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Abstract: In this paper, the problem of state estimation for complex-valued inertial neural networks
with leakage, additive and distributed delays is considered. By means of the Lyapunov–Krasovskii
functional method, the Jensen inequality, and the reciprocally convex approach, a delay-dependent
criterion based on linear matrix inequalities (LMIs) is derived. At the same time, the network state
is estimated by observing the output measurements to ensure the global asymptotic stability of the
error system. Finally, two examples are given to verify the effectiveness of the proposed method.
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1. Introduction

In the past decades, people have performed much research on various types of neural
network models. Because of the complex dynamic characteristics of the neurocyte, it is
necessary to consider describing the complex dynamic properties of this neural response
by using derivative information of the state variables. This makes neural networks have
good application prospects in various fields [1,2]. Therefore, the dynamical behaviors
of such systems have received considerable attention [3–6]. In addition, inertial neural
networks are described by second-order differential equations, which are different from
first-order differential models such as bidirectional associative memory neural networks
and Cohen–Grossberg neural networks. The inertial neural network model is widely used
in biology and engineering due to its more complex dynamics phenomena and superior
characteristics, as in [7,8]. As a result, researchers have begun to focus on this system, and
many instructive results have emerged [9–11]. For example, ref. [10] analyzed the global
exponential stability problem of fuzzy inertial neural networks with time-varying delays,
and [11] discussed the global exponential stabilization and lag synchronization control
problems of inertial neural networks with time delays.

However, it is well known that in the design of neural network state feedback con-
trollers, it is of great significance to obtain the state information of the networks. Unfortu-
nately, in practice, due to the strong coupling of large-scale neural networks, it is difficult
to obtain accurate and complete neural state information from the networks’ output. There-
fore, we need to adopt reasonable measurement methods and design various effective
estimators to estimate the state of neurons so as to further describe and simulate the com-
plex responses of neurons. Based on this, people have performed much research on the
state estimation of neural networks [12–18]. It is worth emphasizing that in [12], the state
estimation problem of neural networks was discussed for the first time. Subsequently, some
important relevant results appeared, one after another [13–18]. However, there are few
research works on state estimation of inertial neural networks, only appearing in [17,18]. As
a result, it is worthwhile to explore the state estimation problem of inertial neural networks.

On the other hand, neural networks with real-valued weight, output, state, and
activation functions are called real-valued neural networks. It is undeniable that in many
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application fields, real-valued neural networks have their excellent side, but also have
certain limitations in some aspects. In order to surmount these limitations, researchers
naturally put forward complex-valued neural networks, and more and more studies [19–32]
on the dynamical behaviors of complex-valued neural networks have been carried out
in recent years. At the same time, many scholars also pay great attention to the analysis
of complex-valued inertial neural networks [33–38]. From the perspective of research
methods, most of them transform the second-order differential systems into the first-order
ones through variable transformation and then study the addressed systems based on the
first-order ones [34,35]. However, this method can double the state variables and dimension
of the systems. In order to maintain the original characteristics of the systems and make
the theoretical analysis simple, via the method of non-reduced order, refs. [36–39] analyzed
the exponential and adaptive synchronization and the finite/fixed time synchronization
for complex-valued inertial neural networks, respectively.

In reality, the change trend of many systems is not only related to the current state, but
also depends on the past state, which naturally involves time delays. As is known to all,
as one of the main sources of system instability, oscillation, or performance deterioration,
time delays inevitably affect many systems in different forms, including leakage time delay,
additive time delays, distributed time delay, and so on. For bidirectional associative mem-
ory neural networks, the finite time stability problem with distributed delays [40] and the
state estimation problem with additive delays [41] are considered, respectively. In [42–44],
the state estimation problem of quaternion-valued neural networks and event-triggered
exponential stabilization for inertial complex-valued neural networks with multiple time
delays were studied. At present, based on the influence of time delays and the charac-
teristics of inertial neural networks, some scholars have combined the inertia term, time
delays, and the most classical first-order differential models to explore the synchronization
and anti-synchronization of complex-valued inertial neural networks with time-varying
delays, such as [45]. Unfortunately, for complex-valued inertial neural networks, there is no
literature on the existence of the above three time delays at the same time, not to mention
the research on state estimation, so we need to fill in the gaps in this aspect.

Inspired by the above reasons, the state estimation problem of a class of complex-
valued inertial neural networks with multiple time delays is studied by using a non-
reduced-order method. The main challenges and contributions of this paper are summa-
rized below: (1) Different from [27,28,31], separating the complex-valued neural networks
into two equivalent real-valued subsystems, the state estimation problem of complex-
valued inertial neural networks with multiple time delays is studied via the nonseparable
method. (2) To maintain the the characteristics of the original system and increase the
flexibility and generality of the theoretical results, the considered second-order differential
model is regarded as a whole instead of reducing the order based on variable substitution.
(3) To achieve our aim, an appropriate Lyapunov–Krasovskii functional that fully considers
the information of leakage delay, additive delays, and distributed delay is constructed, in
which the inverted convex inequality in the complex domain is adopted.

2. Preliminaries and Model Descriptions

Consider the following complex-valued inertial neural networks with leakage and
additive and distributed delays:

ü(t) = −Au̇(t)− Bu(t− δ) + C f (u(t)) + D f (u(t− τ1(t)− τ2(t))) + E
∫ t

t−β
f (u(s))ds (1)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Cn is the state of the neuron n, and its second
derivative is called the term of inertia; A = diag(a1, a2, . . . , an) ∈ Rn×n with ap > 0(p =
1, 2, . . . , n) and B = diag(b1, b2, . . . , bn) ∈ Rn×n with bp > 0 indicate the self-feedback
connection weight matrices; C ∈ Cn×n, D ∈ Cn×n and E ∈ Cn×n are connection weight
matrices; f (u(t)) = ( f1(u1(t)), f2(u2(t)), . . . , fn(un(t)))T ∈ Cn represents the complex-
valued activation functions; δ is the leakage delay satisfying δ ≥ 0; τq(t)(q = 1, 2) denotes
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the time-varying delays with 0 ≤ τq(t) ≤ τq, and β stands for the distributed delay, where
τq are given real constants.

Let τ(t) = τ1(t) + τ2(t) and τ = τ1 + τ2. The initial conditions of System (1) are

u(s) = η(s), u̇(s) = ρ(s),−h ≤ s ≤ 0 (2)

where η(s) and ρ(s) are continuous and h = max{δ, τ, β}.
Moreover, the measurement outputs of System (1) are assumed as

m(t) = Fu(t) + Gg(u(t)) (3)

where m(t) ∈ Cm is the measurement output of System (1); F ∈ Cm×n and G ∈ Cm×m

are the output weighting matrices; g(u(t)) ∈ Cm denotes neuron-dependent nonlinear
disturbance signals.

Further, Equations (1)–(3) can be integrated as
ü(t) = −Au̇(t)− Bu(t− δ) + C f (u(t)) + D f (u(t− τ1(t)− τ2(t))) + E

∫ t
t−β f (u(s))ds

m(t) = Fu(t) + Gg(u(t))
u(s) = η(s), u̇(s) = ρ(s), s ∈ [−h, 0].

(4)

Next, we construct a full-order state estimator for System (4):
v̈(t) = −Av̇(t)− Bv(t− δ) + C f (v(t)) + D f (v(t− τ1(t)− τ2(t))) + E

∫ t
t−β f (v(s))ds

+ K(ṁ(t)− ṅ(t)) + H(m(t)− n(t))
n(t) = Fv(t) + Gg(v(t))
v(s) = η̃(s), v̇(s) = ρ̃(s), s ∈ [−h, 0]

(5)

where v(t) is the estimation of u(t), n(t) is the estimated output, and K, H ∈ Cn×m are the
state estimator gains matrices to be designed.

Now, define e(t) = u(t)− v(t), f̃ (e(t)) = f (u(t))− f (v(t)) and g̃(e(t)) = g(u(t))−
g(v(t)); the estimation error system can be derived from (4) and (5) as follows:

ë(t) = −(A + KF)ė(t)− HFe(t)− Be(t− δ) + C f̃ (e(t)) + D f̃ (e(t− τ1(t)− τ2(t)))
+ E

∫ t
t−β f̃ (e(s))ds− KGg̃(ė(t))− HGg̃(e(t))

e(s) = $(s), ė(s) = ς(s), s ∈ [−h, 0].
(6)

The flow chart of complex-valued inertial networks networks and the design estimator
are illustrated in Figure 1.

Figure 1. Flow chart of the estimator.

Remark 1. In the real control networks, when the signal is transmitted from one point to the next,
it will pass through physical equipment, controllers, sensors, and actuators. In this process, several
different types of time delays may occur due to the changes of networks; transmission conditions,
such as leakage time delay, additive time delays, and distributed time delay. On the other hand, in
large-scale neural networks, there are only partial neuron states’ information in the network output.
In order to make better use of neural networks, it is usually necessary to estimate the state of neurons
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through output measurements and then use the estimated neuron state to complete some actual
performance of the system. Hence, it is very important to discuss the state estimation problem for
neural network models with multiple time delays. Here, we focus on this problem for complex-valued
inertial neural networks with multiple time delays.

The following preliminaries will be used in the derivation of the next section.

Assumption 1. For any κ ∈ {1, 2, . . . , n}, there exists a constant lκ ∈ R such that

| fκ(x)− fi(y)| ≤ lκ |x− y| (7)

for all x, y ∈ C.

Assumption 2. For any κ ∈ {1, 2, . . . , m}, there exists a constant Nκ ∈ Rn such that

|gκ(u)− gκ(v)| ≤ |NT
κ (u− v)| (8)

for all u, v ∈ Cn.

For convenience, we define L = diag(l1, l2, . . . , ln) and N = (N1, N2, . . . , Nm).

Lemma 1 ([21]). For positive definite Hermitian matrix P ∈ Cn×n, vector function u(s) : [c, d]→ Cn

with scalars c < d, then( ∫ d

c
u(s)ds

)∗
P
( ∫ d

c
u(s)ds

)
≤ (d− c)

∫ d

c
u∗(s)Pu(s)ds. (9)

Lemma 2 ([45]). For any given vectors ξ1, ξ2 ∈ Cn, any scalar 0 < ρ < 1, any positive definite

Hermitian matrix P ∈ Cn×n, and any matrix Q ∈ Cn×n such that
[

P Q
Q∗ P

]
> 0,

The following inequality holds:

1
ρ

ξ∗1 Pξ1 +
1

1− ρ
ξ∗2 Pξ2 ≥

[
ξ1
ξ2

]∗[ P Q
Q∗ P

][
ξ1
ξ2

]
. (10)

3. Main Results

In this section, the state estimation problem of complex-valued inertial neural networks
is analyzed, and a sufficient condition for the global asymptotic stability of the error state
system (6) is proposed.

Theorem 1. Suppose Assumptions 1 and 2 hold; the error system (6) is globally asymptotically
stable if there exist real positive diagonal matrices Λ1, Λ2 ∈ Rn×n, Λ3, Λ4 ∈ Rm×m, positive
definite Hermitian matrices P1, P4, P6, Q1, Q2, S1, S3, U1, U2, W1, W2, R ∈ Cn×n, and any matrices
P2, P3, P5, S2, W̃1, W̃2,∈ Cn×n, K̄, H̄ ∈ Cn×m, such that the following LMIs hold:
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P =

 P1 P2 P3
∗ P4 P5
∗ ∗ P6

 > 0 (11)

S =

[
S1 S2
∗ S3

]
> 0 (12)

Θ1 =

[
W1 W̃1
∗ W1

]
> 0 (13)

Θ2 =

[
W2 W̃2
∗ W2

]
> 0 (14)

Ξ =

[
Ξ̃1 Ξ̃2
∗ Ξ̃3

]
< 0 (15)

where

Ξ̃1 =



∆11 ∆12 ∆13 −P3 −MB W̃∗1 W̃∗2 W1 − W̃∗1 W2 − W̃∗2
∗ ∆22 ∆23 −P5 −MB 0 0 0 0
∗ ∗ −M−M∗ −MB 0 0 0 0
∗ ∗ ∗ −Q1 0 0 0 0
∗ ∗ ∗ ∗ −W1 0 W1 − W̃1 0
∗ ∗ ∗ ∗ ∗ −W2 0 W2 − W̃2
∗ ∗ ∗ ∗ ∗ ∗ ∆77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆88



Ξ̃2 =



P6 S1 + S∗2 S2 + S3 MC MD ME −H̄G −K̄G
P3 0 0 MC MD ME −H̄G −K̄G
P5 0 0 MC MD ME −H̄G −K̄G
−P6 0 0 0 0 0 0 0

0 −S1 −S2 0 0 0 0 0
0 −S∗2 −S3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Ξ̃3 =



−Q2 0 0 0 0 0 0 0
∗ −U1 0 0 0 0 0 0
∗ ∗ −U2 0 0 0 0 0
∗ ∗ ∗ β2R−Λ1 0 0 0 0
∗ ∗ ∗ ∗ −Λ2 0 0 0
∗ ∗ ∗ ∗ ∗ −R 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Λ3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Λ4


with ∆11 = P3 + P∗3 + Q1 + δ2Q2 + τ1U1 + τU2 −W1 −W2 + LΛ1L + NΛ3NT − H̄F −
F∗H̄∗, ∆12 = P1 + P∗5 − MA − K̄F − F∗H̄∗, ∆13 = P2 − M − F∗H̄∗, ∆22 = P2 + P∗2 +
τ2

1 W1 + τ2W2 − MA − K̄F − F∗K̄∗ − AT M∗ + NΛ4NT , ∆23 = P4 − M − F∗K̄∗ − AT M∗,
∆77 = −2W1 + W̃1 + W̃∗1 , ∆88 = −2W2 + W̃2 + W̃∗2 + LΛ2L. In this case, the estimator gain
matrix is given by K = M−1K̄, H = M−1H̄.

Proof. Consider the following Lyapunov functional:

V(t) =
6

∑
n=1

Vn(t) (16)



Mathematics 2022, 10, 1725 6 of 14

where

V1(t) =

 e(t)
ė(t)∫ t

t−δ e(s)ds

∗ P1 P2 P3
∗ P4 P5
∗ ∗ P6

 e(t)
ė(t)∫ t

t−δ e(s)ds


V2(t) =

∫ t

t−δ
e∗(s)Q1e(s)ds + δ

∫ 0

−δ

∫ t

t+ε
e∗(s)Q2e(s)dsdε

V3(t) =

[ ∫ t
t−τ1

e(s)ds∫ t
t−τ e(s)ds

]∗[
S1 S2
∗ S3

][ ∫ t
t−τ1

e(s)ds∫ t
t−τ e(s)ds

]

V4(t) =
∫ 0

−τ1

∫ t

t+ε
e∗(s)U1e(s)dsdε +

∫ 0

−τ

∫ t

t+ε
e∗(s)U2e(s)dsdε

V5(t) = τ1

∫ 0

−τ1

∫ t

t+ε
ė∗(s)W1 ė(s)dsdε + τ

∫ 0

−τ

∫ t

t+ε
ė∗(s)W2 ė(s)dsdε

V6(t) = β
∫ 0

−β

∫ t

t+ε
f̃ ∗(e(s))R f̃ (e(s))dsdε. (17)

Taking the derivative of V(t) and based on Lemma 1, we can obtain

V̇1(t) = e∗(t)(P3 + P∗3 )e(t) + e∗(t)(P1 + P∗5 )ė(t) + e∗(t)P2 ë(t)− e∗(t)P3e(t− δ)

+ ė∗(t)(P1 + P5)e(t) + ė∗(t)(P2 + P∗2 )ė(t) + ė∗(t)P4 ë(t)− ė∗(t)P5e(t− δ)

+ ë∗(t)P∗2 e(t) + ë∗(t)P4 ė(t)− e∗(t− δ)P∗3 e(t)− e∗(t− δ)P∗5 ė(t)

+ e∗(t)P6

[ ∫ t

t−δ
e(s)ds

]
+ ė∗(t)P3

[ ∫ t

t−δ
e(s)ds

]
+ ë∗(t)P5

[ ∫ t

t−δ
e(s)ds

]
− e∗(t− δ)P6

[ ∫ t

t−δ
e(s)ds

]
+

[ ∫ t

t−δ
e(s)ds

]∗
P∗3 ė(t) +

[ ∫ t

t−δ
e(s)ds

]∗
P∗5 ë(t)

+

[ ∫ t

t−δ
e(s)ds

]∗
P6e(t)−

[ ∫ t

t−δ
e(s)ds

]∗
P6e(t− δ) (18)

V̇2(t) = e∗(t)Q1e(t)− e∗(t− δ)Q1e(t− δ) + δ2e∗(t)Q2e(t)− δ
∫ t

t−δ
e∗(s)Q2e(s)ds

≤ e∗(t)(Q1 + δ2Q2)e(t)− e∗(t− δ)Q1e(t− δ)−
[ ∫ t

t−δ
e(s)ds

]∗
Q2

[ ∫ t

t−δ
e(s)ds

]
(19)

V̇3(t) = e∗(t)(S1 + S∗2)
[ ∫ t

t−τ1

e(s)ds
]
+ e∗(t)(S2 + S3)

[ ∫ t

t−τ
e(s)ds

]
− e∗(t− τ1)S1

[ ∫ t

t−τ1

e(s)ds
]
− e∗(t− τ1)S2

[ ∫ t

t−τ
e(s)ds

]
− e∗(t− τ)S∗2

[ ∫ t

t−τ1

e(s)ds
]
− e∗(t− τ)S3

[ ∫ t

t−τ
e(s)ds

]
+

[ ∫ t

t−τ1

e(s)ds
]∗
(S1 + S2)e(t) +

[ ∫ t

t−τ
e(s)ds

]∗
(S∗2 + S3)e(t)

−
[ ∫ t

t−τ1

e(s)ds
]∗

S1e(t− τ1)−
[ ∫ t

t−τ1

e(s)ds
]∗

S2e(t− τ)

−
[ ∫ t

t−τ
e(s)ds

]∗
S∗2e(t− τ1)−

[ ∫ t

t−τ
e(s)ds

]∗
S3e(t− τ) (20)
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V̇4(t) = e∗(t)(τ1U1 + τU2)e(t)− τ1

∫ t

t−τ1

e∗(s)U1e(s)ds− τ
∫ t

t−τ
e∗(s)U2e(s)ds

≤ e∗(t)(τ1U1 + τU2)e(t)−
[ ∫ t

t−τ1

e(s)ds
]∗

U1

[ ∫ t

t−τ1

e(s)ds
]

−
[ ∫ t

t−τ
e(s)ds

]∗
U2

[ ∫ t

t−τ
e(s)ds

]
(21)

V̇5(t) = ė∗(t)(τ2
1 W1 + τ2W2)ė(t)− τ1

∫ t

t−τ1

ė∗(s)W1 ė(s)ds− τ
∫ t

t−τ
ė∗(s)W2 ė(s)ds (22)

V̇6(t) = β2 f̃ ∗(e(t))R f̃ (e(t))− β
∫ t

t−β
f̃ ∗(e(s))R f̃ (e(s))ds

≤ β2 f̃ ∗(e(t))R f̃ (e(t))−
[ ∫ t

t−β
f̃ (e(s))ds

]∗
R
[ ∫ t

t−β
f̃ (e(s))ds

]
. (23)

On the basis of Lemmas 1 and 2, we further obtain that

−τ1

∫ t

t−τ1

ė∗(s)W1 ė(s)ds = −τ1

∫ t−τ1(t)

t−τ1

ė∗(s)W1 ė(s)ds− τ1

∫ t

t−τ1(t)
ė∗(s)W1 ė(s)ds

≤ − τ1

τ1 − τ1(t)

[ ∫ t−τ1(t)

t−τ1

ė(s)ds
]∗

W1

[ ∫ t−τ1(t)

t−τ1

ė(s)ds
]

− τ1

τ1(t)

[ ∫ t

t−τ1(t)
ė(s)ds

]∗
W1

[ ∫ t

t−τ1(t)
ė(s)ds

]

= − τ1

τ1 − τ1(t)

 e(t)
e(t− τ1)

e(t− τ1(t))

∗ 0
−I
I

W1

 0
−I
I

∗ e(t)
e(t− τ1)

e(t− τ1(t))


− τ1

τ1(t)

 e(t)
e(t− τ1)

e(t− τ1(t))

∗ I
0
−I

W1

 I
0
−I

∗ e(t)
e(t− τ1)

e(t− τ1(t))


≤ −

 e(t)
e(t− τ1)

e(t− τ1(t))

∗ 0 I
−I 0
I −I

[ W1 W̃1
∗ W1

] 0 I
−I 0
I −I

∗ e(t)
e(t− τ1)

e(t− τ1(t))


= −

 e(t)
e(t− τ1)

e(t− τ1(t))

∗ W1 −W̃∗1 −W1 + W̃∗1
∗ W1 −W1 + W̃1
∗ ∗ 2W1 − W̃1 − W̃∗1

 e(t)
e(t− τ1)

e(t− τ1(t))

. (24)

Similar to (24), we have that

−τ
∫ t

t−τ
ė∗(s)W2 ė(s)ds

≤ −

 e(t)
e(t− τ)

e(t− τ(t))

∗ W2 −W̃∗2 −W2 + W̃∗2
∗ W2 −W2 + W̃2
∗ ∗ 2W2 − W̃2 − W̃∗2

 e(t)
e(t− τ)

e(t− τ(t))

. (25)

Adding (24) and (25) to (22), then we can have

V̇5(t) ≤ ė∗(t)(τ2
1 W1 + τ2W2)ė(t)

−

 e(t)
e(t− τ1)

e(t− τ1(t))

∗ W1 −W̃∗1 −W1 + W̃∗1
∗ W1 −W1 + W̃1
∗ ∗ 2W1 − W̃1 − W̃∗1

 e(t)
e(t− τ1)

e(t− τ1(t))
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−

 e(t)
e(t− τ)

e(t− τ(t))

∗ W2 −W̃∗2 −W2 + W̃∗2
∗ W2 −W2 + W̃2
∗ ∗ 2W2 − W̃2 − W̃∗2

 e(t)
e(t− τ)

e(t− τ(t))

. (26)

In addition, by means of Assumptions 1 and 2, we can obtain

0 ≤ e∗(t)LΛ1Le(t)− f̃ ∗(e(t))Λ1 f̃ (e(t))

0 ≤ e∗(t− τ(t))LΛ2Le(t− τ(t))− f̃ ∗(e(t− τ(t)))Λ2 f̃ (e(t− τ(t)))

0 ≤ e∗(t)NΛ3NTe(t)− g̃∗(e(t))Λ3 g̃(e(t))

0 ≤ e∗(t)NΛ4NTe(t)− g̃∗(ė(t))Λ4 g̃(ė(t)). (27)

Then, using the free weighting matrix, it follows from (6) that

0 = [M∗e(t) + M∗ ė(t) + M∗ ë(t)]∗P + P∗[M∗e(t) + M∗ ė(t) + M∗ ë(t)] (28)

where

P = −ë(t)− (A + KF)ė(t)− HFe(t)− Be(t− δ) + C f̃ (e(t)) + D f̃ (e(t− τ1(t)− τ2(t)))

+ E
∫ t

t−β
f̃ (e(s))ds− KGg̃(ė(t))− HGg̃(e(t)).

Nothing that K = M−1K̄, H = M−1H̄, from (19)–(21), (23), (26)–(28), we can obtain
that

V̇(t) ≤ ξ∗(t)Ξξ(t) (29)

where

ξ(t) = [e∗(t)ė∗(t)ë∗(t)e∗(t− δ)e∗(t− τ1)e∗(t− τ)e∗(t− τ1(t))e∗(t− τ(t))∫ t
t−δ e∗(s)ds

∫ t
t−τ1

e∗(s)ds
∫ t

t−τ e∗(s)ds f̃ (e(t)) f̃ (e∗(t− τ(t)))
∫ t

t−β f̃ (e∗(s))ds
g̃∗(e(t))g̃∗(ė(t))]∗.

Then, according to (15), one has

V̇(t) ≤ 0. (30)

Thus, the error system (6) is globally asymptotically stable. The proof is complete.

Remark 2. In the process of obtaining the desired result, instead of reducing the order, the original
second-order system is considered as the subject. This results in that the constructed Lyapunov
functional (16) includes the state derivatives, which is different from the existing ones in [42,43].
This is an important feature of this paper. Moreover, as far as we know, this is the first time that
the state estimation of complex-valued inertial neural networks with multiple time delays has been
discussed.

Remark 3. In order to maintain the original characteristics of the system and without increasing
its complexity, besides adopting the non-reduced order, we also apply the nonseparable method. We
regard the system (1) as a whole in the complex domain to study the state estimation problem. Thus,
our result is more universal and flexible.

4. Numerical Examples

In this section, we give two numerical examples to verify the effectiveness of the above
theoretical result.
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Example 1. Consider System (4) with the following parameters:

A =

[
0.8 0
0 2.8

]
, B =

[
0.9 0
0 1.1

]
, C =

[
−0.5 + i −0.3 + 1.2i
−0.3− 0.2i 1− 0.2i

]
,

D =

[
−0.3 + 0.7i 1.1 + 0.5i
0.3 + 0.2i −0.5 + 0.5i

]
, E =

[
−0.2 + 0.8i 0.5− 0.8i
0.3 + 0.2i −0.2− 0.8i

]
.

In addition, we select the activation functions as fq(uq(t)) = 1−e−uq

1+e−uq (q = 1, 2), δ = 0.1,

τ1(t) = 0.2 sin2(t), τ2(t) = 0.5 cos2(t), and β = 0.1, which mean that τ1 = 0.2 and τ2 = 0.5. It
could be easily tested that Assumptions 1 and 2 are satisfied, and L = diag(0.5, 0.5),

N =

[
0 0.1
−0.2 0

]
.

Moreover, choose the initial values as η(s) = [4.7− 3i;−9+ 8.9i]T , η̃(s) = [−6+ 4.9i; 2.2+
2.1i]T , ρ(s) = [−2.1 + 7.2i; 2.9 + 5.1i]T , and ρ̃(s) = [1.3 + 3.5i; 6.6− 3.2i]T , for s ∈ [−0.7, 0].
We select the output weighting matrices and neuron-dependent nonlinear disturbance signals as

F =

[
−0.2 + 0.5i −0.2− 0.4i
0.1− 0.2i 0.4− 0.3i

]
, G =

[
0.5− 0.2i 0.2− 0.2i
−0.3 + 0.1i 0.3 + 0.1i

]
,

and gq(uq(t)) = uq (q = 1, 2).
Then, by means of the MATLAB LMI toolbox, the feasible solutions of (11)–(15) can be obtained,

such as Λ1 = diag(0.9615, 0.9615), Λ2 = diag(0.6049, 0.6049), Λ3 = diag(6.4005, 6.4005),
Λ4 = diag(10.9396, 10.9396).

P1 =

[
1.3341 + 0.0000i 0.0015 + 0.0015i
0.0015− 0.0015i 4.0161 + 0.0000i

]
, P2 =

[
0.4473− 0.0006i 0.0008 + 0.0156i
0.0008 + 0.0156i 1.2160 + 0.0236i

]
,

P3 =

[
−0.3097− 0.0029i −0.0226− 0.0176i
−0.0226− 0.0176i −0.8992− 0.0027i

]
, P4 =

[
0.8317 + 0.0000i 0.0093 + 0.0156i
0.0093− 0.0156i 2.4997 + 0.0000i

]
,

P5 =

[
−0.1311− 0.0024i −0.0243− 0.0361i
−0.0243− 0.0361i −0.4271− 0.0211i

]
, P6 =

[
0.6252 + 0.0000i 0.0058− 0.0029i
0.0058 + 0.0029i 1.3612 + 0.0000i

]
,

S1 =

[
1.0883 + 0.0000i −0.0019 + 0.8317i
−0.0019− 0.8317i 3.0778 + 0.0000i

]
, S2 =

[
−0.0013− 0.0018i 0.0015− 0.0027i
0.0015− 0.0027i 0.0330 + 0.0213i

]
,

S3 =

[
0.1133 + 0.0000i −0.0005− 0.0243i
−0.0005 + 0.0243i 0.4461 + 0.0000i

]
, Q1 =

[
0.3635 + 0.0000i 0.0186− 0.0361i
0.0186 + 0.0361i 1.1520 + 0.0000i

]
,

Q2 =

[
3.9982 + 0.0000i 0.1264 + 0.0058i
0.1264− 0.0058i 5.3500 + 0.0000i

]
, W1 =

[
3.1818 + 0.0000i −0.0089 + 0.0330i
−0.0089− 0.0330i 4.8098 + 0.0000i

]
,

W2 =

[
0.7340 + 0.0000i −0.0039 + 0.0213i
−0.0039− 0.0213i 1.8923 + 0.0000i

]
, R =

[
3.3062 + 0.0000i −0.4961 + 0.4461i
−0.4961− 0.4461i 3.8736 + 0.0000i

]
,

W̃1 =

[
0.9734 + 0.0002i −0.0027 + 0.2611i
−0.0059− 0.2518i 1.7210 + 0.0003i

]
, W̃2 =

[
0.0745 + 0.0001i −0.0009 + 0.0266i
−0.0011− 0.0380i 0.3236− 0.0001i

]
,

M =

[
0.1121 + 0.0007i 0.0321− 0.0026i
0.0327 + 0.0113i 0.3273 + 0.0046i

]
, K̄ =

[
−0.1284− 1.3291i 1.0282 + 0.0685i
0.6352 + 1.0851i 1.7107 + 2.4569i

]
,

H̄ =

[
−0.0382− 0.7650i 0.6966 + 0.0670i
0.4376 + 0.7508i 1.2550 + 1.7039i

]
.

Consequently, it can be obtained from K = M−1K̄ and H = M−1H̄ that



Mathematics 2022, 10, 1725 10 of 14

K =

[
−1.8353− 13.1449i 7.7034− 1.4274i

1.7354 + 4.6670i 4.5110 + 7.3204i

]
, H =

[
−0.8037− 7.6728i 5.1293− 0.8042i
1.1953 + 3.0710i 3.3657 + 5.0622i

]
.

The simulation results are shown in Figures 2 and 3. Among them, Figure 2 plots the trajecto-
ries of the real and imaginary parts of the true state u(t) in System (4) and the estimation state v(t).
Figure 3 shows the state trajectory of the error system (6). Obviously, the simulation results are in
agreement with our theoretical analysis.
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Figure 2. The curves of state u(t) and its estimation v(t) in Example 1.
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Figure 3. The curves dynamics of error system e(t) in Example 1.

Example 2. Consider System (4) with the following parameters:

A =

[
0.7 0
0 2.6

]
, B =

[
0.3 0
0 0.6

]
, C =

[
−0.5− 0.2i −0.3− 0.4i
−0.3 + 0.2i 1− 0.2i

]
,

D =

[
−0.3 + 0.2i 1.1 + 0.3i
0.3− 0.2i −0.5 + 0.2i

]
, E =

[
0.3 + 0.8i 0.8− 0.8i
−0.5 + 0.2i 1− 0.8i

]
.
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In addition, we select the same fq(uq(t)) as activation functions in Example 1, δ = 0.1,
τ1(t) = 0.1| sin(t)|, τ2(t) = 0.2| cos(3t)|, and β = 0.1, which mean that τ1 = 0.1 and τ2 = 0.2.
It could be easily tested that Assumptions 1 and 2 are satisfied, and L = diag(0.5, 0.5),

N =

[
0 0.1
−0.2 0

]
.

Moreover, choose the initial values as η(s) = [−5.6− 1.1i;−1.9 + 1.2i]T, η̃(s) = [0.2 +
0.3i; 0.3 + 0.9i]T, ρ(s) = [−0.2 + 0.6i;−1.3 + 0.6i]T, and ρ̃(s) = [2.4− 1.1i;−1.6− 1.1i]T, for
s ∈ [−0.3, 0]. We select the output weighting matrices and neuron-dependent nonlinear disturbance
signals as

F =

[
0.3 + 0.5i 0.2− 0.4i
0.1− 0.2i 0.5− 0.3i

]
, G =

[
0.5− 0.2i 0.2− 0.2i
−0.3 + 0.1i 0.3 + 0.1i

]
,

and gq(uq(t)) = uq (q = 1, 2).
Then, by means of the MATLAB LMI toolbox, the feasible solutions of (11)–(15) can be obtained,

such as Λ1 = diag(64.5684, 64.5684), Λ2 = diag(55.5390, 55.5390), Λ3 = diag(223.3662,
223.3662), Λ4 = diag(227.1920, 227.1920).

P1 = 1.0e + 02
[

0.6949 + 0.0000i 0.0128 + 0.0128i
0.0128− 0.0128i 1.6288 + 0.0000i

]
, P2 =

[
23.8813 + 0.1538i 1.5234 + 0.0078i
1.5234 + 0.0078i 50.3531− 1.6239i

]
,

P3 =

[
−14.7464− 0.6364i 0.8368− 1.1136i

0.8368− 1.1136i −30.9705 + 0.5937i

]
, P4 = 1.0e + 02

[
0.4104 + 0.0000i 0.0286 + 0.0001i
0.0286− 0.0001i 1.0553 + 0.0000i

]
,

P5 =

[
−8.1536− 0.7565i 0.0348− 1.4125i
0.0348− 1.4125i −16.2009 + 1.4115i

]
, P6 =

[
31.3945 + 0.0000i −1.2803− 0.6364i
−1.2803 + 0.6364i 49.7008 + 0.0000i

]
,

S1 = 1.0e + 02
[

0.7587 + 0.0000i 0.0323 + 0.4104i
0.0323− 0.4104i 1.2279 + 0.0000i

]
, S2 =

[
0.0192− 0.0506i 0.1381− 0.3017i
0.1381− 0.3017i 2.5451 + 0.5451i

]
,

S3 =

[
19.7653 + 0.0000i 1.1483 + 0.0348i
1.1483− 0.0348i 29.9047 + 0.0000i

]
, Q1 =

[
17.5145 + 0.0000i −0.2291− 1.4125i
−0.2291 + 1.4125i 42.3430 + 0.0000i

]
,

Q2 = 1.0e + 02
[

1.6937 + 0.0000i 0.0149− 0.0128i
0.0149 + 0.0128i 1.8482 + 0.0000i

]
, W1 = 1.0e + 02

[
1.3501 + 0.0000i 0.0060 + 0.0255i
0.0060− 0.0255i 1.4794 + 0.0000i

]
,

W2 =

[
93.4446 + 0.0000i 1.0153 + 0.5451i
1.0153− 0.5451i 96.3752 + 0.0000i

]
, R = 1.0e + 02

[
1.3938 + 0.0000i 0.0229 + 0.2990i
0.0229− 0.2990i 1.6984 + 0.0000i

]
,

W̃1 =

[
30.7114− 47.2040i 19.3940 + 27.8159i
5.8570 + 24.8126i 61.2309 + 33.2133i

]
, W̃2 =

[
18.5470− 41.1490i 1.4340 + 39.2840i
−1.0151 + 26.5256i 75.1281 + 35.4684i

]
,

M =

[
14.5224 + 1.0902i −1.8188 + 5.9497i
−0.3254− 4.5011i 22.3077− 0.6569i

]
, K̄ =

[
39.3566 + 0.0305i 0.2758 + 8.9574i
0.2483− 8.4581i 45.8361− 0.0401i

]
,

H̄ =

[
17.4796 + 0.0089i 0.3011 + 1.2179i
0.3341− 1.3773i 17.7157 + 0.0188i

]
.

Consequently, it can be obtained from K = M−1K̄ and H = M−1H̄ that

K =

[
2.6277− 3.6505i 2.5831 + 0.9480i
0.9898 + 1.6184i 2.5294 + 2.0984i

]
, H =

[
1.7394− 2.9958i 1.4102 + 1.6175i
0.5398 + 1.5122i 3.0035 + 1.9865i

]
.

The simulation results are shown in Figures 4 and 5. Among them, Figure 4 plots the
trajectories of the real and imaginary parts of the true state u(t) in System (4) and the estimation
state v(t). Figure 5 shows the state trajectory of the error system (6). Obviously, the simulation
results are in agreement with our theoretical analysis.
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Figure 4. The curves of states u(t) and its estimation v(t) in Example 2.
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Figure 5. The curves dynamics of error system e(t) in Example 2.

5. Conclusions

In this paper, the state estimation for complex-valued inertial neural networks with
multiple time delays was studied. By constructing a suitable Lyapunov–Krasovskii func-
tional and using some inequalities such as the Jensen inequality and the reciprocally convex
inequality, a delay-dependent criterion based on linear matrix inequalities (LMIs) was
obtained, which ensures the global asymptotic stability of the error system and that the net-
work state can be estimated by observing the output measurements. Finally, two examples
were given to verify the effectiveness of the proposed method. In the future, for various
types of complex-valued neural network models with multiple delays, we will consider
some synchronization phenomena, such as quasi-projective synchronization, polynomial
synchronization, and so on.
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