2.5× 10−1 3.0× 10−2 3.7× 10−2

2000
30 1.9× 10−3 3.7× 10−1 2.9× 10−2 1.2× 10−1

40 1.7× 10−3 2.8× 10−1 2.4× 10−2 8.7× 10−2

50 1.9× 10−3 2.1× 10−1 2.2× 10−2 6.5× 10−2

Table 19. Comparison of AO with RSA, SCA, and AOA against average fit for the CAR model
at 0.06 noise variance.

Generations (T) Population (Np) AO RSA AOA SCA

1000
30 4.6× 10−3 3.9× 10−1 5.0× 10−2 6.9× 10−2

40 3.3× 10−3 2.5× 10−1 5.1× 10−2 1.0× 10−1

50 3.3× 10−3 2.7× 10−1 3.2× 10−2 6.5× 10−2

1500
30 3.6× 10−3 6.5× 10−1 3.6× 10−2 1.7× 10−1

40 3.4× 10−3 2.6× 10−1 3.5× 10−2 1.9× 10−1

50 2.9× 10−3 2.3× 10−1 2.8× 10−2 7.8× 10−2

2000
30 3.1× 10−3 3.4× 10−1 4.0× 10−2 1.6× 10−1

40 2.8× 10−3 5.4× 10−1 3.5× 10−2 7.0× 10−2

50 2.7× 10−3 2.1× 10−1 2.3× 10−2 7.1× 10−3

Table 20. Comparison of AO with RSA, SCA, and AOA against average fit for the CAR model
at 0.08 noise variance.

Generations (T) Population (Np) AO RSA AOA SCA

1000
30 6.4× 10−3 4.3× 10−1 4.3× 10−2 2.3× 10−1

40 5.0× 10−3 6.7× 10−1 2.5× 10−2 1.0× 10−1

50 5.0× 10−3 4.3× 10−1 3.1× 10−2 1.0× 10−1

1500
30 5.1× 10−3 3.0× 10−1 3.5× 10−2 9.2× 10−2

40 4.7× 10−3 2.5× 10−1 3.1× 10−2 6.5× 10−2

50 4.8× 10−3 2.9× 10−1 3.9× 10−2 1.1× 10−1

2000
30 4.6× 10−3 4.3× 10−1 2.9× 10−2 1.2× 10−1

40 4.6× 10−3 2.7× 10−1 2.6× 10−2 1.5× 10−1

50 4.5× 10−3 2.6× 10−1 2.5× 10−2 1.3× 10−1

The statistical analysis of AO, SCA, AOA, and RSA for multiple runs, noise variances,
and population sizes and constant generation size are shown in Figure 7. It is witnessed
that for all noise variances, the AO achieves worse fit as compared with RSA, AOA, and
SCA. It is also observed that by increasing the noise level degrades the performance of all
algorithms. However, AO achieves optimal fit in all scenarios.
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To further investigate the performance of AO vs. RSA, AO vs. AOA, and AO vs.
SCA, a nonparametric Mann-Whitney U test [47] is performed on average fit values for all
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algorithms on noise variances 0.04, 0.06, and 0.08 with generations 1000, 1500, and 2000
and populations 30, 40, or 50. The Mann-Whitney U test is a parametric equivalent of two
sample t test. The significance level is 0.01 and one tailed hypothesis is used. The computed
z-score is −6.29719 and p-value is less than 0.00001. Moreover, the result is significant at
p < 0.01 as presented in Figures 8–10.
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The results of detailed simulations and the statistics indicate that the AO based swarm-
ing optimization heuristics effectively estimates the parameters of the CAR systems. How-
ever, the real time implementation of the swarm optimization algorithms for practical
system identification problems require further investigation.
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5. Conclusions

Following are the conclusions drawn from the extensive simulation results presented
in the last section:

The strength of swarm intelligence of the Aquila optimizer, AO, is effectively exploited
for parameter estimation of control autoregressive, CAR, systems. Performance of the AO
is enhanced by escalating the population and generation at the expense of computational
cost. While, the optimal fitness for different generations and populations is achieved for
β = 0.1 and µ = 0.1 exploitation adjustable factors. The robustness and accuracy of the
AO decreases by varying the noise level. The comparative study of the AO with other
heuristics based on AOA, SCA and RSA established the efficacy of the proposed scheme.
The statistical analysis through Mann-Whitney U test endorsed the reliability of the AO
scheme for CAR system identification The current study expands the application domain of
swarm intelligence based optimizers by exploiting the strength of AO approach for system
identification. However, future work may consider applying the proposed methodology of
the for solving complex problems [48–54].
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