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Abstract: The noteworthiness of double-diffusive convection with magneto-Jeffrey nanofluid on a
peristaltic motion under the effect of MHD and porous medium through a flexible channel with
the permeable wall has been theoretically examined. A non-linearized Rosseland approximation is
utilized to show the thermal radiation effect. The governing equations are converted to standard
non-linear partial differential equations by using suitable non-dimensional parameters. Solutions of
emerging equations are obtained by using the multi-step differential transformation method (Ms-
DTM). The differential transformation method (DTM) can be applied directly to nonlinear differential
equations without requiring linearization and discretization; therefore, it is not affected by errors
associated with discretization. The role of influential factors on concentration, temperature, volume
fraction, and velocity are determined using graphs. A significant outcome of the present article is
that the presence of double-diffusive convection can change the nature of convection in the system.
The present results have a wide biological applicability, including for biomicrofluidic devices that
regulate the fluid flow through a flexible endoscope and other medical pumping systems.

Keywords: peristaltic flow; double diffusion; Jeffrey nanofluid; magnetic field; thermal radiation;
porous media; flexible channel; permeable walls; MS-DTM
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1. Introduction

Peristaltic transport is currently one of the most important pumping mechanisms
due to its many applications in engineering, medical sciences, and biomechanics. The
mechanism of peristalsis is due to a wave transmission along a tube wall or channel. The
word “peristalsis” is derived from the Greek word “peristaltikos”, meaning clasping and
compression. In 1966, Latham [1] introduced peristalsis, and the motion is the princi-
ple behind many devices, including heart–lung machines and finger and roller pumps.
The processes of oxygenation and haemodialysis are biologically significant. Further,
Shapiro et al. [2] analysed peristaltic pumping with long wavelengths at a low Reynolds
number. Jaffrin et al. [3] demonstrated the mechanism of peristaltic flow in Newtonian
and non-Newtonian fluids. The study of Non-Newtonian fluid transport phenomena has
increased considerably due to their importance in biological and industrial applications.
The relationship between shear stress and shear rate is not linear in a non-Newtonian fluid.
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Examples of non-Newtonian liquids are polymer solutions, starch suspensions, molten poly-
mers, shampoo, and blood. An important class of these non-Newtonian fluids constitutes
the linear viscoelastic model. Jeffrey fluid is a viscoelastic fluid model in which viscosity
remains constant and shear rate is time dependent. Among several non-Newtonian liq-
uid models, Jeffrey fluid model has gained attention from many investigators. Further,
khan et al. [4] studied Unsteady flows of a Jeffrey fluid between two side walls over a
plane wall. Baranovskii [5] analysed the stationary motion equations of Jeffreys viscoelastic
medium in an inhomogeneous boundary value problem. Baranovskii [6] analysed the
optimal control for steady flows of the Jeffreys fluids with slip boundary condition. Bara-
novskii [7] also studied the Global solutions for a model of polymeric flows with wall slip.
Hayat et al. [8] Effect of magnetic field on the peristalsis involving Jeffrey fluid.

Researchers have discovered a number of methods to improve the thermophysical
characteristics of fluids in recent years. Adding tiny solid particles with enhanced heat
conductivity to fluid is one such method [9]. A fluid suspension containing microparticles
or larger particles is unstable and has flow resistance. Surface roughness and clotting
can occur when such fluids are introduced in human body. However, a suspension with
nanosized particles, from 1 to 100 nm, cover a greater surface area and enhance conduction
and convection coefficients. Nanoparticles have significant applications in industries such
as engineering. In biomedical fields, cancer therapy using targeted drug delivery involves
a nanofluid. The current state of nanofluids research has been made possible by extensive
research. Akbar et al. [10] analysed the slip effects on the peristaltic movement of nanofluid.
Recently, Ayub et al. [11] showed the impact of thermal radiation in mixed convection
peristaltic movement of a third-grade nanoliquid. Further, Asha et al. [12] analysed the
peristaltic propulsion of a Carreau nanoliquid under the presence of Joule heating in an
inclined asymmetric channel.

The double-diffusion concept is found when fluid movement occurs through with ther-
mal and concentration gradient. In 1976, Aifantis [13] was the first to propose the concept of
the double-diffusive model. If a constant temperature difference is maintained, this thermal
diffusion in a mixture will produce a concentration gradient in a fluid. Double-diffusive
convection is an important concept for understanding industrial, engineering, and biomed-
ical problems. Because of the application of double diffusion in biomedicine, researchers
have taken a keen interest in understanding double diffusion at low Reynolds numbers.
Peristaltic flow with diffusion convection has found applications in the biomedical domain.
Ganesanet al. [14] analysed the impact of thermal radiation and double diffusion in non-
Newtonian fluids. Further, Raju et al. [15] combined impact of induced Brownian motion,
thermophoresis, and magnetic fields on double stratified nonlinear thermal radiation. The
analytical results of double-diffusive convective flow by considering non-Newtonian fluid
are given in references [16–19].

Darcy’s law applies to a porous medium. A flexible channel is a geometry with
porous walls that expand and contract. Over the last few decades, there have been many
investigations into porous media because of its importance in industrial and biological
processes. These include the study of Hussain et al. [20], who investigated the impact
of nonlinear radiation of peristaltic pumping by considering hydromagnetic fluids in a
porous medium. They found that pressure gradient rises due to the Darcy parameter. The
peristaltic movement of the non-Newtonian model liquid along with a porous medium in a
channel was investigated by Ramesh et al. [21]. Some recent research on porous medium
in peristaltic flow, considering Newtonian and non-Newtonian fluids, was studied by
Vajravelu et al. [22], Maitietal [23], and Nooren et al. [24]. Thermal convection in electrically
conducting liquid in a porous media under the impact of the external magnetic field
has attracted many researchers in the past few decades due to the importance of new
porous materials. Recently, Hasona et al. [25] examined the impact of MHD on peristaltic
movement. Under multiple conditions, other studies based on numerical methods and
experiments have also been described.
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In the view of the above literature, the current study shows the application of double-
diffusive convective flow and thermal radiation effects in peristaltic nanofluid movement
through flexible channels from a mathematical perspective. The present results have
broad applications in biological functions, such as biomicrofluidic devices that regulate
the fluid flow through a flexible endoscope and another medical pumping systems. In
recent years, there has been a lack of focus on developing and applying analytical and
numerical approaches. Such strategies can help to overcome the complexity and non-
linearity seen in non-Newtonian liquids. Peristaltic mechanisms with non-Newtonian
liquids necessitate substantially non-linear partial differential equations. It is hard to find
precise answers to such challenges. We employed a semi-analytical technique known as
the differential transform method (DTM) in this research. In 1986, Zhou first introduced
DTM [26]. The multi-step differential transformation approach (MS-DTM) is a depend-
able semi-analytical method that is an excellent enhancement over the traditional DTM.
The differential transformation method (DTM) can be applied directly to nonlinear dif-
ferential equations without requiring linearization and discretization; therefore, it is not
affected by errors associated with discretization. Unlike other methods, DTM is inde-
pendent of any small or large quantities. Therefore, DTM can be applied, where or not
governing equations and boundary/initial conditions of a given nonlinear problem contain
small or large quantities. Unlike the homotopy analysis method (HAM), DTM does not
need to calculate the auxiliary parameter Z1; moreover, through h-curves, DTM does not
need initial guesses, am auxiliary linear operator, and solves equations directly. Further-
more, Odibat et al. [27] demonstrated the MS-DTM and its application to chaotic or non-
chaotic systems. Further work was carried out by Hasona et al. [28,29], Tripathi et al. [30],
Hatami et al. [31], and Beg et al. [32] to solve non-linear ODE and PDE.

In present paper, the impact of the magnetic field, Darcy number, nonlinear convection,
thermophoresis, and Brownian motion parameters on double-diffusive MHD transport
of a Jeffrey nanoliquid through a flexible channel with permeable walls is studied. Non-
linear governing equations are solved using MS-DTM. In constrat, Ganesan et al. [14],
Raju et al. [15], and Asha et al. [16] analysed the impact of induced Brownian motion,
thermophoresis, and magnetic fields on double-stratified nonlinear convective-radiative
through analytical results by considering a Jeffrey nanofluid as non-Newtonian fluid. The
semi-analytical results of double-diffusive convective flow by considering non-Newtonian
fluid through a permeable wall with flexible channel have not yet been studied. The physi-
cal parameters of temperature, concentration, velocity, and volume fraction are debated by
drawing the graphs. The results obtained by MS-DTM have been compared with the results
obtained by NDSolve in Mathematica software and with the finite element method (FEM).
The present results have broad biological applications, including biomicrofluidic devices
that regulate fluid flow through flexible endoscopes and other medical pumping systems.

2. Mathematical Formulation

Consider a Jeffrey nanofluid peristaltic movement in a two-dimensional flexible chan-
nel propagating a sinusoidal wave towards its permeable walls. Using the Cartesian
coordinate system (X̃, Ỹ), the physical configuration of the channel wall surface is shown
in Figure 1 [33].

h
(

X̃, t̃
)
= a(X̃) + b sin

(
2π

λ

(
X̃− ct̃

))
(1)

where a(X̃) represents the channel half-width, b indicates wave amplitude, λ denotes the
length of the wave, c denotes velocity propagation, and t̃ denotes time.

Let Ũ and Ṽ be the velocity parameters, respectively, then the velocity field V can be
defined as:

V =
(

Ũ, Ṽ, 0
)

(2)
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For a Jeffrey fluid, the constitutive equations are [4–8]

T = −pI + S (3)

S =
µ

1 + λ1

(
A1 + λ2

(
∂A1

∂t
+ V.∇

)
A1

)
(4)

The Rivlin–Ericksen tensor A1 is defined through A1 = ∇V + (∇V)T . Here, I repre-
sents the identity tensor, p represents the pressure, λ1 denotes the ratio between relaxation
and retardation times, λ2 denotes the retardation time, µ is the fluid’s viscosity coefficient,
S and T are the extra stress tensor and Cauchy stress tensor, respectively.

The governing equations of a Jeffrey nanofluid are given as [14,15]

∂Ũ
∂X̃

+
∂Ũ
∂Ỹ

= 0 (5)

ρ f

(
∂Ũ
∂t̃

+ Ũ ∂Ũ
∂X̃

+ Ṽ ∂Ũ
∂Ỹ

)
= − ∂ p̃

∂X̃
+

∂S̃x̃ỹ

∂Ỹ
+ ∂S̃x̃x̃

∂X̃
− σ ∗ B2

0Ũ − µ

K0
Ũ + ρ f g

(
T̃ − T̃0

)
+ ρ f g

(
C̃− C̃0

)
−
(

ρp − ρ f

)
g(ñ− ñ0) ,

(6)

ρ f

(
∂Ṽ
∂t̃

+ Ũ ∂Ṽ
∂X̃

+ Ṽ ∂Ṽ
∂Ỹ

)
= − ∂ p̃

∂Ỹ
+ ∂S̃x̃x̃

∂X̃
+

∂S̃x̃ỹ

∂Ỹ
− σ ∗ B2

0Ṽ (7)

(ρc) f

(
∂T̃
∂t̃

+ Ũ ∂T̃
∂X̃

+ Ṽ ∂T̃
∂Ỹ

)
= kT

(
∂2T̃
∂X̃2 +

∂2T̃
∂Ỹ2

)
+

DTCαcp
CS

(
∂2C̃
∂X̃2 +

∂2C̃
∂Ỹ2

)
− ∂qr

∂Ỹ

+(ρc)pDB

(
∂ñ
∂X̃

∂T̃
∂X̃

+ ∂ñ
∂Ỹ

∂T̃
∂Ỹ

)
+ (ρc)p

((
∂T̃
∂X̃

)2
+
(

∂T̃
∂Ỹ

)2
)

DT
Tm

,
(8)

∂C̃
∂t̃

+ Ũ
∂C̃
∂X̃

+ Ṽ
∂C̃
∂Ỹ

= DCT

(
∂2C̃
∂X̃2

+
∂2C̃
∂Ỹ2

)
+

(
∂2T̃
∂X̃2

+
∂2T̃
∂Ỹ2

)
DS, (9)

∂ñ
∂t̃

+ Ũ ∂ñ
∂X̃

+ Ṽ ∂ñ
∂Ỹ

= DB

(
∂2ñ
∂X̃2 +

∂2ñ
∂Ỹ2

)
+ DT

Tm

(
∂2T̃
∂X̃2 +

∂2T̃
∂Ỹ2

)
(10)

where ρp denotes the mass density of nanoparticles, ρ f denotes the fluid’s effective density,
(ρc) f and (ρc)p are the fluid’s heat capacity and the nanoparticle material’s effective heat
capacity, respectively, kT is the fluid’s thermal conductivity, g is the gravity because of accel-
eration. Further, DS denotes the solutal diffusivity, K0 is the porous medium’s permeability
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constant, Cp denotes specific heat at constant pressure, and Cs denotes susceptibility of
concentration.

The relationship between the laboratory frame and wave frame is defined by:

ũ(x̃, ỹ) = Ũ − c, ṽ(x̃, ỹ) = Ṽ, x̃ = X̃− ct̃, ỹ = Ỹ, (11)

where (ũ, ṽ) are velocity components, and are coordinated in a wave frame.
Corresponding boundary conditions are given as below:

|ũ = −1−
√

Da
∂2ψ̃

ψỸ2 , ∂2ψ̃

ψỸ2 = 0, T̃ = T̃0, C̃ = C̃0, ñ = ñ0 at ỹ = 0,

|ũ = −1 +
√

Da
∂2ψ̃

ψỸ2 , T̃ = T̃1, C̃ = C̃1, ñ = ñ1 at ỹ = h̃ = a(x̃) + b sin 2π
λ (x̃− ct̃)

 (12)

Introducing the non-dimensional quantities of the following:

x = x̃
λ , y = ỹ

a , t = ct̃
λ , M =

√
σ∗
µ B0a, p = a2 p̃

cλµ , v = ṽ
c , u = ũ

c , h = h̃
a , δ = a

λ , Pr =
µ
α

Re =
ρ f ca

µ , α = kT
(ρc) f

, Ω = C̃−C̃0
C̃1−C̃0

, θ = T̃−T̃0
T̃1−T̃0

, χ = ñ−ñ0
ñ1−ñ0

, Rd = 16σ∗T̃3

3k∗kt
, Da =

k0
a2

GrT =
ρ f ga2(T̃1−T̃0)

cµ , GrC =
ρ f ga2(C̃1−C̃0)

cµ , GrF =
(ρp−ρ f )ga2(ñ1−ñ0)

cµ

NTC =
DTCαcP(C̃1−C̃0)

µkTcS(T̃1−T̃0)
, NCT =

DCT(T̃1−T̃0)
DS(ñ1−ñ0)

, Nt =
(ρc)pDT(T̃1−T̃0)

(ρc) f Tmµ
,

Nb =
(ρc)pDB(ñ1−ñ0)

(ρc) f µ
h = h̃

a = 1 +φ sin 2πx, φ = b
a , f ∗ = q

ca , u = ∂ψ
∂y , v = −δ ∂ψ

∂y .


(13)

Using the above variables with no dimension, the fundamental Equations (5)–(10) can
be reduced to:

∂p
∂x

=
1

1 + λ1

∂3ψ

∂y3 − (M2 +
1

Da
)

∂ψ

∂y
+ GrTθ + GrCΩ− GrFχ, (14)

∂p
∂y

= 0, (15)

∂2θ

∂y2 + NbPr
∂θ

∂y
∂χ

∂y
+ NtPr

(
∂θ

∂y

)2
+ Rd

∂2θ

∂y2 + NTCPr
∂2Ω
∂y2 = 0, (16)

∂2Ω
∂y2 + NCT

∂2θ

∂y2 = 0, (17)

∂2χ

∂y2 +
Nt

Nb

∂2θ

∂y2 = 0 (18)

Removing pressure from Equations (14) and (15), gives:

1
1 + λ1

∂4ψ

∂y4 − (M2 +
1

Da
)

∂2ψ

∂y2 + GrTθ + GrCΩ− GrFχ = 0 (19)

The boundary conditions with no dimension in the problem’s wave frame are:

ψ = 0, u = ∂ψ
∂Y = −1−

√
Da

∂2ψ
∂Y2 , ∂2ψ

∂Y2 = 0, θ = 0, Ω = 0, χ = 0 at y = 0,

ψ = f ∗, u = ∂ψ
∂Y = −1 +

√
Da

∂2ψ
∂Y2 , θ = 1, Ω = 1, χ = 1 at y = h = 1 +φ sin 2πx

}
(20)

Here, the mean flow f ∗ over a period is considered as:

Θ = f ∗ + 1 , f ∗ =
h∫

0

∂ψ

∂y
dy (21)

where Θ = Q
ca and f ∗ = Q

ca .
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The skin friction coefficient (wall shear stress), Nusselt number (heat transfer rate),
and Sherwood number (mass transfer rate) are presented in the following forms [34,35]:

C f = −
∂u
∂y

]
y=h

(22)

Nu = − ∂θ

∂y

]
y=h

(23)

Sh = −∂Ω
∂y

]
y=h

(24)

Method of Solution

Using MS-DTM with symbolic Mathematica, Equations (16) to (19) are computed with
boundary conditions (20). Details for the MS-DTM can be found in the references [26–32].(

1
1+λ1

)
(k + 1)(k + 3)(k + 2)(k + 4)Ψ(k + 4) + Θ(k + 1)GrT(k + 1) + Φ(k + 1)GrC(k + 1)

−Υ(k + 1)GrF(k + 1)− (k + 1)(k + 2)
(

M2 + 1
Da

)
Ψ(k + 2) = 0,

(25)

(k + 1)(k + 2)Θ(k + 2) + NbPr
k
∑

r=0
Θ(k + 1)(k + 1)(k− r + 1)Υ(k− r + 1) + NTCPr(k + 1)(k + 2)Φ(k + 2)

+Rd(k + 1)(k + 2)Θ(k + 2) + NtPr
k
∑

r=0
Θ(k + 1)(k + 1)(k− r + 1)Θ(k− r + 1) = 0,

(26)

(k + 1)(k + 2)Φ(k + 2) + NCT(k + 1)(k + 2)Θ(k + 2) = 0, (27)

(k + 1)(k + 2)Υ(k + 2) +
Nt

Nb
(k + 1)(k + 2)Θ(k + 2) = 0 (28)

where Ψ[k], Θ[k], Φ[k], and Υ[k] are the differential transformation functions of ψ(y), θ(y),
Ω(y), and χ(y), respectively, and given as:

ψ(y) ∼=
m

∑
k=0

Ψ(k)yk (29)

θ(y) ∼=
m

∑
k=0

Θ(k)yk (30)

Ω(y) ∼=
m

∑
k=0

Φ(k)yk (31)

χ(y) ∼=
m

∑
k=0

Υ(k)yk (32)

The transformed forms of boundary conditions are as follows:

Ψ(0) = 0, Ψ(1) = −1, Ψ(2) = 0, Ψ(3) = m1
6 , Θ(0) = 0, Θ(1) = m2,

Φ(0) = 0, Φ(1) = m3, Υ(0) = 0, Υ(1) = m4.

}
where m1, m2, m3, m4 are unknown coefficients that must be determined.

Substituting Equation (32) into Equations (25)–(28), and other values of Ψ[k], Θ[k],
Φ[k], and Υ[k] can be determined by a recursive method. Hence, substitute all Ψ[k], Θ[k],
Φ[k], and Υ[k] into Equations (29)–(31), We have series solutions given as:

ψ(y) = (−1)y + m1
6 y3 + 1

1+λ1
(−GrTm2 − GrCm3 + GrFm4)y4+

(1+λ1)
60

{ (
−GrT+GrC NCT−GrF

Nt
Nb

)
2(1+Rd)

(
−NbPrm2m4 − 2NTCPrm3 − NtPrm2

2)+ m1
2

(
M2 + 1

Da

)}
y5 + . . .

(33)
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θ(y) = m2y +
(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

y2 +
Pr(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
(6(1+Rd)((1+Rd)+NTC NCT Pr)){

−Nb

[
2 Nt

Nb

(
(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

+ m4

)]
− Nt

(
2 (
−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

+ m2

)}
y3 + . . .

(34)

Ω(y) = m3y +
NCT(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

y2 − NCT
Pr(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
(6(1+Rd)((1+Rd)+NTC NCT Pr)){

−Nb

[
2 Nt

Nb

(
(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

+ m4

)]
− Nt

(
2 (
−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

+ m2

)}
y3 + . . .

(35)

χ(y) = m4y +
Nt(NbPrm2m4+2NTC Prm3+NtPrm2

2)
2Nb(1+Rd)

y2 −
(

Nt
Nb

) Pr(−NbPrm2m4−2NTC Prm3−NtPrm2
2)

(6(1+Rd)((1+Rd)+NTC NCT Pr)){
−Nb

[
2 Nt

Nb

(
(−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

+ m4

)]
− Nt

(
2 (
−NbPrm2m4−2NTC Prm3−NtPrm2

2)
2(1+Rd)

+ m2

)}
y3 + . . .

(36)

Differentiating Equation (33) partially for y we get the velocity equation as:

U(y) = (−1) + m1
3 y2 + 4

1+λ (−GrTm2 − GrCm3 + GrFm4)y3+

5(1+λ1)
60

{ (
−GrT+GrC NCT−GrF

Nt
Nb

)
2(1+Rd)

(
−NbPrm2m4 − 2NTCPrm3 − NtPrm2

2)+ m1
2

(
M2 + 1

Da

)}
y4 + . . .

(37)

Using boundary conditions of Equation (20) and for:

GrT = 0.5, GrC = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Da = 10, Pr = 7, λ1 = 0.6, M = 0.2.

Using boundary conditions of Equation (20), we obtain the values of:

m1 → 9.464766924662431, m2 → 0.930588663657573,
m3 → −0.3638757341429297, m4 → 0.6218840352126972.

3. Results and Discussion

The study shows the application of double-diffusive convective flow and thermal
radiation effects in the peristaltic movement of a nanoliquid though a flexible channel. The
results obtained by MS-DTM have been compared with the results obtained by NDSolve
in Mathematica software and with FEM. The results matched nicely, as shown in Table 1.
Results of the skin friction coefficient C f , Nusselt number Nu, and Sherwood number Sh ob-
tained by MS-DTM is shown in Table 2. Here, we discuss the development of temperature,
velocity, nanoparticle volume fraction, and nanoparticle concentration profiles correspond-
ing to the variation of Da,Rd,Pr, GrT , GrC,GrF,Nb and Nt using a graphical method.

3.1. Velocity Profile

The effects of Da,Pr,GrF, GrC and GrT on velocity distribution u(y) are presented in
Figure 2a–e. Figure 2a shows that velocity in all the regions of the peristaltic pumping
diminishes with increasing values of Darcy number Da. Physically, in fluid flow, Da
provides less resistance. Figure 2b demonstrates the nature of velocity for different values
of the Prandtl number Pr. Physically, low Prandtl numbers indicate high heat diffusivity,
whereas high Prandtl numbers indicate progressive momentum. The Prandtl number is
always positive to control the force and thermal boundary layer thickness. Figure 2c shows
that the velocity in all regions of the peristaltic movement decreases with increase values
of GrF. Because of an increase in GrF, the fluid viscosity decreases, resulting in a decrease
in velocity. From Figure 2d, it is observed that increases in GrC reduce the velocity of
the wall; this affects the shrinkage of the thermal boundary layer. Figure 2e shows that
with enhancing values of GrT , the velocity profile decreases. The thermal Grashof number
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satisfies the proportionate impact of viscous hydrodynamic force and thermal buoyancy
force. As a result, as the GrT increases, the viscosity decreases.

Table 1. Comparison of the velocity distribution u(y) obtained by MS-DTM with NDSolve and FEM
solution for GrT = 0.5, GrC = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Da = 10,
Pr = 7, λ1 = 0.6, M = 0.2.

y Present Result u(y) NDSolve FEM

0 −1 −1 −1

0.2 −0.987243 −0.98724 −0.987232

0.4 −0.894205 −0.89420 −0.894201

0.6 −0.621413 −0.62141 −0.621411

0.8 −0.0304656 −0.03046 −0.030461

1 1.07577 1 1.004391

Table 2. Results of the skin friction coefficient C f , Nusselt number Nu, and Sherwood number
Sh obtained by MS-DTM. GrT = 0.5, GrC = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5,
Nt = 0.5, Da = 10, Pr = 7, λ1 = 0.6, M = 0.2..

y Present Result (Cf) Present Result (Nu) Present Result (Sh)

0 8.056789 7.098765 −8.0186068

0.2 16.987243 16.189148 −12.073384

0.4 0.8942051 0.384279 −0.00279364

0.6 20.621413 22.585275 −11.602726

0.8 4.0304656 6.792017 −0.00005

1 9.075771 10.00439 −7.0468609

3.2. Temperature Profile

Figure 3a-d were prepared to examine the temperature via Rd,Pr,Nb and Nt. From
Figure 3a, it can be seen that temperature in all the regions of peristaltic transport diminishes
with enhancing the values of thermal radiation Rd. When the radiation parameter increases,
it improves the movement of electromagnetic waves while suppressing heat conduction.
Because dispersion heat exchange occurs as a result of irregular atom proliferation, when
it is extinguished, the neighbouring particles spread less, and the vitality exchange rate
between them becomes less productive. Furthermore, diffusive heat exchange occurs
on a longer time scale than radiative heat exchange. Figure 3b demonstrates the nature
of temperature distribution for different values of the Prandtl number Pr. Physically,
low Prandtl numbers indicate high heat diffusivity, while high Prandtl numbers indicate
progressive momentum. The Prandtl number is always positive to control the force and
thermal boundary layer thickness. The Brownian motion parameter Nb has an enhancing
effect on temperature (see Figure 3c). The Brownian motion of nanofluid particles was
proposed because small particles move more uniformly, which may help heat transport.
The molecules in the nanofluid grew unpredictably, as did the surrounding fluid particles.
Brownian motion describes this. The effects of a Brownian motion-induced molecule were
used to increase heat transport between particles and thus the heat radiation of nanofluids.
An increase in temperature is observed by enhancing the thermophoresis parameter Nt
(see Figure 3d). When the thermophoresis parameter is increased, thermophoretic power is
increased due to the mixing of versatile particles, which improves the temperature profile.
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Figure 2. (a–e) Velocity distribution versus Y for various physical parameters
(a) GrT = 0.5, GrC = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Pr = 7, λ1 = 0.6,
M = 0.2. (b) GrT = 0.5, GrC = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Da = 10,
λ1 = 0.6, M = 0.2. (c) GrT = 0.5, GrC = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Da = 10,
Pr = 7, λ1 = 0.6, M = 0.2. (d) GrT = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5,
Da = 10, Pr = 7, λ1 = 0.6, M = 0.2. (e) GrC = 0.5, GrF = 0.5, NCT = 0.7, NTC = 0.7, Nb = 0.5,
Nt = 0.5, Da = 10, Pr = 7, λ1 = 0.6, M = 0.2.
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Figure 3. (a–d) Temperature distribution versus Y for various physical parameters
(a) NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Pr = 7, (b) NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5,
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Rd = 0.5, Pr = 7.

3.3. Concentration Profile

Figure 4a–d demonstrate that the concentration profile of the nanoparticles was clar-
ified by the effects of Rd,Pr,Nb and Nt. It is observed from Figure 4a that nanoparticle
concentration in all regions of peristaltic movement decreases with increasing values of Rd.
Rd is inversely related to the solute concentration, which decreases with the dimensionless
transverse coordinate y. Figure 4b demonstrates that as Pr increases, the thermal conductiv-
ity of the liquid increases; hence, the concentration of the nanoparticles increases. Figure 4c
shows that Nt has a decreasing effect on nanoparticle concentration because of the huge
transfer of nanoparticle from a hot region to a cold region, which results a decrease in the
concentration distribution. Figure 4d shows that Nb has a decreasing effect on nanoparticle
concentration because of the huge transfer of nanoparticle from a hot region to cold region,
which results the decrease in concentration distribution.

3.4. Nanoparticle Volume Fraction Profile

Figure 5a–d represent the volume fraction profile of the nanoparticles are presented
under the effects of Rd,Pr,Nb and Nt. Figure 5a represents that volume fraction of the
nanoparticle in all the regions of the peristaltic pumping diminishes with enhancing the
values of Rd. Figure 5b demonstrates the nature of the volume fraction profile of the
nanoparticle for various values of Pr. Figure 5c,d show that Nt and Nb have a decreasing
effect on nanoparticle volume fraction. Because the temperature distribution in nanofluids
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is low, the volume fraction of nanoparticles in the liquid falls as the Brownian motion
parameter increases, which might lead to the system’s distribution. However, in the case of
the thermophoresis parameter, the same findings are observed.
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Figure 4. (a–d) Concentration distribution versus Y for various physical parameter
(a) NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Pr = 7, (b) NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5,
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(a) NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5, Pr = 7, (b) NCT = 0.7, NTC = 0.7, Nb = 0.5, Nt = 0.5,
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3.5. Pressure Gradient

Figure 6a–d represent the pressure gradient under the effects of fluid parameter λ1,
Darcy number Da, magnetic field M, and solutal Grashof number GrC. Figure 6a shows
that the rise in the fluid parameter λ1 diminishes the pressure gradient. Figure 6b shows
that the increase in magnetic field M enhances the pressure gradient. Figure 6c shows that
the increase in Darcy number Da enhances the pressure gradient. Figure 6d indicates that
the pressure gradient decreases with the increase in solutal Grashof number GrC i.e., the
flow can easily pass without the imposition of a large pressure gradient.

3.6. Trapping Phenomenon

Figures 7–9 represent the Streamline graph under the effects of Jeffery fluid parameter
λ1, magnetic field M, and Darcy number Da. An inimitable hydrodynamic property
accompanying peristaltic mechanism is the trapping phenomena that occasionally occur
when a fluid is subjected to a large amplitude ratio. In the laboratory frame, the set of stream
lines represents a fluid bolus moving with and within the wave, and when stream lines
bypass the trapped bolus, they attain a shape similar to that of the wall. The development
of a flowing bolus by neighbouring stream lines in the direction of fluid flow is termed as
trapping. Basically, it is the creation of an internally circulating bolus. The volume of the
bolus is defined as the fluid bound by the closed stream lines. This interesting phenomenon
is involved in valuable applications in many biological fluids and bioengineering. The flow
behaviour of chime in the gastrointestinal tract and the development of thrombus in blood
vessels phenomenon followed such interesting applications. Figure 7a–c demonstrate that
enhancing the Jeffery fluid parameter λ1 diminishes the size of the trapped bolous. We
observed from Figure 8a–c that the rise in the magnetic field M parameter decreases the
size of the trapped bolus. In the figure, it can be seen that the size of the trapped bolus
diminishes, and the boluses decrease on cumulative values of the magnetic field parameter
M for weak stream line circulation. Thus, the magnetic field force can be used to control
bolus formations. In addition, Figure 9a–c show that an increase in Darcy number Da
decreases the magnitude of the bolus.
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that the increase in Darcy number 
aD  enhances the pressure gradient. Figure 6d indi-
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G  
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4. Conclusions

The current work aims to discuss the double-diffusive convection of a magneto-Jeffrey
nanofluid on peristaltic motion under the impact of MHD and a porous medium through a
flexible channel with a permeable wall.

The main findings of the paper are as follows.

1 The velocity in all the regions of the peristaltic pumping diminishes with increasing
values of Darcy number Da; in fluid flow, Da provides less resistance.

2 The temperature in all regions of peristaltic transport diminishes with increasing
values of thermal radiation Rd.

3 Nanoparticle concentration in all regions of the peristaltic movement decreases with
enhancing the values of Rd. The Rd is inversely related to the solute concentration,
which decreases as the dimensionless transverse coordinate y.

4 As Pr increases, the thermal conductivity of the liquid increases; hence, the concentra-
tion of nanoparticle increases.

5 The volume fraction of the nanoparticle in all regions of peristaltic pumping diminishes
with increasing values of Rd.

6 In a pressure gradient, the Jeffrey fluid parameter λ1, magnetic field M, Darcy number
Da, and solutal Grashof number GrC have the same behaviour.

7 Enhancing the Jeffrey fluid parameter λ1 diminishes the size of the trapped bolus. The
increase in the magnetic field M parameter decreases the size of the trapped bolus. In
addition, the increase in Darcy number Da decreases the magnitude of the bolus.
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Nomenclature

DT Thermophoresis diffusion coefficient (m2s−1)
Tm Fluid mean temperature (K)
τ Stress tensor (Nm−2)
σ electrical conductivity
DB Brownian diffusion coefficient (m2s−1)
T̃ Temperature of the fluid (K)
a(X̃) Channel half-width (m)
b Wave amplitude (m)
λ Wavelength (m)
c Velocity propagation (m−1s)
t̃ Time (s)
NCT Soret parameter
e Electric charge
B0 Applied magnetic field (Kgs−2 A−1)
M Magnetic parameter
I Identity tensor
p Pressure
λ1 The ratio between relaxation and retardation times
λ2 Retardation time
.
γ Shear rate
µ Fluid viscosity coefficient
S Extra stress tensor
T Cauchy stress tensor
ρp Mass density of nanoparticles
ρ f Fluid effective density (kgm−3)
(ρc) f Fluid heat capacity
(ρc)p Nanoparticle material’s effective heat capacity
kT Fluid thermal conductivity (WK−1m−1)
g Acceleration due to gravity (ms−1)
DS Solutal diffusivity
K0 Permeability constant (Wm−1K)
Cp Specific heat at constant pressure (J kg−1K−1)
Cs Susceptibility of concentration
GrT Thermal Grashof number
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Re Reynolds number
Rd Thermal radiation
GrT Nanoparticle Grashof number
Nb Brownian motion parameter
Pr Prandtl number
GrC Solutal Grashof number
NTC Dufour parameter
Nt Thermophoresis diffusion parameter
C̃ Concentration of fluid
ñ Nanoparticle volume fraction
X̃, Ỹ Cartesian coordinates
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