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Abstract: Recently, the high-dimensional negative binomial regression (NBR) for count data has
been widely used in many scientific fields. However, most studies assumed the dispersion parameter
as a constant, which may not be satisfied in practice. This paper studies the variable selection and
dispersion estimation for the heterogeneous NBR models, which model the dispersion parameter
as a function. Specifically, we proposed a double regression and applied a double `1-penalty to
both regressions. Under the restricted eigenvalue conditions, we prove the oracle inequalities for
the lasso estimators of two partial regression coefficients for the first time, using concentration
inequalities of empirical processes. Furthermore, derived from the oracle inequalities, the consistency
and convergence rate for the estimators are the theoretical guarantees for further statistical inference.
Finally, both simulations and a real data analysis demonstrate that the new methods are effective.

Keywords: negative binomial regressions; heterogeneous count data regression; estimation of disper-
sion parameter; oracle inequalities

MSC: 62E17; 62E20; 62F07

1. Introduction

In many scientific fields, such as biomedical science, ecology, and economics, ex-
perimental and observational studies often yield count data, a type of data in which the
observations can take only the non-negative integer values. The Poisson regression models
are commonly used for count data. However, it needs a restrictive assumption that the vari-
ance equals the mean. For many count data, the variance is often larger than the mean [1],
which is called overdispersion. Because the Poisson regression model is invalid under the
overdispersion case, a more general and flexible regression model, the negative binomial
regression, has attracted lots of research attention and become popular in analyzing count
data [2–4].

With the advance of modern data collection techniques, high-dimensional data are
becoming increasingly common in scientific studies. The widely used estimations for the
high-dimensional parameter include the lasso [5], the scad [6], the elastic net [7], the adap-
tive lasso [8], and so on. Recently, there has been much research on the high-dimensional
NBR model, such as [9–14]. All of these works assumed the dispersion parameter as a
constant. In practice, however, not all models satisfy the assumption. If the dispersion
parameter is wrongly assumed to be a constant, the estimation of the mean regression
will perform poorly as shown in the simulation in Section 4.1, thus the need to model
the dispersion parameter as a function of some covariates. The heterogeneous negative
binomial regression (HNBR) extends the NBR by observation-specific parameterization
of the dispersion parameter [3]. The HNBR is a valuable tool for assessing the source of
overdispersion. It belongs to the double-generalized linear models (DGLMs) or vector-
generalized linear models (VGLMs), which are very useful in fitting more complex and
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potentially realistic models [15–18]. However, it appears that there is no study on selecting
the dispersion explanation variables in the HNBR model.

In this paper, we study the variable selection and dispersion estimation for the het-
erogeneous NBR models. To the best of our knowledge and based on the literature, this
study is the first. Specifically, we propose a double regression to estimate the coefficients of
NB dispersion and NBR simultaneously. Because of the high dimension of the covariates,
we apply a double `1 penalty to both regressions. The two adjustment parameters we set
are different because the first-order conditions for estimating the regression coefficients
are entirely different from those for estimating the dispersion parameters. We construct an
algorithm to perform variable selection and dispersion estimation simultaneously. Similar
studies on high-dimensional NBR models include [19], which assumed the dispersion
parameter as a constant. Their method requires an iterative algorithm to estimate the mean
regression and dispersion alternatively and implement a lasso in each iteration. If there are
many iterations, such an algorithm is a waste of computing resources.

The rest of the paper is organized as follows. Section 2 introduces the heterogeneous
overdispersed count data model and defines the double `1-penalized estimators for the
mean and dispersion regressions. Then we use a technique called the stochastic Lipschitz
condition to derive the asymptotic results in Section 3. Simulation studies and a real data
application are given in Section 4. Finally, Section 5 concludes the article with a discussion.
All proofs and technical details are provided in Appendix A.

2. Double `1-Penalized NBR
2.1. Heterogeneous Overdispersed Count Data Regressions

Suppose we have n count responses Yi and p-dimensional covariates Xi = (xi1, · · · , xip),
i ∈ [n] := {1, 2, . . . , n}. For the Poisson regression models, the response obeys the Poisson
distribution

P(Yi = yi|λ i) =
λ

yi
i

yi!
e−λi , i ∈ [n].

with λi = E(Yi), we require that the positive parameter λi is related to a linear combination
of p covariates. A plausible assumption for the link function is η(λi) = log(λi) = X>i β. It
is worth noting that E(Yi|Xi) = var(Yi|Xi) = exp(X>i β) > 0.

For the traditional negative binomial regression, it assumes that the count data re-
sponse obeys the NB distribution with overdispersion:

P(Yi = yi|Xi) =: f (yi; k, µi) =
Γ(k + yi)

Γ(k)yi!
(

µi
k + µi

)yi (
k

k + µi
)k, i ∈ [n], (1)

with E(Yi|Xi) = µi = exp(β>Xi) and k is an unknown qualification of the overdispersion

level. When k→ ∞, we have var(Yi|Xi) = µi +
µ2

i
k → µi= E(Yi|Xi), the Poisson regression

for the mean parameter µi. Thus, the Poisson regression is a limiting case of negative
binomial regression when the dispersion parameter k tends to infinite.

In the heterogeneous negative binomial regression, k is proposed as a specific parame-
terization, i.e., k = k(Xi). More specifically, we assume in this paper that

µ(x) = exp{θ(1)>x}, k(x) = exp{θ(2)>x}.

For notation simplicity, we denote

P f := E f (Xi, Yi), Pn f :=
1
n

n

∑
i=1

f (Xi, Yi), Gn f :=
√

n(Pn − P) f ,

for any measurable and integrable function f .

Let θ = (θ(1)>, θ(2)>)> ∈ R2p, the log-likelihood is
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n`(θ) = log
n

∏
i=1

f (yi, ki, µi) =
n

∑
i=1

log
{

Γ(ki + Yi)

Γ(ki)Yi!
(

µi
ki + µi

)Yi (
ki

ki + µi
)ki

}

=
n

∑
i=1

[
− log

Γ
(

exp{X>i θ(2)}
)

Γ
(
Yi + exp{X>i θ(2)}

) + YiX>i
(
θ(1) − θ(2)

)
−
[
Yi + exp{X>i θ(2)}

]
log
(

1 + exp{X>i
(
θ(1) − θ(2)

)
}
)
− log Yi!

]
We use the negative log-likelihood as the loss function γ, and define

γ(θ) := − log f (y | x, θ) + log y!.

Denote ∂j := ∂
∂θ(j) , j = 1, 2, the score function for θ(1) is

∂1`(θ) = −Pn∂1γ(θ) =
1
n

n

∑
i=1

(Yi − eX>i θ(1))
eX>i θ(2)Xi

eX>i θ(1) + eX>i θ(2)
.

Furthermore, fix θ(1), the score function for θ(2) is

∂2`(θ) = Pn∂2γ(θ) =
1
n

n

∑
i=1

{[
log
(

1 + eX>i (θ(1)−θ(2))
)
−

Yi−1

∑
j=0

1

j + eX>i θ(2)

]
+

Yi − eX>i θ(1)

eX>i θ(1) + eX>i θ(2)

}
eX>i θ(2)Xi.

It is easy to verify that
P∂1`(θ) = P∂2`(θ) = 0.

Thus, from now, we will suppose the true value of parameter θ is θ∗.

2.2. Heterogeneous Overdispersed NBR via Double `1 Penalty

The weighted lasso estimator under our circumstance is defined as

θ̂n = argmin
θ∈Θ

(
Pnγ(θ) + λ‖θ‖ω,1

)
, (2)

where λ > 0 is the tuning parameter and the weighted norm is defined by

λ‖θ‖ω,1 = λ1‖θ(1)‖1 + λ2‖θ(2)‖1 = λ
(

ω1‖θ(1)‖1 + ω2‖θ(2)‖1

)
,

and ω = (ω1, ω2)
> = (λ1/λ, λ2/λ)> ∈ [0, 1] × [0, 1] is the weight, ‖ · ‖1 means the `1-

norm. This technique is also used in [20]. Equation (2) is a weighted double `1-penalized
problem, which is a kind of convex penalty optimization, and when λ1 = λ2, it becomes
a single-penalized problem. In this paper, we use different λ1 and λ2, as the first-order
conditions for estimating the regression coefficients are entirely different from those for
estimating the dispersion parameters, and take λ = λ1 ∨ λ2.

Because the weighted group lasso estimator θ̂n has no closed-form solution, we need
to use iterative methods such as quasi-Newton or coordinate descent methods. We use BIC
to choose the parameter λ1 and λ2.

BIC(λ1, λ2) = −2`(θ̂n) +
log n

n
k,

where k is the number of nonzero estimated coefficients. To illustrate the algorithm explic-
itly, we rewrite γ(θ) as γ(θ(1)>x, θ(2)>x) and define θ(3) = λ2/λ1θ(2), θ† = (θ(1)>, θ(3)>)>.
Converting θ(2) into θ(3) turns the double `1-penalized problem into a single penalized one,
which can be solved through some R packages, such as “lbfgs”. The algorithm is formally
given in Algorithm 1.
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Algorithm 1 Double `1-Penalized Optimization
Input: the set of tuning parameters Λ = {(λ1,i, λ2,i)}m

i=1
Output: the estimate θ̂n

for i = 1, . . . , m, do
let x∗ = λ1,i

λ2,i
x;

solve θ̂† = (θ̂(1)>, θ̂(3)>)> = argminθ†∈Θ
(
Pnγ(θ(1)>x, θ(3)>x∗)) + λ1,i‖θ†‖1

)
;

obtain the estimate θ̂n,i = (θ̂(1)>, λ2,i
λ1,i

θ̂(3)>)>;

compute BIC(λ1,i, λ2,i) = −2`(θ̂n,i) +
log n

n
ki;

end for
find iopt = argmini=1,...,m BIC(λ1,i, λ2,i);
return θ̂n,iopt

The proposed algorithm can perform variable selection and dispersion estimation
simultaneously. Similar studies on high-dimensional NBR models include [19], which as-
sumed the dispersion parameter as a constant. However, their method requires an iterative
algorithm to estimate the mean regression and dispersion alternatively and implement lasso
in each iteration. If there are many iterations, such an algorithm is a waste of computing
resources.

3. Main Results
3.1. Stochastic Lipschitz Conditions

We write the maximum of Yi from the sample of size n as MY,n, then the sample
space for {Yi}n

i=1 is Y := {y ∈ N, y ≤ My,n}., i.e., My,n = maxi∈[n] Yi. Note that
limn→∞ P(My,n = ∞) = 1; what we need to tackle is actually an unbounded empiri-

cal process. However, for z :=
(

x>

x>

)
∈ R2×2p, we can assume the value space S for

s := zθ is bounded and satisfies

S :=
{

s = (s1, s2)
> ∈ R2, −∞ < ms,n ≤ sj ≤ |sj| ≤ Ms,n < ∞, j = 1, 2

}
.

As we can see, the most significant difference between this article and other conven-
tional literature about lasso estimators is that we use s = zθ rather than θ as the explanatory
variable to analyze the properties of the loss function γ. This is not a traditional way. At
first glimpse, the combination may complicate the analysis in the next step because the
KKT condition requires the story about ∂

∂θ γ, which is critical for the traditional convex
penalty problem. However, this article will try a different approach, the stochastic Lipschitz
conditions introduced in the event A of Proposition 1 in [14], to solve the `1-penalization
problem. Define the local stochastic Lipschitz constant by

Lip( f ; θ∗) := sup
θ∈Θ/{θ∗}

∣∣∣∣∣
√

nGn
(

f (θ)− f (θ∗)
)

‖θ − θ∗‖1

∣∣∣∣∣.
The most apparent advantage of the stochastic Lipschitz conditions over the KKT

condition is that it can easily deal with the several parameters involved in different locations
of the model that need to impose the same penalty on them, which is why we do not need
to derive the KKT condition in this paper.

To establish the stochastic Lipschitz conditions for this unbounded counting process,
another assumption, called the strongly midpoint log-convex, for some positive γ should
be satisfied, which states for the joint density from the sample Y := (Y1, . . . , Yn)> ∈ Zn’s
negative log-density of n independent NB responses ψ(y) := − log pY(y) satisfies
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ψ(x) + ψ(y)− ψ

(⌈
1
2

x +
1
2

y
⌉)
− ψ

(⌊
1
2

x +
1
2

y
⌋)
≥ γ

4
‖x− y‖2

2, ∀x, y ∈ Zn.

This assumption is a condition that ensures that the suprema of the multiplier empirical
processes of n independent responses have sub-exponential concentration phenomena,
which can be alternatively checked by the tail inequality for the suprema of the empirical
processes corresponding to classes of unbounded functions ([21]).

Theorem 1. Suppose maxi∈[n], 1≤k≤p |Xik| ≤ Mx < ∞, the parameter space Θ is convex and its
diameter DΘ < ∞. If {Yi}n

i=1 and {Ziθ}i∈[n], θ∈Θ are both in the value space Y and S defined as
previous, then for any θ ∈ Θ,

Lip(γ; θ∗) = sup
θ∈Θ/{θT∗}

∣∣∣∣∣
√

nGn
(
γ(θ)− γ(θ∗)

)
‖θ − θ∗‖1

∣∣∣∣∣
≤
√

nMq :=
(

A1

√
log(2p/q2) + A2

√
log p + A3

√
log(p/q3)

)√
max

1≤k≤p

n

∑
i=1

X2
ik

+ B
√

log(2p/q1)

√(
max

1≤k≤p

n

∑
i=1

X4
ik

)1/2
∨ C log(2p/q1) + D log(p/q3),

with probability at least 1 − q0, where q1, q2, q3 ∈ (0, 1) satisfy q1 + q2 + q3 = q0, and the
constants are as follows:

A1 =
√

2F1, A2 = 32
√

2MxF2DΘ, A3 =
√

2
(
2(F1 + My,n) ∨ F2MxDΘ

)
,

B = 6

√√√√2
(
w(1) ∨ w(2)

)( n

∑
i=1

a(µi, ki)4
)1/2

, C = 12Mx
(
w(1) ∨ w(2)) max

1≤i≤n
a(µi, ki),

D = 8
(
2(F1 + My,n) ∨ F2MxDΘ

)
Mx, w(1) =

eMs,n

ems,n + eMs,n
,

w(2) =
e + eMs,n−ms,n

1 + ems,n−Ms,n
+

1
1 + ems,n−Ms,n

,

where My,n = maxi∈[n] Yi is the suprema empirical process.

It is worthy to note that the My,n in Theorem 1 is a random process; hence, the
bound above is not deterministic. Fortunately, My,n can use the strongly midpoint log-
convex condition to be bounded, which we state in Lemma A3. Theorem 1 combined with
Lemma A3 will give the following result as a step more.

Theorem 2. Assume the conditions are the same as that in Theorem 1, then the stochastic Lipschitz
constant has a nonrandom upper bound:

Lip(γ; θ∗) ≤
√

nM′q :=
(

A1

√
log(2p/q2) + A2

√
log p + 2A′3

(
log(2n/q4) +

√
log(np/q3)

))√
max

1≤k≤p

n

∑
i=1

X2
ik

+ B
√

log(2p/q1)

√(
max

1≤k≤p

n

∑
i=1

X4
ik

)1/2
∨ C log(2p/q1) + D log(p/q3),

with probability at least 1− q0, where q1, q2, q3, q4 ∈ (0, 1) satisfy q1 + q2 + q3 + q4 = q0, and

A′3 = 2
√

2
(

F1 +

(
2γ max

i∈[n]

[
a(µi, ki)−

µi
log 2

])
∨ F2MxDΘ

)
.
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Theorem 1 gives us a different sight of the loss function far more than KKT conditions.
However, the stochastic Lipschitz condition above does not compare the estimated and true
values directly. We can resolve this issue by using an eigenvalue condition on the design
matrix consisting of Xi. Because the design matrix X is fixed, the eigenvalue condition in
the next section is reasonable. It is worthy to note that this inequality is an oracle because it
involves an unknown empirical process on the right side.

3.2. `2-Estimation Error Oracle Inequalities RE Conditions

As we said previously, although we use stochastic Lipschitz conditions instead of
KKT conditions, the restricted eigenvalue conditions (RE conditions) are still required. We
denote by δJ the vector in Rp with the same coordinates as v on J and zero coordinates on
the complement Jc of J, and spt(v) = {j : vj 6= 0}. We will assume that the minima in (2)
can always be obtained in the following setting, but it may not be unique. In general, to
bound θ̂ − θ∗, some conditions on the design matrix X ∈ Rn×p are needed for obtaining
abound in terms of the `2 norm of θ − θ∗. Here, we will utilize the restricted eigenvalue
condition introduced in [22], which says that for some 1 ≤ s ≤ p and K > 0,

κ(s, K) = min
{
‖Xv‖2√
n‖vJ‖2

: 1 ≤ |J| ≤ s, v ∈ Rp/{0}, ‖vJc‖1 ≤ K‖vJ‖1

}
> 0. (3)

It should be noted that omitting the weight ω and the sparse restricted set ‖vJc‖1 ≤
K‖vJ‖1 leads to v>

[ 1
n X>X

]
v/v>v ≥ κ2(s, K). Thus, it means that the smallest eigenvalue

of the sample covariance matrix 1
n X>X is positive, which is impossible when p > n because

1
n X>X is not full rank. To avoid this problem, ref. [22] consider the restricted eigenvalue
condition under the sparse restricted set ‖vJc‖1 ≤ K‖vJ‖1 as a considerable relation in
sparse high-dimensional estimation. The restricted eigenvalue is from the restricted strong
convexity, which enforces a strong convexity condition for the negative log-likelihood
function of linear models under a certain sparse restrict set.

Due to the double penalty, besides the RE condition, we also require another condition
similar to the RE condition, the so-called l-restricted isometry constant defined in [23], as
follows

σ2
X,l = max

{
‖Xv‖2

2/‖v‖2
2 : v ∈ Rp, 1 ≤ spt(v) ≤ l

}
∈ (0, ∞),

which essentially requires the eigenvalue of the sample covariance matrix under every
vector with cardinality less than l (l should be no more than n) approximately behaves
normally like the low-dimensional case.

With the RE condition and l-restricted isometry constant, and the two theorems we
established before, the lasso estimator in (2) can guarantee a good consistent property.

Lemma 1 (see Lemma 3.1 in [23]). Suppose T0 is a set of cardinality S. For a vector h ∈ Rp, we
let T1 be the S largest positions of h outside of T0. Put T01 = T0 ∪ T1, then

‖h‖2
2 ≤ ‖hT01‖

2
2 + S−1‖hTc

0
‖2

1.

Theorem 3. Suppose the condition is the same as that in Theorem A1. Furthermore, assume
p1 = spt

(
θ(∗1)

)
∨ spt

(
θ(∗2)

)
≤ p/2, and there exists some K > 1, κ := κ(2p1, K) > 0. Let

λ =
(K+1)Mq
n(K−1) , then using this λ in (2), with probability at least 1− q,

‖θ̂ − θ∗‖2
2 ≤

8p1M2′
q K2

κ4n2C2
γ(K− 1)2

[
2 + K2 +

2(1 + 2p1K2)(nκ2 + 2σ2
X,p1

)

nκ2

]
,

where Mq, Cγ are defined in Theorems 1 and A1, respectively.
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Remark 1. Compared to the single lasso problem, in which we only have one unknown vectorized

parameter, the oracle inequality in Theorem 3 has an extra term
2(1+2p1K2)(nκ2+2σ2

X,p1
)

nκ2 .

Remark 2. From Theorem 3, we know that the `2 convergence rate is minimax optimal, as studied
in [14].

Remark 3. In this study, we use the lasso estimators of two partial regression coefficients because
it is one of the most popular techniques for high-dimensional data. It is worth mentioning that the
algorithms and theoretical results could be similarly generalized to other shrinkage estimators, such
as the elastic net [7], the adaptive lasso [8], and so on.

4. Numerical Studies
4.1. Simulations

In this section, we evaluate the finite sample performance of the proposed method.
The response is generated from the negative binomial regression model (1) with

µ(x) = exp{θ(1)>x}, and k(x) = exp{θ(2)>x},

where θ(1) and θ(2) are two p-dimensional parameters. The explanatory variables are
generated from the multivariate normal distributions with mean vector 0 and Cov(xi, xj) =

ρ|i−j|, where ρ = 0, 0.5. The following two examples show the performance of the proposed
estimator for the low-dimensional heterogeneous negative binomial regression and the
variable selection in the high-dimensional case, respectively. The R package “lbfgs” is
required to solve the optimization problem.

Example 1 (Low dimension). We set p = 3 and n = 100, 200, 400. The true parameters are
θ(1) = (1, 2,−1) and θ(2) = (−1, 0.5, 1), and their maximum likelihood estimators are denoted as
θ̂(1) and θ̂(2), respectively. We compare the estimator θ̂(1) with θ̂(1)∗, which ignores the heterogeneity
of the overdispersion and treats k(x) as a constant. Table 1 displays the average squared estimation
errors ‖θ̂ − θ‖2

2 based on 200 repetitions.

We can make the following observations from the table. Firstly, the performances of
the three estimators become better and better as n increases. Secondly, the estimator θ̂(1),
which estimates the parameter in the mean function µ(x), performs better than θ̂(2), which
estimates the parameter in the overdispersion function k(x). Last, but the most important,
θ̂(1)∗ performs much worse than θ̂(1). For example, the average squared estimation error
of θ̂(1)∗ is about 5 times of θ̂(1)’s when n = 100, and 10 times of θ̂(1)’s when n = 400. The
comparison between θ̂(1) and θ̂(1)∗ indicates the necessity of considering the heterogeneity
of the overdispersion.

Table 1. The average squared estimation errors of the estimators.

n
ρ = 0 ρ = 0.5

θ̂(1)∗ θ̂(1) θ̂(2) θ̂(1)∗ θ̂(1) θ̂(2)

100 0.1597 0.0335 0.72414 0.1809 0.0397 0.68904
200 0.0862 0.01 0.22149 0.0837 0.0169 0.33048
400 0.05 0.0047 0.08847 0.0619 0.0067 0.15066

Example 2 (High dimension). The sample sizes are chosen to be n = 100, 200, 400, with
dimension p ∈ (25, 50, 150), (50, 100, 250) and (100, 200, 500), respectively. We set θ(1) =
(1, 2,−1, 0, . . . , 0) and θ(2) = (−1, 0.5, 1, 0, . . . , 0). The unknown tuning parameters (λ1, λ2) for
the penalty functions are chosen by BIC criterion in the simulation. Results over 200 repetitions are
reported. We compared the variable selection performance of the proposed method to the previous



Mathematics 2022, 10, 1700 8 of 25

method, which ignores the heterogeneity of the overdispersion and treats k(x) as a constant. For each
case, Table 2 reports the number of repetitions that each important explanatory variable is selected in
the final model and also the average number of unimportant explanatory variables being selected.

We see from the table that our method performs much better than the previous method
that treats k(x) as a constant. Specifically, our method correctly selects important variables
more times than the previous method, and it is less likely to select unimportant variables.
Furthermore, the variable selection procedure performs better and better as the sample size
n increases. When n = 400, the important explanatory variables in µ(x) and k(x) are cor-
rectly selected in almost every repetitions. When the dimension p increases, the procedure
may select more unimportant explanatory variables, but the average numbers are less than
1.3. The important variables in k(x) are less likely to be selected than the important variables
in µ(x) especially when the sample size is small, as well as the unimportant variables.

Table 2. The results of variable selection.

Previous Method Proposed Method

µ(x) µ(x) k(x)

n p θ
(1)
1 θ

(1)
2 θ

(1)
3 Other θ(1)s θ

(1)
1 θ

(1)
2 θ

(1)
3 Other θ(1)s θ

(2)
1 θ

(2)
2 θ

(2)
3 Other θ(2)s

ρ = 0

100
25 173 198 171 2.33 192 200 190 0.37 180 184 180 0.32
50 164 197 147 2.885 196 200 193 0.52 182 180 188 0.41

150 136 182 111 2.725 194 194 192 1.02 188 182 186 0.41

200 50 196 200 192 1.435 200 200 200 0.59 200 190 198 0.53
100 193 200 193 2.05 200 200 200 0.91 196 186 196 0.69
250 162 198 155 1.5 199 199 198 1.18 198 198 198 0.69

400
100 200 200 200 0.605 200 200 200 0.4 200 198 200 0.55
200 200 200 199 0.88 200 200 200 0.6 200 200 200 0.51
500 197 200 198 1.29 200 200 200 1.21 200 200 200 0.61

ρ = 0.5

100
25 183 199 179 2.3 194 198 194 0.41 179 184 180 0.35
50 172 197 150 2.66 196 196 190 0.63 178 182 180 0.42

150 134 191 99 2.32 194 196 192 1.01 180 184 182 0.43

200
50 195 200 197 1.48 200 200 198 0.38 196 183 190 0.32

100 189 200 179 1.52 199 200 198 0.53 194 186 194 0.44
250 178 200 154 1.39 196 198 196 1.1 196 196 194 0.55

400
100 200 200 200 0.435 200 200 200 0.28 200 199 194 0.34
200 200 200 199 0.675 200 200 198 0.47 200 198 196 0.36
500 199 200 194 1.12 200 200 198 1.07 200 198 196 0.56

4.2. A Real Data Example

In this section, we apply the proposed method to the dataset of German health care
demand. The data were employed in [24] and could be downloaded on http://qed.econ.
queensu.ca/jae/2003-v18.4/riphahn-wambach-million/, accessed on 1 January 2022.

The data contain 27,326 observations on 25 variables, including 2 dependent variables,
Docvis (number of doctor visits in the last three months) and Hospvis (number of hospital
visits in the last calendar year). For conciseness, we focus on Docvis in this study. We
build the HNBR model based on the proposed variable selection procedure and make
the standard NBR model a comparison. Define the fitting errors (FE) as n−1 ∑n

i=1(yi − ŷi),
where yi denotes the raw data of Hospvis, ŷi is the predicted value, and n is the sample

http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
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size. As the data are observed during 1984–1988, 1991, and 1994, we make the analysis for
each observed year. Table 3 displays the variable selection results and fitting errors.

We have the following findings from the table. First, the important variables in the
NBR are the same as HNBR models in each year, and the estimates are close. Second,
the selected variables in µ(x) are almost the same every year, namely Age, Hsat (health
satisfaction), Handper (degree of handicap), and Educ (years of schooling). Moreover, some
of these variables still play an essential role in k(x), and k(x) contains no variables other
than these. Moreover, we can see that the fitting errors of the HNBR is less than that of the
NBR. All of these illustrate the advantage of our method.

Table 3. The variable selection results and the fitting errors (FE) of NBR and HNBR models. The
variable Others = {Married, Haupts, Reals, Fachhs, Abitur, Univ, Working, Bluec, Whitec, Self,
Beamt, Public, Addon}. Because these variables are not selected in any year, we put them in “Others”
for brevity.

Variables 1984 1985 1986 1987

NBR HNBR NBR HNBR NBR HNBR NBR HNBR

µ(x) k(x) µ(x) k(x) µ(x) k(x) µ(x) k(x)

Female 0 0 0 0 0 0 0 0 0 0 0 0
Age −0.013 −0.013 −0.012 −0.009 −0.01 −0.007 −0.006 −0.006 −0.013 −0.002 −0.001 −0.018
Hsat −0.205 −0.2 −0.025 −0.244 −0.237 0 −0.188 −0.195 −0.045 −0.158 −0.153 −0.043
Handdum 0 0 0 0 0 0 0 0 0 0 0 0
Handper 0.005 0.005 0.004 0.007 0.006 0.007 0.007 0.007 0 0.007 0.007 0.01
Hhninc 0 0 0 0 0 0 0 0 0 0 0 0
Hhkids 0 0 0 0 0 0 0 0 0 0 0 0
Educ 0 0 −0.027 0 0 −0.064 −0.035 −0.038 0 −0.095 −0.106 −0.003
Others 0 0 0 0 0 0 0 0 0 0 0 0

FE 0.798 0.602 2.203 1.874 0.735 0.581 1.314 1.027

Variables
1988 1991 1994

NBR HNBR NBR HNBR NBR HNBR

µ(x) k(x) µ(x) k(x) µ(x) k(x)

Female 0 0 0 0 0 0 0 0 0
Age −0.015 −0.014 −0.012 −0.022 −0.019 −0.003 −0.005 −0.004 −0.011
Hsat −0.191 −0.187 −0.015 −0.112 −0.132 −0.049 −0.226 −0.224 −0.06
Handdum 0 0 0 0 0 0 0 0 0
Handper 0.011 0.009 0.006 0.014 0.013 0 0.007 0.008 0.004
Hhninc 0 0 0 0 0 0 0 0 0
Hhkids 0 0 0 0 0 0 0 0 0
Educ −0.016 −0.023 −0.002 −0.074 −0.068 0 −0.064 −0.069 0
Others 0 0 0 0 0 0 0 0 0

FE 1.144 0.912 1.007 0.787 0.713 0.58

5. Conclusions and Future Study

We study the high-dimensional heterogeneous overdispersed count data via negative
binomial regression models and propose a double `1-regularized method for simultaneous
variable selection and dispersion estimation. Under the restricted eigenvalue conditions,
we prove the oracle inequalities with lasso estimators of two partial regression coefficients
for the first time, using concentration inequalities of empirical processes. Furthermore, we
derive the consistency and convergence rate for the estimators, which are the theoretical
guarantees for further statistical inference. Simulation studies and a real example from the
German health care demand data indicate that the proposed method works satisfactorily.

There are some limitations of this study. First, we assume that the responses are
independent in this work. However, the NB responses are temporal dependent in the time-
series data [25]. Thus, weak dependence conditions, including ρ-mixing, m-dependent
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types, could be considered in the future. Second, this study focuses little on the statistical
inference, such as testing heterogeneous

H0 : θ(2) = 0 vs. H1 : θ(2) 6= 0.

The issues concerning the hypothesis testing are via the debiased lasso estimator;
see [26] and references therein. This will comprise our future research work. Another
possible study is the false discovery rate (FDR) control, which aims to identify some small
number of statistically significantly nonzero results after obtaining the sparse penalized
estimation of the HNBR; see [27,28].
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Appendix A. Proofs

The first step is giving the property of the loss function. From mathematical analysis,
we prefer bounded things to unlimited things. Denote ∂j is the first partial differentiation
with respect to sj. The bounded aspect for y and s gives a nice property for the loss function
γ(s, y) = γ(zθ, y).

Lemma A1. We have

∂1γ(s, y) = − yes2

es1 + es2
+

es1+s2

es1 + es2
, ∂2γ(s, y) = ν(s, y) +

yes2

es1 + es2

where ν(s, y) = es2
(
ψ(es2)− ψ(y + es2)

)
+ es2 log

(
1 + es1−s2

)
− es1+s2

es1+es2 satisfying

sup
s∈S , y∈Y

|ν(s, y)| ≤ F1, sup
s 6=t∈S , y∈Y

|ν(s, y)− ν(t, y)|
‖s− t‖∞

≤ F2,

with F1 = My,n
(
1 + e−ms,n

)
+ eMs,n + e2Ms,n

2ems,n , and

F2 = 2

[∣∣∣∣∣eMs,n

(
1 + log(My,n + eMs,n)− 1

2(My,n + eMs,n)

)∣∣∣∣∣ ∨ |1−ms,nems,n |
]

+

[
e2Ms,n

ems,n
+

2e2Ms,n

ems,n + eMs,n

]
+

3
2

eMs,n .

Proof. We will use the properties of the psi function, the logarithmic derivative of the
gamma function, to prove this lemma. Write ψ(x) = Γ′(x)/Γ(x). For any s ∈ S , y ∈ Y ,
using the Binet ’s formula (see p. 18 of [29])

ψ(x) = log x−
∫ ∞

0
ϕ(t)e−tx dt,

http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/
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where ϕ(t) = 1/(1− e−t)− 1/t is strictly increasing on (0, ∞), it gives

0 < ψ′(x) =
1
x
+
∫ ∞

0
tϕ(t)e−tx dt ≤ 1

x
+
∫ ∞

0
te−tx dt =

1
x
+

1
x2 .

and y ≥ 0, we have

|ν(s, y)| =
∣∣∣∣es2
(
ψ(es2)− ψ(y + es2)

)
+ es2 log

(
1 + es1−s2

)
− es1+s2

es1 + es2

∣∣∣∣
≤ es2 y

(
1

es2
+

1
es2

)
+ es2 es1−s2 +

es1+s2

es1 + es2
≤ My,n

(
1 + e−ms,n

)
+ eMs,n +

e2Ms,n

2ems,n
.

Then, the first inequality in the lemma has been verified. On the other hand, by using
the fact that (see (2.2) in [30])

1
2x

< log(x)− ψ(x) <
1
x

, x > 0,

for the function f1(x) = exψ(ex) and f2(x) = exψ(y + ex),

f ′1(x) = exψ(ex) + e2xψ′(ex) ≤ ex
(

x− 1
2ex

)
+ e2x

(
1
ex +

1
e2x

)
= (x + 1)ex +

1
2

,

f ′1(x) = exψ(ex)− e2xψ′(ex) ≥ exψ(ex) ≥ xex − 1,

f ′2(x) = exψ(y + ex) + e2xψ′(y + ex) ≤ ex
(

1 + log(y + ex)− 1
2(y + ex)

)
+ 1,

f ′2(x) ≥ ex
(

log(y + ex)− 1
y + ex

)
≥ xex − 1,

and for any s 6= t ∈ S , y ∈ Y , we conclude that

|ψ(es2 )es2 − ψ(et2 )et2 | = | f1(s2)− f1(t2)| ≤
(∣∣∣(Ms,n + 1)eMs,n + 1/2

∣∣∣ ∨ |1−ms,nems,n |
)
‖s− t‖∞,

and

|ψ(y + es2)es2 − ψ(y + et2)et2 | = | f2(s2)− f2(t2)|

≤
[∣∣∣∣∣eMs,n

(
1 + log(My,n + eMs,n)− 1

2(My,n + eMs,n)

)∣∣∣∣∣ ∨ |1−ms,nems,n |
]
‖s− t‖∞.

In addition, using the median value theorem again, we also have∣∣es2 log(1 + es1−s2)− et2 log(1 + et1−t2)
∣∣

≤ log(1 + es1−s2)|es2 − et2 |+ et2
∣∣log(1 + es1−s2)− log(1 + et1−t2)

∣∣
≤e2Ms,n−ms,n |s2 − t2|+ eMs,n

1
1 + e−(Ms,n−ms,n)

|(s1 − s2)− (t1 − t2)|

≤
[

e2Ms,n

ems,n
+

2e2Ms,n

ems,n + eMs,n

]
‖s− t‖∞,

and∣∣∣∣ es1+s2

es1 + es2
− et1+t2

et1 + et2

∣∣∣∣ ≤ es1

∣∣∣∣ 1
1 + es1−s2

− 1
1 + et1−t2

∣∣∣∣+ 1
1 + et1−t2

|es1 − et1 |

≤ eMs,n
1
4
|(s1 − s2)− (t1 − t2)|+ 1× eMs,n |s1 − t1| ≤

3
2

eMs,n‖s− t‖∞,
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where the fact used is that f3(x) = 1/(1 + ex) satisfies | f ′3(x)| = 1/(ex + e−x + 2) ≤ 1/4.
Because

|∂2γ(s, y)− ∂2γ(t, y)| ≤
∣∣ψ(es2)es2 − ψ(et2)et2

∣∣+ ∣∣ψ(y + es2)es2 − ψ(y + et2)et2
∣∣

+
∣∣es2 log(1 + es1−s2)− et2 log(1 + et1−t2)

∣∣+ ∣∣∣∣ es1+s2

es1 + es2
− et1+t2

et1 + et2

∣∣∣∣,
we can conclude the second inequality in the lemma.

The Lemma separates the partial derivative of γ into two parts: the first part is the
linear about the response variable y (say−yes2 /(es1 + es2), es1+s2 /(es1 + es2), and yes2 /(es1 +
es2)), the second part is other complicated functions (not linear function) about y. The first
part is relatively easy to analyze because the following concentration inequality gives a
measure of dispersion about the weighted summation of negative binomial variables. This
concentration inequality is a special case for the weighted summation of a series of random
variables, which can be proved by sub-exponential concentration results in Proposition 4.2
in [31].

Lemma A2. Suppose {Yi}n
i=1 are independently distributed as NB(µi, ki). Then, for any nonran-

dom weights w = (w1, · · · , wn)> ∈ Rn independent with {Yi}n
i=1 and t ≥ 0,

P
(∣∣∣ n

∑
i=1

wi(Yi − EYi)
∣∣∣ ≥ t

)
≤ 2 exp

−1
4

 t2

2 ∑n
i=1 w2

i a2(µi, ki)
∧ t

max
1≤i≤n

|wi|a(µi, ki)

,

where qi := µi
ki+µi

∈ (0, 1) and a(µ, k) :=
[

log 1−(1−q)/ k√2
q

]−1
+ µ

log 2 .

Proof. We will use the sub-exponential norm. The moment-generating function (MGF) for
Yi is

EesYi =

(
1− qi

1− qies

)ki

.

Then, by letting E exp(|Yi|/t) ≤ 2, we have

2 ≥ E exp(|Yi|/t) = E exp(Yi/t) =
(

1− qi

1− qie1/t

)ki

,

which implies the sub-exponential norm for Yi is

‖Yi‖ψ1 = inf{t > 0 : E exp(|Yi|/t) ≤ 2} =
[

log
1− (1− qi)/

ki
√

2
qi

]−1

.

Using the definition of ai, from Proposition 4.2 in [31], we can immediately obtain the
result in the Lemma.

It should be noted that ai = a(µi, ki) naturally has a lower and upper bound for any
i ∈ [n] because µi and ki are both bounded between ems,n and eMs,n .

Note that Yi is an unbounded random variable; the next step is to find a probabilistic
bound for My,n = maxi∈[n] Yi. We will cite an important lemma for this type of problem.
We say a distribution Pγ is strongly discrete log-concave with γ > 0 if its density is strongly
midpoint log-convex with the same γ > 0.
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Lemma A3 (Concentration for strongly log-concave discrete distributions). Let Pγ be any
strongly log-concave discrete distribution index by γ > 0 on Zn. Then, for any function f : Rn → R
that is L-Lipschitz with respect to Euclidean norm, we have for X ∼ Pγ,

PPγ

(
| f (X)− E f (X)| ≥ t

)
≤ 2 exp

{
− γt2

4L2

}
for any t > 0.

Lemma A4. The maximal of the response My,n = maxi∈[n] Yi has the concentration

P
{

My,n −
(

2 max
i∈[n]

[
a(µi, ki)−

µi
log 2

][
log(2n) +

√
2 log(2n)

]
+ max

i∈[n]
µi

)
> t
}
≤ e−γt2/4

for any t > 0.

Proof. For the upper bound of expectation, we first note that Yi − EYi ∼ subE(2‖Yi‖ψ1)
with ‖Yi‖ψ1 has calculated in Lemma A2, then we have Yi − EYi ∼ sub Γ(4‖Yi‖2

ψ1
, 2‖Yi‖ψ1)

by Example 5.3 in [31], which further gives

EMy,n ≤ E max
i∈[n]

(Yi − EYi) + max
i∈[n]

EYi

≤
(
2 ·max

i∈[n]
4‖Yi‖2

ψ1
· log(2n)

) 1
2 + max

i∈[n]
2‖Yi‖ψ1 · log(2n) + max

i∈[n]
µi

= 2 max
i∈[n]
‖Yi‖ψ1

[
log(2n) +

√
2 log(2n)

]
+ max

i∈[n]
µi,

where the second ≤ is by Corollary 7.3 in [31] and the bound in the lemma comes from the
explicit expression in Lemma A2.

By implementing Lemma A3, it remains that we need to verify that Y := (Y1, . . . , Yn)> ∈
Zn belongs to some strongly log-concave discrete distribution Pγ with the specifying γ > 0 after
we take f : (x1, . . . , xn) 7→ maxi∈[n] xi which is 1-Lipschitz. By the definition, the derivative of
log-density for y := (y1, . . . , yn)> is

ψ′(yi) :=
∂ log p(y)

∂y

∣∣∣∣
yi

= log
Γ(ki + yi)

Γ(1 + yi)
− yi log(ki + µi),

then the Taylor expansion gives

ψ(y) = ψ

([
1
2

x +
1
2

y
])

+
1
2

ψ′
([

1
2

x +
1
2

y
])

(y− x) +
1
8
(y− x)2ψ′′(a1),

ψ(x) = ψ

(⌊
1
2

x +
1
2

y
⌋)

+
1
2

ψ′
(⌊

1
2

x +
1
2

y
⌋)

(x− y) +
1
8
(y− x)2ψ′′(a2)

where a1 = t1y + (1− t1)(x + y)/2, a2 = t2y + (1− t1)(x + y)/2 with t1, t2 ∈ [0, 1]. Define
the difference function

∆(x, y) :=
x− y

4

[
ψ′
([

1
2

x +
1
2

y
])
− ψ′

([
1
2

x +
1
2

y
])]

+
ψ′′(a1) + ψ′′(a2)

16
(y− x)2,

the Taylor expression above immediately implies

∆(x, y) ≥ |x− y|2
{

ψ′′(a1) + ψ′′(a2)

16
− sup

x 6=y;x,y∈Zn

|[ψ′(b(x + y)/2c)− ψ′(d(x + y)/2e)]|
4|x− y|

}
.

Let
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Cψ := sup
x 6=y;x,y∈Zn

|[ψ′(b(x + y)/2c)− ψ′(d(x + y)/2e)]|
4|x− y|

= sup
x 6=y;x,y∈Zn

∣∣∣∣∣
[

log
Γ(ki + b(x + y)/2c)Γ(d(x + y)/2e+ 1)
Γ(ki + d(x + y)/2e)Γ(b(x + y)/2c+ 1)

− (b(x + y)/2c − d(x + y)/2e)
log−1(ki + µi)

]∣∣∣∣∣/4|x− y|,

and it is not hard to see Cψ ≈ |log(ki+µi)|
4 or 0. Besides,

ψ′′(y) :=
∂2 log p(y)

∂y2

∣∣∣∣
y=yi

=
d

dyi
log

Γ(θ + yi)

Γ(yi + 1)
=

∞

∑
m=1

(
1

m + 1
− 1

m + ki + yi

)
−

∞

∑
m=1

(
1

m + 1
− 1

m + yi + 1

)
=

∞

∑
m=1

(
1

m + yi + 1
− 1

m + ki + yi

)
≥ inf

yi∈Z

∞

∑
m=1

(
1

m + yi + 1
− 1

m + ki + yi

)
= Cψ′′ .

Now, we have obtained

∆(x, y) ≥ |x− y|2
{

ψ′′(a1) + ψ′′(a2)

16
− Cψ

}
≥ |x− y|2

(Cψ′′

8
− Cψ

)

which gives γ =:
Cψ′′

8 − Cψ > 0 from the strong log-concave assumption for Y, if Cψ ≈
| log(ki+µi)|

4 is small. Hence, we can conclude from Lemma A3 and the upper bound of EMy,n

P
{

My,n −
(

2 max
i∈[n]

[
a(µi, ki)−

µi
log 2

][
log(2n) +

√
2 log(2n)

]
+ max

i∈[n]
µi

)
> t
}

≤P(My,n − EMy,n > t) ≤ e−γt2/4

which is exactly the result in the lemma.

Remark A1. For My,n, it is distributed as sub-Gumbel, which is rarely studied by research.
Another way to deal with using the extreme value theory (EVT) technique, we note that for any
t ∈ R

P(My,n − EMy,n > t) = 1−
n

∏
i=1

P
(
Yi ≤ t + EMy,n

)
= 1−

n

∏
i=1

[
1− exp

{
− 1

4

( (t + EMy,n − µi)
2

2a2
i

∧
t + EMy,n − µi

ai

)}]
.

If Yi is i.i.d., then in asymptotic sense,

P(My,n − EMy,n > t) = 1−
[
1− P

(
Y1 > t + EMy,n

)]n

∼ 1− exp
{
−nP

(
Y1 > t + EMy,n

)}
+ o(1)

∼ 1− exp

{
−n exp

(
− 1

4
(t + EMy,n − µ1)

2

2a2
1

∧
t + EMy,n − µ1

a1

)}
.

Unfortunately, this technique cannot be used in the above lemma because: (i) we need non-
asymptotic version inequality instead of a vague expression with n → ∞ and (ii) {Yi} is not an
i.i.d. series, and then EVT theory will not be easily used in this particular setting. Hence, we adopt
a discrete technique which has been used in [32] and fully illustrated in [14].

The stochastic Lipschitz conditions are established by using the properties of ∂1γ(s, y)
and ∂2γ(s, y). As we said before, they are divided into two parts. The linear parts in them
can be solved by the concentration inequality for NB variables given in Lemma A2, but the
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non-linear part ν(s, y) needs some more advanced tools regarding the empirical process.
They are given as the following lemmas.

Lemma A5 (The (3.12) in [33]). Suppose X1(ω), · · · , Xn(ω) ∈ R are zero-mean independent
stochastic processes indexed by ω ∈ Ω. If there exist M0 and S0 satisfying |Xi(ω)| ≤ M0 and
∑n

i=1 var
(
Xi(ω)

)
≤ S2

0 for all ω ∈ Ω. Denote Sn = supω∈Ω

∣∣∑n
i=1 Xi(ω)

∣∣, then for any t > 0,

P
(
Sn ≥ 2ESn + S0

√
2t + 4M0t

)
≤ e−t.

A map φ : R → R is called a contraction if |φ(s)− φ(t)| ≤ |s− t| for all s, t ∈ R. In
addition, in the following lemmas, ε1, · · · , εn are always i.i.d. Rademacher variables.

Lemma A6 (Theorem 2.2 in [34]). Let T ⊆ Vn be a bounded set and f1, · · · , fn be functions
V → R such that fi is (Mi, `∞)-Lipschitz with fi(0) = 0. For j = 1, · · · , k ∈ N, let Tj =
{(t1j, · · · , tnj) : (t1, · · · , tn) ∈ T } ⊆ Rn. Then,

E sup
t∈T

∣∣∣∣ n

∑
i=1

εi fi(ti)

∣∣∣∣ ≤ βk

k

∑
j=1

E sup
s∈Tj

∣∣∣∣ n

∑
i=1

εi Misi

∣∣∣∣,
where βk is a universal constant that can be set no greater than 3k + 3k−1 − 2k.

Lemma A7 (Theorem 4.12 in [35]). Let F : R+ → R+ be convex and increasing. Let further
φi : R→ R, i ≤ n be contractions such that φi(0) = 0. Then, for any bounded subset T in Rn,

EF
(

1
2

sup
T

∣∣∣ n

∑
i=1

εiφi(ti)
∣∣∣) ≤ EF

(
sup
T

∣∣∣ n

∑
i=1

εiti

∣∣∣).

Lemma A8 (Lemma 5.2 in [36]). LetA be some finite subset of Rn, let R = supa∈A
[
∑n

i=1 a2
i
]1/2,

then

E
[

sup
a∈A

n

∑
i=1

εiai

]
≤ R

√
2 log

(
card(A)

)
.

With the assistance of these powerful tools, we can establish the stochastic Lipschitz
condition as follows, which is one of the most important points in this article for establishing
the oracle inequality of the `2 distance between the estimated value θ̂ and the real value θ∗.

The proof of Theorem 1. Denote ci = Ziθ
∗. For θ ∈ Θ, denote ti = Zi(θ − θ∗) = Ziθ − ci.

We also define the map π̄j : (x1, · · · , xp)> 7→ (x1, · · · , xj, 0, · · · , 0)> and the function

ϕij(s) =


γ(ci + π̄js, Yi)− γ(ci + π̄j−1s, Yi)

sj
− ∂jγ(ci, Yi), if sj 6= 0;

∂jγ(ci + π̄j−1s, Yi)− ∂jγ(ci, Yi), if sj = 0.

Thus, ϕij : R2 → R is a real-value function for i = 1, · · · , n, j = 1, 2. Then, it is easy to
check that

γ(Ziθ, Yi)− γ(Ziθ
∗, Yi) =

2

∑
j=1

(
∂jγ(ci, Yi) + ϕij(ti)

)
tij,
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and nPn
(
γ(θ)− γ(θ∗)

)
= ∑n

i=1 ∑2
j=1
(
∂jγ(ci, Yi) + ϕij(ti)

)
X>i
(
θ(j) − θ∗(j)) in turn. It gives

√
nGn

(
γ(θ)− γ(θ∗)

)
=

n

∑
i=1

2

∑
j=1

(
∂jγ(ci, Yi)− E∂jγ(ci, Yi)

)
X>i
(
θ(j) − θ∗(j))

+
n

∑
i=1

2

∑
j=1

(
ϕij(ti)− Eϕij(ti)

)
X>i
(
θ(j) − θ∗(j)).

First, we would like to give the explicit formula for ϕi1 and obtain an upper bound as
well as a Lipschitz parameter for ϕi2. Denote hi(·) = γ(·, Yi), then

ϕij(s) =
∫ 1

0

(
∂jhi(ci + π̄j−1s + sjuej)− ∂jhi(ci)

)
du,

where ej is the j-th basis vector of R2. Hence, for j = 1,

ϕi1(s) = −Yi

∫ 1

0

[
es2

es1+u + es2
− es2

es1 + es2

]
du +

∫ 1

0

[
es1+s2+u

es1+u + es2
− es1+s2

es1 + es2

]
du

=

[
log

es1+1 + es2

es1 + es2
− es1

es1 + es2

]
Yi + C1(s),

in which C1(s) is a function only related to s and free of Y and the index i. Using Lemma A1,
for j = 2, write F3 = F1 + My,n,

|ϕi2(s)| ≤
∫ 1

0

∣∣∂2hi(ci + π̄1s + s2ue2)− ∂2hi(u)
∣∣ du ≤ 2F3,

and ∣∣ϕi2(s)− ϕi2(t)
∣∣ ≤ ∫ 1

0

∣∣∂2hi(ci + π̄1s + s2ue2)− ∂2hi(ci + π̄1t + t2ue2)
∣∣ du

≤
∫ 1

0
F2‖π̄1(s− t) + (s2 − t2)ue2‖∞ du ≤ F2‖s− t‖∞.

This implies ϕi2 is (F2, `∞) Lipschitz. In particular, letting s = Zi(θ − θ∗) and t = 0,∣∣ϕi2
(
Zi(θ − θ∗)

)∣∣ ≤ ‖Zi(θ − θ∗)‖∞ ≤ F2MxDΘ.

Hence, we obtain an upper bound for ϕi2 that∣∣ϕi2
(
Zi(θ − θ∗)

)∣∣ ≤ 2F3 ∨ F2MxDΘ := M1 (A1)

Now, for k = 1, · · · , p, define

ξik(θ) :=
(

ϕi2(ti)− Eϕi2(ti)
)
Xik, Sk = sup

θ∈Θ

∣∣∣∣∣ n

∑
i=1

ξik(θ)

∣∣∣∣∣.
Then, we can approach the final conclusion in the theorem by
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sup
θ∈Θ/{θ∗}

∣∣∣∣∣
√

nGn
(
γ(θ)− γ(θ∗)

)
‖θ − θ∗‖1

∣∣∣∣∣ ≤ max
1≤k≤p

∣∣∣∣∣ n

∑
i=1

(
∂1γ(ci, Yi)− E∂1γ(ci, Yi)

)
Xik

∣∣∣∣∣
+ sup

θ∈Θ/{θ∗}
max

1≤k≤p

∣∣∣∣∣ n

∑
i=1

(
ϕi1(ti)− Eϕi1(ti)

)
Xik

∣∣∣∣∣
+ max

1≤k≤p

∣∣∣∣∣ n

∑
i=1

eci2

eci1 + eci2

(
Yi − EYi

)
Xik

∣∣∣∣∣
+ max

1≤k≤p

∣∣∣∣∣ n

∑
i=1

(
ν(ci, Yi)− Eν(ci, Yi)

)
Xik

∣∣∣∣∣+ sup
θ∈Θ/{θ∗}

max
1≤k≤p

Sk.

(A2)

We will tickle with (A2) term by term.

(i). The first three terms in (A2):

We will use concentration inequality to deal with these terms. For any 1 ≤ k ≤ p and
t ≥ 0, by Lemma A2 and Cauchy–Schwartz inequality,

P
(∣∣∣ n

∑
i=1

(
∂1γ(ci, Yi)− E∂1γ(ci, Yi)

)
Xik

∣∣∣ ≥ t
)
= P

(∣∣∣ eci2

eci1 + eci2
Xik
(
Yi − EYi

)∣∣∣ ≥ t
)

≤ 2 exp

−1
4

 t2

2 ∑n
i=1(w

(1)
i )2X2

ika2
i

∧ t

max
1≤i≤n

|w(1)
i Xik|ai




≤ 2 exp

−
1
4

 t2

2
√

∑n
i=1(w

(1)
i )4a4

i max
1≤k≤p

√
∑n

i=1 X4
ik

∧ t

Mx max
1≤i≤n

|w(1)
i |ai


,

where w(1)
i = eci2 /(eci1 + eci2) and ai = a(µi, ki) is defined in Lemma A2; they are both

determined and free of θ and the index k. Hence,

P
(

max
1≤k≤p

∣∣∣ n

∑
i=1

(
∂1γ(ci, Yi)− E∂1γ(ci, Yi)

)
Xik

∣∣∣ ≥ t
)

≤ 2p exp

−
1
4

 t2

2
√

∑n
i=1(w

(1)
i )4a4

i max
1≤k≤p

√
∑n

i=1 X4
ik

∧ t

Mx max
1≤i≤n

|w(1)
i |ai


.

By letting the right side of the above display be q1 ∈ (0, 1), we can obtain

P
(

max
1≤k≤p

∣∣∣ n

∑
i=1

(
∂1γ(ci, Yi)− E∂1γ(ci, Yi)

)
Xik

∣∣∣
≥ 2

√
2
( n

∑
i=1

(w(1)
i )4a4

i
)1/2( max

1≤k≤p

n

∑
i=1

X4
ik
)1/2 log(2p/q1) ∨ 4Mx max

1≤i≤n
|w(1)

i |ai log(2p/q1)

)
≤ q1.

Exactly the same, we can obtain for any q3 ∈ (0, 1), regarding to the third term,

P

(
max

1≤k≤p

∣∣∣ n

∑
i=1

eci2

eci1 + eci2

(
Yi − EYi

)
Xik

∣∣∣
≥ 2

√
2
( n

∑
i=1

(w(1)
i )4a4

i
)1/2( max

1≤k≤p

n

∑
i=1

X4
ik
)1/2 log(2p/q3) ∨ 4Mx max

1≤i≤n
|w(1)

i |ai log(2p/q3)

)
≤ q3.
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The situation is slightly different for the second term. Indeed,

P

(∣∣∣ n

∑
i=1

(
ϕi1(ti)− Eϕi1(ti)

)
Xik

∣∣∣ ≥ t

)
= P

(∣∣∣∣∣ n

∑
i=1

[
log

eti1+1 + eti2

eti1 + eti2
− eti1

eti1 + eti2

]
Xik(Yi − EYi)

∣∣∣∣∣ ≥ t

)

:= P

(∣∣∣ n

∑
i=1

w(2)
i (θ)Xik

(
Yi − EYi

)∣∣∣ ≥ t

)

Because ti is a function of θ, so as the weights w(2)
i (θ), we cannot use the exact same

method as previously. However, because Θ is convex, we have {ti}n
i=1 ⊆ S . Then, it only

needs to note that,

∣∣w(2)
i (θ)

∣∣ = ∣∣∣∣log
eti1+1 + eti2

eti1 + eti2
− eti1

eti1 + eti2

∣∣∣∣ ≤ log
e + eMs,n−ms,n

1 + ems,n−Ms,n
+

1
1 + ems,n−Ms,n

:= w(2),

which gives

P

(
max

1≤k≤p

∣∣∣ n

∑
i=1

(
ϕi1(ti)− Eϕi1(ti)

)
Xik

∣∣∣
≥ 2

√
2
√

nw(2)2
( n

∑
i=1

a4
i
)1/2( max

1≤k≤p

n

∑
i=1

X4
ik
)1/2 log(2p/q2) ∨ 4Mxw(2) max

1≤i≤n
|ai| log(2p/q2)

)
≤ q2.

for any θ ∈ Θ and q2 ∈ (0, 1).

(ii). The fourth term in (A2):

From Lemma A1, we know that |ν(ci, Yi)| ≤ F1. Thus, simply by Hoeffding inequality
(see Corollary 2.1 (b) in [31]), for any t ≥ 0 and 1 ≤ k ≤ p,

P
(∣∣∣ n

∑
i=1

(
ν(ci, Yi)− Eν(ci, Yi)

)
Xik

∣∣∣ ≥ t
)
≤ 2 exp

{
− t2

2F2
1 ∑n

i=1 X2
ik

}
≤ 2 exp

− t2

2F2
1 max

1≤k≤p
∑n

i=1 X2
ik

.

For arbitrary q4 ∈ (0, 1), let t = F1

√
2 log(2p/q4)max1≤k≤p ∑n

i=1 X2
ik, we obtain

P
(

max
1≤k≤p

∣∣∣ n

∑
i=1

(
ν(ci, Yi)− Eν(ci, Yi)

)
Xik

∣∣∣ ≥ F1

√
2 log(2p/q4) max

1≤k≤p

n

∑
i=1

X2
ik

)
≤ q4.

(iii). The last term in (A2):

For any i = 1, · · · , n and k = 1, · · · , p, by (A1), |ξik(θ)| ≤ 2M1Mx := M0. In addition,
for any θ ∈ Θ, (A1) also implies

n

∑
i=1

var
(
ξik(θ)

)
=

n

∑
i=1

E
(

ϕi2(ti)Xik
)2 ≤ A2

1

n

∑
i=1

X2
ik ≤ A2

1 max
1≤k≤p

n

∑
i=1

X2
ik := S2

0

Therefore, from Lemma A5, it follows that

P
(

Sk ≥ 2ESk + S0
√

2t + 4M0t
)
≤ e−t. (A3)

Thus, the last task is giving an upper bound for ESk. Note that Eξik(θ) = 0, by
symmetrization,

ESk = E sup
θ∈Θ

∣∣∣∣ n

∑
i=1

(
ϕi2(ti)− Eϕi2(ti)

)
Xik

∣∣∣∣ ≤ 2E sup
θ∈Θ

∣∣∣∣ n

∑
i=1

εi ϕi2(ti)Xik

∣∣∣∣ = 2E sup
t∈T

∣∣∣∣ n

∑
i=1

εi ϕi2(ti)Xik

∣∣∣∣,
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where T = {ti = Zi(θ − θ∗) : θ ∈ Θ, i = 1, · · · , n}, and ε1, · · · , εn are i.i.d. Rademacher
variables independent of Y1, · · · , Yn. Here, using the fact ϕi2(·)Xik is (MxF2, `∞)-Lipschitz
and Lemmas A6–A8,

E sup
t∈T

∣∣∣∣ n

∑
i=1

εi ϕi2(ti)Xik

∣∣∣∣ ≤ 8MxF2

2

∑
j=1

E sup
t∈T

∣∣∣∣εitij

∣∣∣∣ = 8MxF2

2

∑
j=1

E sup
θ∈Θ

∣∣∣∣ n

∑
i=1

εiX>i
(
θ(j) − θ∗(j))∣∣∣∣

≤ 16MxF2DΘE max
1≤k≤p

∣∣∣∣ n

∑
i=1

εiXik

∣∣∣∣ ≤ 16
√

2 log pMxF2DΘ

√
max

1≤k≤p

n

∑
i=1

X2
ik.

Then, by (A3),

P

(
Sk ≥ 32

√
2 log pMxF2DΘ

√
max

1≤k≤p

n

∑
i=1

X2
ik + M1

√
2t max

1≤k≤p

n

∑
i=1

X2
ik + 8M1Mxt

)
≤ e−t.

Note that the right side of the inequality is free of θ, let t = log(p/q5) in the above
inequality, and use the same technique as previous, we obtain the uniform bound for it.
The Theorem is proved by letting q2 = q3 = q1, q4 = q2, q5 = q3, and |w(1)

i | ≤ w(1).

The lower bound of the likelihood-based divergence
Recall the standard steps for establishing the oracle inequality for a lasso estimator are

(see [37] for example):

I. To avoid the ill behavior of Hessian, propose the restricted eigenvalue condition or
other analogous conditions about the design matrix.

II. Find the tuning parameter based on the high-probability event, i.e., the KKT condi-
tions.

III. According to some restricted eigenvalue assumptions and tuning parameter selection,
derive the oracle inequalities via the definition of the lasso optimality and the mini-
mizer under unknown expected risk function and some basic inequalities. There are
three sub-steps:

(i) Under the KKT conditions, show that the error vector θ̂ − θ∗ is in some restricted
set with structure sparsity, and check that θ̂ − θ∗ is in a big compact set;

(ii) Show that the likelihood-based divergence of θ̂ and θ∗ can be lower bounded by
some quadratic distance between θ̂ and θ∗;

(iii) By some elementary inequalities and (ii), show that ‖θ̂ − θ∗‖1 is in a smaller
compact set with a radius of optimal rate (proportional to λ).

Under our approach, the KKT condition with a high probability is replaced by the
stochastic Lipschitz condition, while other steps should remain the same. For most models
belonging to the canonical exponential family, the step III.(ii) is quite trivial, see Lemma 1
in [38] for example. Nonetheless, it is worthy to note that our loss function is not in the
canonical exponential family, so there is no extended discussion about the lower bound
of the likelihood-based divergence of θ̂ and θ∗ in our setting. We will use the following
theorem to clarify this thing.

Theorem A1. Suppose the condition is the same as that in Theorem 1. Denote the true parameter
for Yi is µ∗ and k∗. If {Ziθ}i=1,··· ,n,θ∈Θ ⊆ S ∩{s ∈ R2 : 2s1 +(1+ s2(1− k∗)k∗µ

∗
)µ∗ ≤ s1+µ∗

2s2
2
}

and µ∗ ≥ 1, then
Eγ(Ziθ, Yi)− Eγ(Ziθ

∗, Yi) ≥ Cγ‖Zi(θ − θ∗)‖2
2,

where Cγ is a positive constant and its exact definition is in the proof.

Proof. For simplicity, we drop the index i. By the definition and the notation in Theorem 1,

Eγ(Zθ, Y)− Eγ(Zθ∗, Y) = DKL(s, c),
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where DKL is the Kullback–Leibler divergence from the Yi’s density f (y | Zθ) to f (y | Zθ∗),
i.e.,

DKL(s, c) :=
∫

f (y | c) log
f (y | c)
f (y | s) dy.

Due to the identification of the negative binomial distribution, we have DKL(s, c) ≥ 0
with equality if and only if s = c. Using the Taylor theorem,

DKL(s, c) = DKL(c, c) +
∂

∂s
DKL(s, c)

∣∣∣∣
s=c

+
1
2
(s− c)>

[
∂2

∂s∂s>
DKL(s, c)

]
s=c+ρ(s−c)

(s− c)

=
1
2
(s− c)>

[
∂2

∂s∂s>
DKL(s, c)

]
s=c+ρ(s−c)

(s− c)

≥ 1
2

inf
ρ∈[0,1]

λmin

[
∂2

∂s∂s>
DKL(s, c)

]
s=c+ρ(s−c)

‖s− c‖2
2

where ρ ∈ [0, 1] and λmin(M) is the smallest eigenvalue of the matrix M. Thus, it is enough
to show that

[
∂2

∂s∂s>DKL(s, c)
]

s=c+ρ(s−c)
is strictly positive define for any ρ ∈ [0, 1]. First,

calculate directly,

∂2

∂s∂s>
DKL(s, c) =

∫
f (y | c)

[
∂2

∂s∂s>
γ(s, y)

]
dy

=
∫

f (y | c)


es1+s2

(es1 + es2)2 (e
s2 + y)

es1+s2

(es1 + es2)2 (e
s1 − y)

es1+s2

(es1 + es2)2 (e
s1 − y) ∂2ν(s, y) +

es1+s2

(es1 + es2)2 y

 dy =:
[

a11 + b a12 − b
a21 − b a22 + b

]
,

where a11 = es1+2s2

(es1+es2 )2 , a12 = e2s1+s2

(es1+es2 )2 , b = es1+2s2

(es1+es2 )2 EY, and

a22 = E∂2v(s, Y) = es2

[
ψ(es2) + es2 ψ′(es2) + log(1 + es1−s2)− es1

es1 + es2
−
( es1

es1 + es2

)2
]

− es2
[
Eψ(Y + es2) + es2Eψ′(Y + es2)

]
.

For a 2 × 2 matrix M, it is strictly positive define if and only if tr(M) > 0 and
det(M) > 0. Denote µ = es1 , k = es2 , and µ∗ = ec1 , k∗ = ec2 are true parameters for Y.
Then,

tr
[

∂2

∂s∂s>
DKL(s, c)

]
=

µk2

(µ + k)2 + 2
µk2

(µ + k)2 µ∗ − k
[

µ

µ + k
+
( µ

µ + k

)2
]

+ k
[
log(1 + µ/k) +

(
ψ(k)− Eψ(Y + k)

)
+ k
(
ψ′(k)− Eψ′(Y + k)

)]
=

2(µ∗ − 1)µk2

(µ + k)2 + k
[

log(1 + µ/k) + g1(k) + kg2(k)
]

≥ k
[

log(1 + µ/k) + g1(k) + kg2(k)
]
.

(A4)

Now, we are going to deal with g1(k) = ψ(k) − Eψ(Y + k) and g2(k) = ψ′(k) −
Eψ′(Y + k). For ψ(x),

0 > ψ′′(x) = − 1
x2 −

∫ ∞

0
t2 ϕ(t)e−tx dt ≥ − 1

x2 −
2
x3 .

Therefore, ψ(·) is concave. Using Jensen inequality and median value theorem

g1(k) = ψ(k)− Eψ(Y + k) ≥ ψ(k)− ψ
(
EY + k

)
≥ −

(
1
k
+

1
k2

)
EY = −µ∗

(
1
k
+

1
k2

)
.



Mathematics 2022, 10, 1700 21 of 25

Similarly, for g2(k), by using the fact that E(1/Y) = (1− k∗)k∗µ
∗
µ∗ and the assumption,

g2(k) = E
[
ψ′(k)− ψ′(Y + k)

]
≥ E

[
Y
(

1
(ξ(Y) + k)2 +

2
(ξ(Y) + k)3

)]
≥ E

[
Y

(Y + k)2

]
+ 2E

[
Y

(Y + k)3

]
≥
[

E
(Y + k)2

Y

]−1

+ 2
[

E
(Y + k)3)

Y

]−1

=
1

2k + (1 + k2(1− k∗)k∗µ∗ )µ∗
+

2
k∗2(k∗ + µ∗)/µ∗2 + µ∗2 + 3kµ∗ + 3k2 + k3(1− k∗)k∗µ∗µ∗

≥ (µ + µ∗)

(
1

2k2 +
1
k3

)
.

where ξ(Y) lies between 0 and Y. The lower bounds for g1 and g2, together with the fact
that log(1 + x) ≥ x− x2/2 for x ≥ 0, we conclude that tr

[
∂2

∂s∂s>DKL(s, c)
]
> 0. Similarly,

we can also prove det
[

∂2

∂s∂s>DKL(s, c)
]
> 0, so the theorem holds.

The proof of Theorem 3. The proof follows the idea in [22]. First, by the definition of θ̂,

P
(
γ(θ̂)− γ(θ∗)

)
≤ P

(
γ(θ̂)− γ(θ∗)

)
+
(
Pnγ(θ∗) + λ‖θ∗‖ω,1

)
−
(
Pnγ(θ̂) + λ‖θ̂‖ω,1

)
≤ 1√

n
Gn
(
γ(θ∗)− γ(θ̂)

)
+ λ

(
‖θ∗‖ω,1 − ‖θ̂‖ω,1

)
.

From Theorem A1, we also have

P
(
γ(θ̂)− γ(θ∗)

)
≥

Cγ

n

n

∑
i=1
‖Zi(θ̂ − θ∗)‖2

2 =
Cγ

n

2

∑
j=1
‖X(θ̂(j) − θ∗(j))‖2

2.

Then, by Theorem 1 and the definition of λ,

Cγ

2

∑
j=1
‖X(θ̂(j) − θ∗(j))‖2

2 ≤
√

nGn
(
γ(θ∗)− γ(θ̂)

)
+ nλ

(
‖θ∗‖ω,1 − ‖θ̂‖ω,1

)
≤ Mq‖θ∗ − θ̂‖1 + (1 + 1/a)Mq

(
‖θ∗‖ω,1 − ‖θ̂‖ω,1

)
= Mq

2

∑
j=1

[
‖θ̂(j) − θ∗(j)‖1 + (1 + 1/a)ωj

(
‖θ∗(j)‖1 − ‖θ̂(j)‖1

)]

holds with probability at least 1− q, where a = (K− 1)/2. Now, let J1, J2 ⊆ {1, · · · , p} be
any sets with Jj ⊇ spt

(
θ∗(j)). It is easy to check

‖θ̂(j) − θ∗(j)‖1 + (1 + 1/a)ωj
(
‖θ∗(j)‖1 − ‖θ̂(j)‖1

)
= ‖θ̂(j)

Jj
− θ∗(j)‖1 + ‖θ̂

(j)
Jc
j
‖1 + (1 + 1/a)ωj

(
‖θ∗(j)‖1 − ‖θ̂

(j)
Jj
‖1 − ‖θ̂

(j)
Jc
j
‖1
)

≤ (K/a)‖θ̂(j)
Jj
− θ∗(j)‖1 − (1/a)‖θ̂(j)

Jc
j
‖1.

by the fact ωj ∈ [0, 1]. It gives that with probability at least 1− q,

2

∑
j=1
‖X(θ̂(j) − θ∗(j))‖2

2 ≤
Mq

aCγ

2

∑
j=1

(
K‖θ̂(j)

Jj
− θ∗(j)‖1 − ‖θ̂

(j)
Jc
j
‖1
)
. (A5)
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Let A1, A2 ⊆ {1, · · · , p} satisfying spt
(
θ∗(j)) ⊆ Aj and card(Aj) = p1, and we also let

Bj be the union of Aj and the indices of p1 largest θ̂(j). Then, Aj and Bj also guarantee (A5).
In addition, from Lemma 1, they also give

‖θ̂(j)
Bc

j
‖2

2 ≤ p−1
1 ‖θ̂

(j)
Ac

j
‖2

1.

In addition, from the definition of Aj and Bj, we know that ‖θ̂(j)
Ac

j
‖1 ≥ ‖θ̂

(j)
Bc

j
‖1 and

‖θ̂(j)
Aj
− θ∗(j)‖1 ≤ ‖θ̂

(j)
Bj
− θ∗(j)‖1.

Unlike the single lasso question, here we need to define I := {j = 1, 2 : K‖θ̂(j)
Aj
−

θ∗(j)‖1 ≥ ‖θ̂
(j)
Ac

j
‖1}, and consider j ∈ I and j /∈ I separately. Obviously, I 6= ∅, or (A5)

cannot be beholden. For j ∈ I, we have

K‖θ̂(j)
Bj
− θ∗(j)‖1 − ‖θ̂

(j)
Bc

j
‖1 ≥ K‖θ̂(j)

Aj
− θ∗(j)‖1 − ‖θ̂

(j)
Ac

j
‖1 ≥ 0.

Then, by the restricted eigenvalue condition,

nκ2‖θ̂(j)
Jj
− θ∗(j)‖2

2 ≤ ‖X(θ̂(j) − θ∗(j))‖2
2

holds for Jj = Aj or Jj = Bj. Note that from (A5),

∑
j∈I
‖X(θ̂(j) − θ∗(j))‖2

2 ≤
Mq

aCγ
∑
j∈I

(
‖θ̂(j)

Aj
− θ∗(j)‖1 − ‖θ̂

(j)
Ac

j
‖1
)
≤

Mq

aCγ
∑
j∈I

(
‖θ̂(j)

Bj
− θ∗(j)‖1 − ‖θ̂

(j)
Bc

j
‖1
)
,

then by Cauchy–Schwartz inequality,

nκ2 ∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2

2 ≤ ‖X(θ̂
(j)
Aj
− θ∗(j))‖2

2 ≤
MqK
aCγ

∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖1

≤
MqK
√

p1

aCγ
∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2 ≤

MqK
√

2p1

aCγ

[
∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2

2

]1/2

.

It gives

∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2

2 ≤
2p1M2

qK2

a2κ4n2C2
γ

, ∑
j∈I
‖θ̂(j)

Bj
− θ∗(j)‖2

2 ≤
4p1M2

qK2

a2κ4n2C2
γ

,

where we use that fact card(Bj) = 2p1. Furthermore, because

‖θ̂(j)
Bc

j
‖2

2 ≤ ∑
j∈I

p−1
1 ‖θ̂

(j)
Ac

j
‖2

1 ≤
K2

p1
∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2

1 ≤ K2 ∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2

2,

we can conclude that

∑
j∈I
‖θ̂(j) − θ∗(j)‖2

2 = ∑
j∈I

(
‖θ̂(j)

Bj
− θ∗(j)‖2

2 + ‖θ̂
(j)
Bc

j
‖2

2
)

≤ ∑
j∈I

(
‖θ̂(j)

Bj
− θ∗(j)‖2

2 + K2‖θ̂(j)
Aj
− θ∗(j)‖2

2
)
=

2p1M2
q(2 + K2)K2

a2κ4n2C2
γ

.
(A6)
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Now, we will tickle the situation that j /∈ I. For j /∈ I, K‖θ̂(j)
Aj
− θ∗(j)‖1 < ‖θ̂(j)

Ac
j
‖1. Again

from (A5), we have

∑
j/∈I
‖X(θ̂(j) − θ∗(j))‖2

2 ≤
MqK
aCγ

∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖1

and
0 ≤ ∑

j/∈I

(
‖θ̂(j)

Ac
j
‖1 − K‖θ̂(j)

Aj
− θ∗(j)‖1

)
≤ K ∑

j∈I
‖θ̂(j)

Aj
− θ∗(j)‖1.

Indeed, if the two inequalities above have the opposite direction, then for the first one,
one can find that

∑
j∈I
‖X(θ̂(j) − θ∗(j))‖2

2 ≤
Mq

aCγ

[
∑
j/∈I

(
K‖θ̂(j)

Aj
− θ∗(j)‖1 − ‖θ̂

(j)
Ac

j
‖1
)
−∑

j∈I
‖θ̂(j)

Ac
j
‖1

]
< 0,

and
2

∑
j=1
‖X(θ̂(j) − θ∗(j))‖2

2 ≤ −
Mq

aCγ
∑
j∈I
‖θ̂(j)

Ac
j
‖1 < 0.

Once again, by Cauchy–Schwartz inequality,

∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖1 ≤

√
p1 ∑

j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2 ≤

√
2p1

[
∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖2

2

]1/2

≤
2p1MqK
aκ2nCγ

.

Denote ∆j := ‖θ̂(j)
Ac

j
‖1 − K‖θ̂(j)

Aj
− θ∗(j)‖1. Then, for j /∈ J, ∆j > 0, and

∑
j/∈I

∆j ≤ K ∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖1 ≤

2p1MqK2

aκ2nCγ
.

For any j /∈ I, define

θ̃(j) = θ̂(j) +
∆j

p1K ∑
k∈Aj

sgn
(
θ̂
(j)
k − θ

∗(j)
k
)
ek.

Then, for k ∈ Aj,

|θ̃(j)
k − θ

∗(j)
k | = |θ̂(j)

k − θ
∗(j)
k |+

∆j

p1K
,

while for k /∈ I, θ̃
(j)
k = θ̂

(j)
k . Therefore,

K‖θ̃(j)
Aj
− θ∗(j)‖1 = K

‖θ̂(j)
Aj
− θ∗(j)‖1 + ∑

k∈Aj

∆j

p1K

 = ‖θ̂(j)
Ac

j
‖1 = ‖θ̃(j)

Ac
j
‖1,

and consequently ‖θ̃(j)
Bc

j
‖1 ≤ K‖θ̃(j)

Bj
− θ∗(j)‖1. Once again, by the restricted eigenvalue

condition,
‖X(θ̃(j) − θ∗(j))‖2

2 ≥ nκ2‖θ̃(j)
Bj
− θ∗(j)‖2

2 ≥ nκ2‖θ̃(j)
Aj
− θ∗(j)‖2

2. (A7)
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On the other hand, note that for any s, t ∈ Rm inequality ‖s + t‖2
2 ≤ 2(‖s‖2

2 + ‖t‖2
2)

and ‖s‖2 ≤ ‖s‖1 ≤
√

m‖s‖2 hold, we conclude

∑
j/∈I
‖X(θ̃(j) − θ∗(j))‖2

2 ≤ 2 ∑
j/∈I

(
‖X(θ̂(j) − θ∗(j))‖2

2 + ‖X(θ̂(j) − θ̃(j))‖2
2

)
≤

2MqK
aCγ

∑
j∈I
‖θ̂(j)

Aj
− θ∗(j)‖1 + 2 ∑

j/∈I
‖X(θ̂(j) − θ̃(j))‖2

2

≤
4p1M2

qK2

na2κ2C2
γ

+ 2 ∑
j/∈I
‖X(θ̂(j) − θ̃(j))‖2

2.

(A8)

Next, we will use the definition of the p1-restricted isometry constant σ2
X,l . Because

spt
(
θ̃(j) − θ̂(j)) ≤ card(Aj) = p1, then

∑
j/∈I
‖X(θ̂(j) − θ̃(j))‖2

2 ≤ σ2
X,p1 ∑

j/∈I
‖θ̂(j) − θ̃(j)‖2

2

= σ2
X,p1 ∑

j/∈I
∑

k∈Aj

( ∆j

p1K

)2
=

σ2
X,p1

p1K2 ∑
j/∈I

∆2
j

≤
σ2

X,p1

p1K2

(
∑
j/∈I

∆j

)2
≤

4p1σ2
X,p1

K2

a2κ4n2C2
γ

.

The above inequality together with (A7) and (A8) gives

∑
j/∈I
‖θ̃(j)

Aj
− θ∗(j)‖2

2 ≤ ∑
j/∈I
‖θ̃(j)

Bj
− θ∗(j)‖2

2 ≤
4p1(nκ2 + 2σ2

X,p1
)M2

qK2

a2C2
γn3κ6 .

Finally, because

‖θ̃(j)
Bc

j
‖2

2 ≤ ‖θ̃
(j)
Bc

j
‖2

1 ≤ K2‖θ̃(j)
Bj
− θ∗(j)‖2

1 ≤ 2p1K2‖θ̃(j)
Bj
− θ∗(j)‖2

2,

we obtain that

∑
j/∈I
‖θ̂(j) − θ∗(j)‖2

2 ≤ ∑
j/∈I
‖θ̃(j) − θ∗(j)‖2

2 = ∑
j/∈I

(
‖θ̃(j)

Bj
− θ∗(j)‖2

2 + ‖θ̃
(j)
Bc

j
‖2

2
)

≤ (1 + 2p1K)∑
j/∈I
‖θ̃(j)

Bj
− θ∗(j)‖2

2 ≤
4p1(1 + 2p1K)(nκ2 + 2σ2

X,p1
)M2

qK2

a2C2
γn3κ6 .

(A9)

Combining (A6) and (A9), it is easy to see what remains.
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