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Abstract: This paper analyzes the flow of the contents of interleaved buffers with continuously oper-
ating machines in a mass production line. Under this framework, the products to be manufactured
advance from station to station to receive a physical–chemical transformation that adds value as they
progress in the process. The existence of decoupling buffers between operations (between two con-
secutive workstations) is a common practice in order to alleviate the pressure that is ahead due to the
lack of synchronization between consecutive operations, which causes leisure and/or bottlenecks in
the system. In this proposal, we analyze the dynamics of a mass manufacturing line with intermediate
decoupling buffers. To do that, we use a regenerative stochastic process approach to build a model
where the products stored in each buffer are taken all at once by the consecutive machine. In a second
approach, we use a homogeneous birth–death process with constant input–output and assume that
the products are taken one by one by the consecutive machine. Finally, we use a non-homogeneous
birth–death process to analyze the dynamics of a system whose inputs and outputs depend on time.
These proposals are accompanied by numerical examples that illustrate its practical utility.

Keywords: stochastic manufacturing; flexible manufacturing systems; decoupling buffers; birth–
death processes

MSC: 90B30; 60J27; 60J28

1. Introduction

Manufacturing is a process carried out in industry in order to change either the
consistency, dimension, shape, firmness or beauty of raw material. They are activities that
transform raw materials into finished products. Such processes involve automated systems,
computers, robots, programmable logic controllers, or autonomous vehicles. As usual,
demand is the trigger mechanism of a factory system. The demand states the quantity
to be manufactured, the manufacturing time and even the production sequence to be
carried out. Other no less important factors that also contribute to establishing the initial
conditions of the manufacturing process are, for example, the materials, the equipment,
the machinery, the physical–chemical transformation, and the distribution of the plant
(layout), among others.

The amount of product that is produced can be determined by the standardization
that is made of it (to manufacture it in large volumes), the specific requirements for select
clients, the difficulty of the design, the production costs, and the capacity of the plant. These
elements determine the type of process to be selected. Therefore, manufacturing is a process
where value is added to the product that moves along a production line. As a consequence,
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the finished product has a higher value than the sum of the value of its components (raw
material). There are several types of manufacturing processes, but all of them involve some
combination of human labor and machinery. Some of them include the following:

1. Continuous manufacturing, the flow of materials is constant without pause and
without any type of transition between operations.

2. Batch production, a standardized method whereby a group of identical products
are produced simultaneously (instead of one at a time). It is the Master Production
Schedule (MPS) that dictates the size of the lot and the frequency of its production.

3. Production by process, characterized by manufacturing a variety of products in dif-
ferent quantities. Here, the product must visit the machines that will carry out the
operations, not necessarily in an ordered sequence due to the complication of moving
production equipment.

The modeling of this class of dynamic systems is of great importance for understanding
their behavior and, even better, to estimate key parameter values such as the expected
quantity of manufactured products, the leisure and the bottlenecks. Therefore, we are
interested in studying the behavior of mass production systems with decoupling buffers
between machines. In this case, it is common to observe the flow of materials at high
speeds (for example, from one hundred to one thousand units per minute). In this type
of manufacturing line, there are often temporary storage systems to regulate the feeding
of products between machine and machine in order to avoid over-saturation of the line.
These systems are called buffer decoupling systems.

Buffers are basic tools for the regular transfer of materials between consecutive stations.
Some of the most common uses are: (a) regulate planned stoppages for the replacement
of materials, (b) carry out unplanned stoppages due to surrounding line equipment, and
(c) have storage time due to the product process. In our proposal, we are interested in the
analysis of the interaction between the decoupling and feeding operations of subsequent
machines to a buffer in order to characterize the expected production of the line during
a given time interval [0, T]. To do this, the manufacturing entities are divided into two
important elements, the machines and the buffers.

Two cases are analyzed in this proposal. In the first one, we use a format called take all,
in which the totality of materials contained in any buffer of the line is fed to the subsequent
machine of the process. Here, we used a regenerative stochastic process to model the
dynamics of the system. In the second approach, called one-by-one, we assume that the
products contained in the buffers are taken individually to feed the subsequent machine.
Hence, we use a birth–death process to model the dynamics presented. In both situations,
quantitative indicators of the model are obtained, which are illustrated with their respective
numerical examples.

2. The Model Background

Fortunately, the literature in this topic is recent and abundant. For example, in [1], an
extensive analysis of this type of distributions with diverse variations of the topology of
the design are elaborated. An interesting review of the application of mathematical models
in the food and beverage industry can be found in [2]. In the proposal developed in [3],
the authors create a multi-objective linear integer mathematical model to balance assembly
lines. The focus of their work is on optimizing the volume of production, taking care of
cycle times and leisure time at work stations.

Regarding the use of buffers in manufacturing lines, an interesting proposal is found
in [4]. Here, a detailed analysis of the throughput rate with content-limited buffers is
presented. A mathematical model for the productivity rate is built from the technological
parameters, the capacity of the buffers and the number of stations and sections with
different failure rates and cycle times. The buffers associated with the Work In Process
(WIP) are considered in the proposal of [5]. In this case, a model is developed to obtain
the optimal WIP stored in the manufacturing buffers at minimum cost by calculating their
optimal capacity during the manufacturing and interoperation process. The approach
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is carried out through mathematical models, which are solved by means of a series of
algorithms. The final proposal is validated via simulation, and the results are applied to a
car manufacturing company.

A proposal very close to ours can be seen in [6]. The authors analyze the performance
of a flexible manufacturing system through the geometric reliability approach. They use
Markovian analysis for the study of two machines and find estimators for the distribution,
mean and standard deviation, of the process completion time. An advanced model for
the study of robotic flexible manufacturing systems (FMS) that include buffers is found
in [7]. The authors develop and apply an analytical model for performance in flexible
production networks based on autonomous mobile robots (AMR) using a circular loop
between workstations and interoperable buffers. In their paper, it is shown that it is possible
to avoid line congestion by using multiple crossings and analyzing both the flow and the
loading/unloading phases.

An analysis of the impact of Technology 4.0 on FMS can be found in [8]. The impor-
tance of Industry 4.0 systems and their autonomous management capacity is shown in
this research. Production is based on a scheme based on planning strategies of tolerances
(tolerance scheduling problem) to determine the feasible changes in the manufacturing
line. Finally, the resequence of the production process in operations associated with late
customization through the use of intermediate buffers is also analyzed.

It is important to mention the work developed by [9] on the allocatiion and size of
buffers. The authors propose a model for the optimal allocation of buffers in production
lines by means of a hybrid algorithm that incorporates the method of nested partitions
(NP) and Tabu Search (TS). Through numerical applications, the methods used are promis-
ing for the problem of buffer allocation in a large production line. Equally interesting
is the approach found in [10]. The research focuses on the problem of buffer size and
the positioning of inspection stations on production lines using mixed-integer nonlinear
optimization. The technique is illustrated by an instance incorporating n machines and
n fixed-size buffers (storage) in series. Under accept–reject conditions, the optimal buffer
sizes and the number and positions of inspection stations are found at minimum cost.

Another interesting approach to the problems stated above is using the method of
experimental designs. In [11], a performance study of the main factors of the manufacturing
systems of a serial manufacturing line is developed. The model includes the reliability
and cycle time of workstations, the length of a manufacturing line, and the capacity and
location of internal buffers. The analysis is also supported by a simulation model of discrete
systems. The combination of both approaches produces good results. Similarly, in [12], a
two-stage production system with an intermediate buffer is considered. In the first stage,
two similar machines are incorporated in parallel, and in the second, only one machine is
considered. The model is analyzed from a simulation perspective to quantify the effect of
spare capacity and machine repair rates on production line efficiency.

On the other side, in [13], a buffer is incorporated to study the increase in efficiency in a
transfer line where several workstations are linked by a conveyor. Advanced computational
techniques have been incorporated to better understand the dynamics that exist in a storage
system such as the one described here. The search for learning automata is based in game
theory to solve the optimal buffer allocation problem on production lines as in [14]. Here,
the proposal is based on the application of the Automata Learning Theory (ALT) to find
the optimal buffer sizes in a production line.

In [15], the authors propose a time-based parametric model to calculate a cluster size for
a given buffer type. Moreover, they propose an optimal buffer pool policy applicable to an
online configuration with deterministic processing time. Finally, in [16], an interesting proposal
is developed based on the theory of Markovian processes applied to repairable modular
machines. The authors propose a series of composition operators and an improved Universal
Generation Function (UGF) vector technique to build the system model. Subsequently, they
use a Genetic Algorithm (GA) to solve the optimization mathematical model associated with
the buffer capacity. The problem is applied to a production line for engine heads.
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3. Setting Up the Mathematical Model of the Process

Normally, a flexible manufacturing line is considered as an adaptable system; however,
nothing is further from the truth, since there are a large number of factors associated with
it that occur in the form of random events, which makes everything random. Throughout
this section, some indicators for both approaches are mentioned.

3.1. The Deterministic Approach

In any development of a representative model, there are some assumptions to achieve
a mathematical approximation to the reality of the archetype. In a manual manufacturing
line, the operations are fundamentally machining, and the operating times at each station
are evaluated by estimating standard times. In an automated line, there are also no exact
standard operating times. Usually, these are represented through the mean, variance and
other moments that define a probability distribution (pdf). However, it is customary to
approximate the average operation times of the work stations by means of punctual values
using the arithmetic mean as an unbiased estimator of the sampling times in repetitive
operations and use these data as information to obtain other indicators such as:

1. The cycle time of the manufacturing line, Tc, that is defined as the processing time of
the slowest station plus the transfer time. Therefore, if τi represents the operating time
of each station i and τci is the transfer time from machine i to the next machine, then
for a total of n machines, the cycle time is given by

Tc = max{τi}+ τci .

2. The actual time of the production cycle, Tr, that includes the times assigned to un-
avoidable random stoppages expressed as an average value satisfies

Tr = Tc + Fd To

where Fd represents the stoppage frequency in (stops/cycle) and To is the downtime
per line stop. The above measures lead to simple expressions for the ideal Pi and
actual Pr production rates, that is Pr ≈ T−1

c and Pi ≈ T−1
r .

3.2. The Stochastic Approach

Deterministic modeling of the operation of a manufacturing line is an almost impossi-
ble task. There are many random quantities involved in this operation, for example: repair
times of damaged equipment, installation preparation times (set-up times), mechanical,
electrical and electronic failures, different operator skills, etc. Our proposal is focused
on a more realistic stochastic modeling of any manufacturing line, manual or automatic.
Under this framework, an important indicator is the probability that a manufacturing
line is operating satisfactorily at any moment, namely the reliability function. Therefore,
the reliability at time t, R(t), of a manufacturing line is a metric such that R(t) ∈ (0, 1);
rarely does a system reach the value 1.

Consider a mass production line with intermediate buffers, as shown in Figure 1.

!!
Raw 

material 
storehouse

!!" !"# 	!$%",	$!" !# 𝐵!,#$

Figure 1. Sequencing of operations with decoupling buffers.

The raw material warehouse is a place where all the products that will be used in
the process are stored until they are required. A machine is any mechanical, electrical or
electronic device designed and used to carry out some operation or process on a material
for a specific product.
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A buffer Bij is considered as an intermediate workstation (out of a total of n) between
machines i and j, and it is used as temporary storage for the product. Typically, these
facilities are located between two consecutive machines and serve to cushion the advance
of the product between two stations. Therefore, the overall system can be analyzed as a
queuing model embedded in a processing system. The view of a buffer as a queue of finite
length is not entirely new. There are several works that have focused with great accuracy
on this scheme; see for example [17,18].

In our proposal, we will assume that the buffers satisfy the conditions of the conserva-
tion of flux law given by

ut + ψ(u)x = 0, (1)

where ψ : Rn → Rn is the flux and u : [0,+∞)×R → Rn is the conserved quantity and
where, for any interval [a, b], it is satisfied that [19]

d
dt

∫ b

a
u(t, x)dx = −

∫ b

a
f (u(t, x))dx = f (u(t, a))− f (u(t, b)) = ς(t). (2)

where ς(t) is a function only of t. Thereby, in the first model, we take up some ideas
from [20] to develop our own model associated with a manufacturing line with these char-
acteristics.

Next, we will obtain the dynamics of the products inside the buffers. To do this, we
will consider two cases. In the first one, we will suppose that the total content of each buffer
is taken by the consecutive machine in a unique way. That is, all the content of the buffer
is taken to be processed (takes all), which presupposes that the machine has the capacity
to receive the entire content of the buffer in a single emission. In addition, we will use
the average times to failure and repair as the elements that trigger the availability of the
equipment, which constitute the central axis of our analysis.

In a second model, we will suppose that each piece of the buffer is taken one by
one and the consecutive machine processes them in a unitary way (one by one). Here,
the triggers of the dynamics of the system are the rate of arrival (α) of the products to the
machine Mi, as well as the rate of abandonment (β) to be incorporated downstream in the
manufacturing line. As a result, the main indicators contained in the system buffers will be
obtained. The main results are as follows:

3.3. Takes All Format

Under this framework, the amount of content in the buffers may vary due to different
processing times and random shutdowns due to equipment failure, different operator skills,
and random events affecting the system. In order to set up the mathematical model of this
system we consider the following aspects:

1. All the raw material for the process comes from a single place called the raw material
storehouse. This is a warehouse with infinite capacity.

2. Each machine i has a mean time to failure given by∫ ∞

0
x dFi

X(x) = λi
−1, i = 1, . . . , n. (3)

3. Similarly, the mean time to repair of machine i is given by∫ ∞

0
y dFi

Y(y) = µi
−1, i = 1, . . . , n. (4)

4. From (3) and (4), it follows that the unavailability of equipment i is given by

Ui = λiµi
−1, i = 1, . . . , n. (5)

5. Each machine Mi that is part of the system has a maximum productivity rate (mea-
sured in products manufactured per unit of time) given by ξi. In this proposal, we will
assume that if a machine is operating, it always does so at its maximum capacity.
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6. The totality of the production moves only in the main manufacturing line, and there is
no lost or spilled material.

To begin this analysis, suppose that the quantity of product φ(t) existing in each buffer
Bij, i < j, j = 1, 2, . . . , n, with respect to time t is driven by the stochastic differential equation

d
dt

φ(t) = ξi δi(t)− ξ j δj(t) = ζ(t), t ≥ 0, (6)

here, φ(t) ∈ (−h
2 , h

2 ), and φ(0) = 0. In addition, assume that

δi(t) ∈ {0, 1}. (7)

In this approach, each buffer Bij has a capacity hij ≤ max{ξi, ξ j}, such that the products
that arrive at it are formed to be served in a strict First Input, First Output (FIFO) order.
When the content of a buffer is a negative quantity, it is said to be starved.

Equations (6) and (7) define a regenerative stochastic process with state space {0}, {1},
where δi(t) = 1 means that the corresponding machine is working, and zero means that it
is not. Let π(ϑ, t) be the probability of being in the ϑ-state. If we assume that FX(x) and
FY(y) are exponentially distributed under steady-state conditions, as in [21,22], then

π(0, t) = lim
t→∞

[
π(0, 0) (1− λ− µ)t +

λ

µ + λ

[
1− (1− λ− µ)t]] = λ

µ + λ
, (8)

and

π(1, t) = lim
t→∞

[
π(1, 0) (1− λ− µ)t +

µ

µ + λ

[
1− (1− λ− µ)t]] = µ

µ + λ
, (9)

thus
P(δi(t) = 1) = π(1, t), P(δi(t) = 0) = π(0, t). (10)

The above assumption leads to the noise ζ(t), which is a Markov process with state
space Ω defined as

Ω = {ξi − ξ j, −ξ j, ξi, 0}, (11)

where
P(ξi − ξ j) = πi(1)πj(1) =

µi µj

(µi + λi)(µj + λj)
=

µi µj

$
, (12)

P(−ξ j) = πi(0)πj(1) =
λi µj

(µi + λi)(µj + λj)
=

λi µj

$
, (13)

P(ξi) = πi(1)πj(0) =
µi λj

(µi + λi)(µj + λj)
=

µi λj

$
, (14)

P(0) = πi(0)πj(0) =
λi λj

(µi + λi)(µj + λj)
=

λi λj

$
. (15)

Hence, there is an initial probability vector Π∗0 given by

Π∗0 = $−1 [µi µj, λiµj, µi λj, λi λj
]
, (16)

where Π∗ means transpose of Π. Similarly, we have that the infinitesimal transition
probabilities Q̂ is defined as

Q̂ =


−(λi + λj) µi µj 0

λi −(µi + λj) 0 µj
λj 0 −(µj + λi) µi
0 λj λi −(µi + µj)

. (17)

An estimator for the expected value of the buffer contents for all t is given by

µφ(t) = E[φ(t)] = $−1 [(ξi − ξ j)(µiµj)− ξ j(λiµj) + ξi(µiλj)
]
, (18)
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and the variance satisfies

σ2
φ(t) = $−1

[
(ξi − ξ j)

2(µiµj) + ξ2
j (λiµj) + ξ2

i (µiλj)
]
− E2[φ(t)]. (19)

Derived from the above, we have that the total expected production ϕi of each machine
i during the planning horizon T can be obtained by adding the partial productivities
generated during the k production cycles, when process (6) is in state 1, that is (see Figure 2),

ϕi =
k

∑
l=1

(
µl

µl + λl

)
hl , i = 1, . . . , n (20)

The expected total production of the line is given by

Mtotal =
n

∑
i=1

ϕi =
n

∑
i=1

k

∑
l=1

(
µl

µl + λl

)
hl . (21)

The number of average empty slots Se in each Bij buffer is given by

Se =

{
hi − E[φ(t)], if E[φ(t)] ≥ 0,
hi, otherwise.

(22)

This model constitutes an important manufacturing case where a machine can be
fed in a single way. That is, to start its operation, it considers taking all the material that
precedes it in its operation. A numerical example for this situation will be shown later.

0

1

Cycle 1 Cycle 2

!

Cycle !

	" 1, % 	

"" "#
	" 0, % 	

Figure 2. Alternative process cycles d
dt φ(t).

3.4. One by One Format

In this alternative model, we consider that the elements of the buffer content are
dislodged from it one by one by the subsequent machine. In addition, each machine is
always available when it is requested by the production line.

3.4.1. The Birth-and-Death Model

Let αi and βi be the number of pieces that arrive and leave machine i per unit of time,
respectively, and let S be an integer interval (finite or infinite). Then, the process of arrivals
and departures of products to a certain buffer can be seen as a Markov chain with subspace
Z such that α→ [0, ∞) and β→ [0, ∞). Again, we will suppose that h ≤ max(α, β).

Let X(t) = Xt be the number of pieces in buffer Bij at time t, and let Px(t) = P{X(t) = x},
x = 0, 1, . . . be the probability associated with the length of the queue at time t.

We will also assume the following:

1. The probability of transition x → x + 1 in the interval (t + ∆t) is αx∆t + o(∆t);
2. The probability of transition x → x− 1 in the interval (t, t + ∆) is βx∆t + o(∆t);
3. The probability of transition to another neighboring state is o(∆t);
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4. The probability of no change is 1− (αx + βx)∆t + o(∆).

Therefore, the system can be seen as a Markov process in continuous time of the type
birth-and-death, i.e.,

Px(t + ∆t) = αx−1 Px−1(t)∆t + [1− (αx + βx)∆t]Px(t) +
βx+1Px+1(t)∆t + o(∆t).

(23)

A reasonable assumption in this model is that α > β, i.e., no backorders are allowed.
The above result is associated with the following Kolmogorov equation

dPx(t)
dt

= αx−1 Px−1(t)− (αx + βx) Px(t) + βx+1 Px+1(t), x = 1, 2, . . .

and, in particular for x = 0, we have

dP0(t)
dt

= β1P1(t).

Furthermore, if it is satisfied that in the initial state, the system is in the state x = x0,
0 < x0 < ∞, then the initial conditions are Px(0) = 1 for x = x0, and Px(0) = 0 otherwise.
Without loss of generality, we will assume that λx = λ and µx = µ. Using the generating
function of the probabilities, F(s, t) = ∑∞

x=0 Px(t)sx, | x |≤ 1, we have as in [23]

∂F(s, t)
∂t

=
[
α2

s − (α + β)s + β
] ∂F(s, t)

∂s
,

whose general solution is given by

F(s, t) = f
(

β− αs
1− s

)
e−(α−β)t.

Note that when X(0) = x0 = 1, then F(s, 0) = s. Therefore,

s = f
(

β− αs
1− s

)
,

and
f (ξ) =

β− ξs
α− ξ

,

where f is an arbitrary function. Hence,

F(s, t) =
β
(

1− e(α−β)t
)
−
(

α− βe(α−β)t
)

s

β− αe(α−β)t − α
(
1− e(α−β)t

)
s

. (24)

The coefficients of sx are given by (using the expansion method in power series)

Px(t) =
{

[1− γ(t)][1− κ(t)][κ(t)]x−1, x = 1, 2, . . .
0, x = 0.

(25)

where

γ(t) =
β
(

e(α−β)t − 1
)

αe(α−β)t − β
, (26)

κ(t) =
α
(

e(α−β)t − 1
)

αe(α−β)t − β
, (27)

E{Xt} = e(α−β)t, (28)

and

Var{Xt} = σ2
Xt

=

[
α + β

α− β

][
e(α−β)t

] [
e(α−β)t − 1

]
. (29)
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An estimator for the transition matrix Q is given by

Q(x) =


p(x) = α(x)

α(x)+β(x) , if x → x + 1

q(x) = β(x)
α(x)+β(x) , if x → x− 1

r(x) = 0, if x → x

(30)

If p(x) = q(x) = 0, then r = 1. That is, the state x is absorbing. Therefore, the generat-
ing matrix Q̂ is given by

Q̂(x) =


−[α(x) + β(x)], if x → x
α(x), if x → x + 1
β(x), if x → x− 1

(31)

Two important measures in the above context are the bottleneck and the leisure
generated in the system. Leisure is defined as the time when one machine or a set of
machines are free from work or other duties. In this topology, leisure in the Bij buffer
occurs when the number of α products coming from machine i is less than the number of
β products that will access machine j. Similarly, a bottleneck is a point of congestion in
a production system. This occurs in an assembly when workloads arrive too quickly for
the production process to handle. In our case, a bottleneck occurs in buffer Bij when the
number of α products coming from machine i is greater than the number of β products that
will access machine j. Formally, the buffer Bij can be in any of the following states

Buffer status (Bij) =


Leisure (L), α < β
Bottleneck (B), α > β
Steady flow, α = β

(32)

From (28), we have

lim
t→∞

E{Xt} =


0, for α < β
1, for α = β
∞, for α > β

(33)

During the product movement in the buffers, it may happen that they become empty
or become oversaturated due to the large amount of product accumulated in them. In a
birth–death process, these phenomena are known as extinction and population explosion.
Formally, in this analysis, any of the following events may occur:

1. If Xs = 0 for some s ∈ S , and hence Xt = 0, ∀ t ∈ [s, ∞), then the phenomenon of
extinction of the population is verified. The probability of emptying the buffer at time
t (extinction probability) is obtained from Equations (25)–(27) in the following way:

lim
t→∞

P0(t) = lim
t→∞

 β
(

e(α−β)t − 1
)

αe(α−β)t − β

 =

{
1, for α < β
(β/α), for α > β

(34)

2. Similarly, if Xt → ∞, as t → ∞, (T = ∞), then the phenomenon of population
explosion is verified. The probability of explosion, pe, is given by

pe = 1− lim
t→∞

P0(t) (35)

Finally, we are interested in the absorption probability function, i.e., h(x) = P(Xt = 0
for some t ∈ [0, ∞) | X0 = 0, T < ∞). This is given by

h(x) =
1
q

x−1

∑
i=0

β(1) β(2) . . . β(i)
α(1) α(2) . . . α(i)

(36)
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where

q =
∞

∑
i=0

β(1) β(2) . . . β(i)
α(1) α(2) . . . α(i)

(37)

It is interesting to note the similarity between Equations (34) and (36). One more
important result is the following:

lim
t→∞

E{Xt} → x0, if α = β

The application of this model assumes the existence of constant rates of arrival and
departure of the system. In order to illustrate its application, a numerical example will be
carried out later.

3.4.2. The Non-Homogeneous Birth-and-Death Model

In practice, the αi arrival and the βi departure rates of products on the machine i are
not the same at any instant of time. These change according to the variable speeds of the
equipment, the demand requirements and the Master Production Plan (MPS). In this case,
these rates should be expressed as a function of the time in which they will be required.
Formally, we now define αi(t) and βi(t) as the number of pieces arriving and leaving the
machine Mi, respectively, depending on their observation time. Again, let X(t) = Xt be the
number of pieces in buffer Bij at time t. Now, we will assume that the rates are arbitrary
functions of time of the state variable. The adjustments to the previous model are based
in [24] and reported in [25]. In this case, we have

γ(t) = 1− e−ω(t)

w(t)
, (38)

κ(t) = 1− 1
w(t)

, (39)

where

ω(t) =
∫ t

0
[β(τ)]− α(τ)]dτ, (40)

and

w(t) = e−ω(t)
[

1 +
∫ t

0
β(τ) eω(τ)dτ

]
. (41)

The mean and variance, respectively, are now given by

E{Xt} = e−ω(t), (42)

Var{Xt} = σ2
Xt

= e−2ω(τ)
∫ t

0
[β(τ)] + α(τ)] eω(τ)dτ. (43)

Under these conditions, the probability of extinction of pieces in each buffer is given by

P0(t) =

∫ t
0 β(τ) eω(τ)dτ

1 +
∫ t

0 β(τ) eω(τ)dτ
. (44)

The intensity function and the transition probabilities are, respectively, given by

qi = (α + β)i, i = 1, 2 . . . (45)

and

Qij =


α

α+β , for j = i + 1, i = 1, 2, . . .
β

α+β , for j = i− 1,
0, for | i− j |> 1

(46)

The infinitesimal matrix of transition probabilities satisfies
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Q =


0 0 0 0 0 · · · 0 0
β −(α + β) α 0 0 · · · 0 0
0 2β −2(α + β) 2α 0 · · · 0 0
0 0 3β −3(α + β) 3α · · · 0 0
...

...
...

... · · ·
...

...
...

 (47)

The corresponding Kolmogorov equations are given by

dPij

dt
= αj−iPi,j−1(t)− (αj + β j)Pij(t) + β j+1Pi,j+1(t), (48)

dPij

dt
= αiPi+1,j(t)− (αi + βi)Pij(t) + βiPi−1,j(t), (49)

and using the generating function, we have that

(F(s, t))i =

[
γ(t) + [1− γ(t)− κ(t)s]

1− κ(t)s

]i
, (50)

where

[γ(t) + (1− γ(t)− κ(t))s]i =
∞

∑
n=0

(
i
n

)
[γ(t)]i [1− γ(t)− κ(t)]i si,

and

[1− κ(t)]−i =
∞

∑
n=0

(
i + n− 1

n

)
[κ(t)]i si, | κ(t)s |< 1.

Therefore,

Pij(t) =
i

∑
n=0

(
i
n

)(
i + j− n− 1

i− 1

)
[γ(t)]i−n[κ(t)]j−n[1− γ(t)− κ(t)]n, i ≥ j. (51)

The above equation is useful for defining a set of Ω states of the transition matrix and
calculating other properties of the system such as absorption first passage time. For the
recurrence time, an important result in [26] is the following. If Hij(t) and Hii(t) are the
first-passage time and recurrence time distribution of the process X(t), then

Υ =
∫ ∞

0
dHii(t),

defines the probability that the system starts at i and ends at i during a finite period of time.
An interesting extension to birth–death processes is when there exists a jump rate ex-

pressed as an asymptotic polynomial dependence on the position of the process; see, for ex-
ample, [27]. The authors obtain an approximate asymptotic exponential distribution for the
probability of excursions of a rescaled process contained within a neighborhood of a given
non-negative continuous function.

4. Numerical Examples

Below are three numerical examples associated with the cases analyzed in this docu-
ment. First, an instance associated with the model of the ‘takes all formats’ type is shown.
The second refers to the one-by-one format model. In this case, we show two examples
associated; the first one uses the homogeneous birth–death model and the second one uses
the non-homogeneous case. Each subsection corresponds to the previously developed
models in the same order of presentation. The results obtained are the following.

4.1. The Case for the Format Takes All

In order to show a numerical example with this format, we assumed a sequence of
six machines with five intermediate buffers. The operation dynamics of this model is
as follows:
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1. Enter the known values of hi, for all Bij i = 1, . . . , n;
2. Enter the known values of ξi, λ and µ for all Mi i = 1, . . . , n;
3. For all Mi, i = 1, . . . , n, obtain the magnitudes:

µφ(t), σ2
φ(t), Se, U, ϕ;

4. Obtain the states S of the process: leisure (L) or bottleneck (B).
The presentation is made in three blocks in Table 1. The first block shows the numerical

values assigned to the instance. The second block shows the states of Ω. Finally, in the
third block, we show the numerical values obtained using our proposal.

For the block Θ1, the following values are proposed (typical quantities in a metal-
working manufacturing system). The unit of measurement of time is hours; therefore,
λ = 1/1200 means one failure every 1200 h, and µ = 1/25 is interpreted as one repair
every 25 h. The values of ξ were arbitrarily proposed and represent the maximum num-
ber of pieces processed per hour on each machine Mi, i = 1, . . . , 6. Here, θij = ξi − ξ j,
and Mtot = 37. Finally, hij represents the capacity of the buffer Bij in pieces processed
per hour.

Table 1. Parametric values and results obtained from the takes all format.

Θ1 M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6

h 6 8 8 7 8
ξ 6 5 8 7 4 8
λ 1

1200
1

1150
1

1000
1

1060
1

1200
1

1100
µ 1

25
1
32

1
27

1
29

1
28

1
34

Θ2 M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6

θij 1 −3 1 3 −4
−ξ j −5 −8 −7 −4 −8
ξi 6 5 8 7 4
0 0 0 0 0 0
S B L L L B

Θ3 M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6

µφ(t) 1.017 −2.901 0.096 2.910 −3.851
σφ(t) 1.162 1.597 1.679 1.278 1.489

Se 4.982 8.000 7.038 4.089 8.000
U 0.020 0.027 0.027 0.027 0.023 0.030
ϕ 5.882 4.864 7.789 6.8136 3.988 7.760

The Θ2 block represents the state space associated with the Markovian process φ(t)
(Equation (11)) once the values of the block Θ1 have been replaced. The value of S defines
the buffer positions as leisure (L) or bottleneck (B).

In the Θ3 block, the row assigned to µφ(t) represents the average value of the con-
tents of the system buffers, which is the expected value of the Markovian process φ(t)
(Equation (18)). It is important to note that buffers B12, B34 and B45 contain a positive value.
For example, the case of buffer B12 is interpreted as follows. Machines M1 and M2 have
respective processing capacities of six pieces/h and five pieces/h, respectively. The buffer
B12 will have an average content of 1017 pieces/h. However, the processing capacity of
M3 is eight pieces/h, that is, a processing capacity greater than M2; therefore, there will
be leisure in the buffer B23, since it remains starved for material that does not arrive. This
situation is reflected in its average content—that is, −2.92 pieces/h. The rest of the analysis
for this row is done with the same logic.

The row associated with σφ(t) represents the standard deviation of the φ(t) process
(Equation (19)). It is important to highlight that these quantities are very similar, which
defines little variability of the process. In the case of the Se variable, it defines the number
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of empty slots in each Bij buffer. Special cases are buffers B23 and B56 (Equation (22)).
Similarly, the variable U (Equation (5)) represents the unavailability of the machine Mi,
i.e., a measure of the probability that such a machine is offline and ϕ is the expected
production in the system.

Another interesting measure of the activity of each machine is given by Equations (12)–(14),
that is, the state probabilities. Table 2 shows these results.

Table 2. Probability distribution for the process φ(t) in each buffer.

State (i) M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6

ξi − ξ j 0.9531 0.9473 0.9478 0.9512 0.9479
−ξ j 0.0199 0.0264 0.0256 0.0260 0.0221
ξi 0.0265 0.0256 0.0259 0.0222 0.0293
0 0.0006 0.0007 0.0007 0.0006 0.0007

The components of the matrix represent the probability of the state si, i = 1, . . . , 4 in
the Bij buffer. For example, for buffer B23, we have P(ξi − ξ j) = 0.9473, and the rest is the
same. The values found reveal a high activity of the state ξi − ξ j. Finally, from the values
given in this instance, we obtain the initial vector of probabilities (Equation (16))

ΠB∗12
0 = [0.9531, 0.0199, 0.0265, 0.0006], ΠB∗23

0 = [0.9473, 0.0264, 0.0256, 0.0007]

Π
B∗34
0 = [0.9478, 0.0256, 0.0259, 0.0007], Π

B∗45
0 = [0.9512, 0.0260, 0.0222, 0.0006]

PiB∗56
0 = [0.9479, 0.0221, 0.0293, 0.0007].

4.2. The Case One by One

For the analysis of these instances, we proceed as before, separating the corresponding
subsections in the order in which they were previously exposed.

4.2.1. The Case of the Homogeneous Birth–Death Model

In order to illustrate the second model numerically, we define a punctual estimator of
the content of the buffers (independent of t), and the following statistic is proposed

ȳ =
1
T

T

∑
t=1

E{X(t)}. (52)

Similarly, for the standard deviation of the content of the buffer Bij, we propose the
statistic z̄ defined as

z̄ =
1
T

T

∑
t=1

σXt . (53)

For the exploration of this instance, we use two methods. In the first, the expected
value of PX(t) is proposed as the content of the buffer Bij. In the second, the dynamic input–
output, Work In Process (WIP) and Work In Buffers (WIB) are used. For this case, we define
the Work In Process (WIP) as the raw materials, labor, and overhead costs incurred for
products that are at various stages of the production process. Similarly, the Work In Buffers
(WIB) refers to the amount of material stored in buffer Bij at time t of the planning horizon.

The dynamics of operation in the first approach is as follows

1. Enter the known values of hi, for all Bij, i = 1, . . . , n;
2. Enter the known values of ξi, α and β for all Mi i = 1, . . . , n;
3. For all t and for all Mi, i = 1, . . . , n, obtain the magnitudes:

(a) β
(

e(α−β)t − 1
)

, α
(

e(α−β)t − 1
)

, αe(α−β)t − β

(b) κ(t), γ(t), Px(t), E{X(t)}, σXt ;
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4. For each buffer Bij, estimate the approximate values of ȳ and z̄, P0(t) and S ;
5. Assign to the buffer Bn, f p the expected value of the production of the system.

Thus, for a T = 100, we have the numerical values for this case in Table 3.

Table 3. Parametric values and results obtained from the one by one format.

Θ1 M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6 B6, f p

h 6.80 6.75 6.72 6.71 6.70 6.65
ξ 10 10 10 10 10 10
α 6.80 6.70 6.66 6.59 6.57 6.56
β 6.70 6.68 6.60 6.58 6.56 6.50
ȳ 55.81 3.22 69.10 1.72 1.72 69.10
z̄ 642.56 68.30 1019.42 39.43 39.43 1011.70
P0 0.9853 0.9970 0.9910 0.9985 0.9985 0.9909
S B L B L L

From the values proposed for α and β, it is observed that in the row of states S , there
are two bottlenecks (B) in buffers B12 and B34. Similarly, buffers B23, B45 and B56 have
respective leisures (L). The content of the buffer B6, f p = 69.10 represents the amount
of finished product (the expected total production) when the system is in steady-state
conditions. Figure 3 shows graphically the probability distribution PX(t) for t = 30 h of
operation in machine 1 for x = 1, 2, 3.
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Figure 3. Probability distribution PX(t) for t = 30 h of operation in machine 1 for x = 1, 2, 3.

The dynamics of operation for the second approach is as follows:

1. Enter the known values of hi, for all Bij i = 1, . . . , n;
2. Enter the known values of ξi, α and β for all Mi i = 1, . . . , n;
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3. At t = 0, the raw material arrives at the machine M1 at a rate given by the function α1;
4. The number of products leaving machine one during the first hour is given by the

function β1;
5. The output rate of products (s1) from machine 1 is obtained from the quantity

s1(t) = min{ξ1, β1}; (54)

6. The WIP of the first machine is defined as the difference between what is supported
and what is delivered as finished product.

WIP1 = α1 − s1;

7. Similarly, the WIB1 is given by

WIB1 = min{s1, h1};

8. The WIB1 and the quantity ξ2 constitutes the input to M2 in the following form

α2 = min{WIB1, ξ2}.

Therefore, the process is repeated updating the respective indices.

Table 4 shows a concentration of the results found with the parameters described.

Table 4. Average values for the homogeneous birth–death process for T = 100 h.

Θ M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6 B6, f p

h 6.80 6.75 6.72 6.71 6.70 6.65
ξ 10 10 10 10 10 10
α 12.000 6.161 6.121 6.096 6.080 6.080
β 16.000 16.000 16.000 16.000 16.000 16.000
s 6.700 6.700 6.700 6.700 6.700 6.700

WIP 3.451 −2.387 −2.427 −2.451 −2.467 −2.467
WIB 6.161 6.121 6.096 6.080 6.080 6.040
S B B B B B B

The expected final quantity of production of this model is given by

Mtot =
6

∑
i=1

WIBi = 36.578

and si = min{αt, βt}, i = 1, . . . , n, stands for the amount emitted from machine i at time t.

4.2.2. The Case of the Non-Homogeneous Birth–Death Model

In order to illustrate the non-homogeneous birth–death model, consider the following
α(t) and β(t) functions (see Figure 4).

α(t) =
{ 5

7 t + 9
7 , 0 ≤ t ≤ 15

−0.08 t2 + 3 t− 17, 15 < t ≤ 30
(55)

β(t) =
{

t + 1, 0 ≤ t ≤ 15
−0.25 t + 8, 15 < t ≤ 30

(56)

In this case, we will assume that the arrival rate to the system (machine 1) is given by
α1. Here:

WIP[Pi(t)] = βi − αi,

WIB[Bij(t)] = min{βi, ξi}.
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Figure 4. Functions α(t) and β(t) used in the non-homogeneous birth–death model.

In this model, machine 1 is the access door to the system. Thus, the dynamics of the
process is described as follows.

1. At t = 0, the raw material arrives at the machine M1 at a rate given by the function
α1(t).

2. The number of products leaving machine one during the first hour is given by the
function β1(t).

3. The output rate of products (s1) from machine 1 is obtained from the quantity

s1(t) = min{ξ1, β1(t)}.

4. The WIP of the first machine is defined as the difference between what is supported
and what is delivered as finished product.

WIP[M1] = α1(t)− s1(t)

5. Similarly, the WIB[B1] is given by

WIB[B1] = min{s1, h1}.

6. The WIB1 and the quantity ξ2 constitutes the input to M2 in the following form

α2 = min{WIB[B1], ξ2}.

Therefore, the process is repeated updating the respective indices.

From the definitions of α(t) and β(t), the following results are obtained:

ω(t) =
{ 195

7 , 0 ≤ t ≤ 15
−91.875, 15 < t ≤ 30

E(Xt) =

{
0, 0 ≤ t ≤ 15
0, 15 < t ≤ 30

σ2
Xt

=

{
∞, 1 ≤ t ≤ 15
0, 15 < t ≤ 30

P0 =

{
1, 1 ≤ t ≤ 15
1, 15 < t ≤ 30
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Table 5 summarizes some interesting results for this case.

Table 5. Average values for the non-homogeneous birth–death process for 100 h of operation.

Θ M1 B12 M2 B23 M3 B34 M4 B45 M5 B56 M6 B6, f p

h 10 10 10 10 10 10
ξ 8 8 8 8 8 8

ᾱ(t) 12.000 7.096 7.096 7.096 7.096 7.096
β̄(t) 16.000 16.000 16.000 16.000 16.000 16.000

s 7.096 7.096 7.096 7.096 7.096 7.096
WIP 4.93 0 0 0 0 0
WIB 12.000 7.096 7.096 7.096 7.096 7.096
S B B B B B B

Again, the expected final quantity of production of this model is given by

Mtot =
6

∑
i=1

WIBi = 47.48, (57)

and si = min{α(t), β(t)}, i = 1, . . . , n represents the amount of product coming from
machine i at time t.

4.3. A Brief Discussion of the Results Obtained

In the takes all approach, the results obtained in the analyzed cases show some
important differences. In the first one, it is assumed that the totality of the material
contained in the buffer is taken to be processed. This implies that the subsequent work
station is capable of channeling the material from which it is fed, placing it in tandem while
the worksation absorbs it. This situation is typical of a numerical control center (NCC) with
robotic systems for picking, classifying and placing the product on the equipment platform:
for example, in car door assembly and welding, LE TV assembly, inspection and packaging
lines, or vehicle engine cover assembly lines.

The numerical values obtained for the occupation, expected production and leisure
totally depend on the λ and µ rates. In our example, these quantities were obtained ex-
perimentally in companies of the mechanical metal industry. Naturally, various values for
these constants can be found reported in the literature. In the Conclusion, we cite several
authors that report figures similar to ours. Although the estimators ȳ and z̄ are approximate
values of the average production volume obtained during the planning horizon, they provide
an indicator of the most likely values to be obtained under the conditions imposed on the
system. The disadvantage of using them is the huge variance associated with them. In a
model with multiple runs, it may be more appropriate to fit a theoretical density function to
the samples created.

In a Markovian model, its simulation is simple due to the simplicity of the state matrix
associated with the model. For example, taking advantage of the flow balance property
from Equations (1) and (2) and knowing that the property πi pij = πj pji for i, j ∈ Ω is
fulfilled, then the Metropolis–Hasting algorithm is a useful tool for analyzing the behavior
of the stochastic process ζ(t).

For the case of the pure birth–death and the non-homogeneous birth–death process,
the ease of the model lies in their theoretical importance and the extensive literature on the
subject. The classical values as the Q̂ matrix uniquely determine the asymptotic behavior
of the system, which allowed us to identify, under stable-state conditions of the system,
the moments of leisure, bottlenecks and its stability.

Knowing the rates of birth (arrival of pieces to the buffer) and death (exit of pieces
from the buffer), the system is practically characterized. Its simulation is also feasible for
different initial (boundary) conditions in its parameters using the same Metropolis–Hasting
algorithm. This could be a future line of research.
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Particularly fascinating is the non-homogeneous birth–death model. Its beauty lies in
the fact that arrival and departure rates depend on the instant of time in which they are
observed. In practical models, this is an almost necessary condition that must be fulfilled
to guarantee greater reality as in our proposal. Developing a simulation model of this
process is almost a necessity. This would allow the analysis of more system variables such
as operating costs (fixed and variable), stochastic demand and level of customer service.

In relation to the instances proposed in this approach, the results are very similar in
terms of the average expected amount of production. In our case, the proposed models,
in Equations (55) and (56) are estimated values of the production rate in flexible manufac-
turing systems associated with metalworking processes. Another important result found in
this proposal is the Work in Process (WIP) and the introduction of a new variable called
Work in Buffer (WIB). Our approach constitutes one more contribution to the literature
since these metrics are mandatory in flexible manufacturing processes.

Finally, we want to express that the application of these models to real manufacturing
cases is ready to be carried out. It is only necessary to obtain the magnitudes involved
in the models through statistical sampling applied to the historical files that are prepared
in the area of Maintenance Engineering in any manufacturing company. In Conclusions,
several relevant papers are mentioned where models successfully have been applied to
real engineering cases. The restrictions of our proposal is that it is limited only to those
manufacturing models that satisfy the working hypotheses.

5. Conclusions

In this paper, we have carried out an analysis of the dynamics in the buffers of a mass
production system whose workstations are aligned. By using probability theory, we were
able to approximate three models that represent three different but common situations in the
manufacturing industry. The results obtained show that under certain working hypotheses
of the model, it is possible to make good approximations with a minimum of uncertainty.

We have analyzed three common situations. In the first one, we assumed that the
total amount of product existing in each buffer is placed in the subsequent machine, and
it is capable of operating simultaneously the volume of material received. In the second
case, we assumed that there is a constant rate of access of products to the manufacturing
line (a common situation in automated systems). With this in mind, we proposed a
homogeneous birth–death model. The proposed rates are approximate magnitudes that
are normally found in the metalworking industry, which is why they are very close to
reality. The capacity of the buffers are also magnitudes that are directly related to the
manufacturing capacities in the antecedent and consequent machines. Finally, the third
case was built under the assumption that the corresponding arrival and departure rates
of the products in the system buffers depend on the time in which the manufacturing
line is operating. This assumption is not so unrealistic, since at certain times of the day,
the rates vary due to factors such as worker fatigue, machine wear, shift changes, and set
ups. We used a variant of the discrete-state stochastic process called the non-homogeneous
birth–death process.

Although the assumptions under which this proposal is built vary substantially in each
case, the results suggest that there is a great similarity in the expected amount of production
in a planning horizon of 100 h. However, the idle levels and the number of bottlenecks
are significantly different in each case. For this reason, we assume that the indicators of
the models faithfully express their behavior. Measurements such as the unavailability of
equipment, the expected variability of demand, and the probability distributions associated
with the quantity of products stored in the buffers are engineering indicators of high value
in the industry when the assumptions under which they were built are respected.

Although we may feel tempted to prepare a comparative table between the results
obtained in each model, this would not be fully representative (except in the expected
average production), since the construction assumptions change significantly from model
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to model. The proposed technique allows an exploration very close to the operation of a
real system and, therefore, the results obtained are highly reliable.

In future lines of research in this topic, greater detail in aspects such as the time that the
product remains in each work station should be included. In this case, a technique based
on the age-dependent branching stochastic processes (also called regenerative processes)
could be implemented as in [28,29].

Finally, another important aspect to address is the case of interconnected lines with
derivations and stoppages.

In relation to the supposed reliability that should be had in a manufacturing line,
reliability is defined as the probability that a system (in this case, a manufacturing line)
operates satisfactorily at the time it is required. As a measure of probability, rarely does
a system reach the value 1. That is, even the most reliable systems have an associated
probability of failure. Therefore, buffer systems exist in both automated and non-automated
manufacturing lines. For example, in automated lines, buffers automatically handle pro-
duction stops and allow machines on the line to continue. The following papers refer to
buffers in automated manufacturing lines: [30–36].

As for mean time to repair (MTTR), this is the ratio of the total time spent on unplanned
maintenance to the number of times a piece of equipment has failed during a specified
period. MTTR does not consider parts lead time and is not used for scheduled maintenance.
The concept assumes a metric with a single meaning. However, the letter R can stand for
repair, recovery, response or resolution, and each case is specific to the company where
it is used [37]. The variability of times lies in the fact that each company is a particular
case; each facility and its topology is different. MTTR provides information to the extent
of the data on which it is based. Therefore, a careful service history must be kept of the
machines involved.

An estimate of the MTTR must be made considering the correct workflow and times-
tamps that collect data from multiple sources. For example, a workflow can be made up
of the following activities: (a) Equipment operator enters a work order, (b) A scheduler
releases the work order, (c) A technician adds his time to the work order, (d) The technician
executes the requested work, and (e) Work order completed. An ordinary sequence of times
to determine this magnitude is as follows [38]:

Incident→ Failure detected→ Diagnosis→ Repair→ Recovery→ Availability→ Incident

In any case, if the MTTR is too large, then the replacement of the damaged part is
considered. In any case, this consumes a time that is never standard for all the companies
that make use of this concept. Some authors who report their experience in the use of high
values for an MTTR are the following: [39–42]. In particular, Ref. [43] i ncludes the idea of
using buffers and MTTR.

In a manufacturing line, we could have two failure causes. In the first one is the
operator or another instance that decides to stop the system. In the second, the failure is
considered due to some technical aspect. In this work, we were only interested in failures
of the technical type.

To date, there is a significant increase in the complexity of production technologies
and the equipment used in them. In this case, mathematical models help to understand
the complexity of the systems and their interactions with other components in a manufac-
turing line. A typical example of this is trying to understand how bottlenecks arise in the
production process. Traditionally, in some industrial companies, mathematical models are
used to analyze the system and make operational or resource decisions. The advantage
of a mathematical model of a new system can be reflected in cost and flexibility to adapt
the decisions made and due to its relative accuracy, which influences how and where they
can be used [44]. Some significant examples showing the advantages and delimitations of
mathematical models applied to industrial situations can be verified in [45,46].



Mathematics 2022, 10, 1686 20 of 21

Author Contributions: G.P.-L. developed the mathematical model of the proposal. Also obtained
the information for the creation of the instances and elaborated their computational runs. F.V.-M.
supervised and adapted the mathematical model. Also reviewed the results of the computational runs
and adapted them to the proposed models. M.A.M.-B. obtained the information used in the model and
elaborated the experimental designs that guarantee the reliability of the results. J.M.-V. supervised
the development, construction, style, spelling and computational runs of the document as well as its
technical content. All authors have read and agreed to the published version of the manuscript.

Funding: The funds for the publication of this document were provided by the Instituto Tecnológico
y de Estudios Superiores de Monterrey, Mexico.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chapter 3 Mathematical Modeling of Production Systems. Available online: http://www.productionsystemsengineering.com/

pdfs/PSE_Chapter3.pdf (accessed on 10 February 2022).
2. Ilija, D.; Alen, M.; Aleksandra, N.; Anet, R.J.; Photis, P.; Aberham, H.F.; Kamal, K.; Rallou, T.; Heiko, B.; Alexandrina, S.; et al.

Sirbu Alexandrina, Mihnea Moisescu Alexandru, Tomasevic Igor, Vrabič Brodnjak Urška, Charalambides Maria, Tonda Alberto.
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5. Grznár, P.; Gregor, M.; Mozol, Š.; Krajčovič, M.; Dulina, L’.; Gašo, M.; Major, M. A System to Determine the Optimal Work-in-
Progress Inventory Stored in Interoperation Manufacturing Buffers. Sustainability 2019, 11, 3949. [CrossRef]

6. Chen, J.; Jia, Z.; Dai, Y. Real-Time Performance Analysis of Batch-Based Serial Flexible Production Lines with Geometric Machines.
In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC,
Canada, 22–26 August 2019.

7. Fragapane, G.; Ivanov, D.; Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Increasing flexibility and productivity in Industry 4.0
production networks with autonomous mobile robots and smart intralogistics. Ann. Oper. Res. 2022, 308, 125–143. [CrossRef]

8. Rossit, D.A.; Tohmé, F.; Frutos, M. An Industry 4.0 approach to assembly line resequencing. Int. J. Adv. Manuf. Technol. 2019,
105, 3619–3630. [CrossRef]

9. Shi, L.; Men, S. Optimal buffer allocation in production lines. IIE Trans. 2003, 35, 1–10. [CrossRef]
10. Ouzineb, M.; Mhada, F.Z.; Pellerin, R.; Hallaoui, I. Optimal planning of buffer sizes and inspection station positions. Prod. Manuf.

Res. 2018, 6, 90–112. [CrossRef]
11. Imseitif, J.; Tang, H.; Smith, M. Throughput Analysis of Manufacturing Systems with Buffers Considering Reliability and Cycle

Time Using DES and DOE. In Proceedings of the 25th International Conference on Production Research Manufacturing Innovation:
Cyber Physical Manufacturing, Chicago, IL, USA, 9–14 August 2019.

12. Ameen, W.; AlKahtani, M.; Mohammed, M.K.; Abdulhameed, O.; El-Tamimi, A.M. Investigation of the effect of buffer storage
capacity and repair rate on production line efficiency. J. King Saud Univ.-Eng. Sci. 2018, 30, 243–249. [CrossRef]

13. Chomnawung, Y.; Prombanpong, S.; Klavohm, C. A Buffer Analysis in a Transfer Production Line. MATEC Web Conf. 2016,
68, 06005. [CrossRef]

14. Tolga, T.; Abhijit, G. Optimal Buffer Allocation in Production Lines Using an Automata Search. Available online: https:
//web.mst.edu/~gosavia/tezcan_gosavi.pdf (accessed on 7 February 2022).

15. Schuler, F.; Darabi, H. Buffer clustering policy for sequential production lines with deterministic processing times. Int. J. Ind. Eng.
Comput. 2016, 7, 555–572. [CrossRef]

16. Duan, J.; Xie, N.; Li, L. Optimal Buffer Allocation in Multi-Product Repairable Production Lines Based on Multi-State Reliability
and Structural Complexity. KSII Trans. Internet Inf. Syst. Korean Soc. Internet Inf. 2020, 14, 1579–1602.

17. Smith, J.M.; Daskalaki, S. Buffer Space Allocation in Automated Assembly Lines. Oper. Res. 1988, 36, 343–358. [CrossRef]
18. Nourelfath, M.; Nahas, N.; Ait-Kadi, D. Optimal design of series production lines with unreliable machines and finite buffers.

J. Qual. Maint. Eng. 2005, 11, 121–138. [CrossRef]
19. D’Apice C.; Göttlich, S.; Herty, M.; Piccoli, B. Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach;

Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2010; pp. 5–9, ISBN 978-0-898717-00-6.
20. Hongler, M.-O. Stochastic Buffered Flows. In Chaotic and Stochastic Behaviour in Automatic Production Lines; Springer:

Berlin/Heidelberg, Germany; New York, NY, USA, 1994; pp. 57–76.

http://www.productionsystemsengineering.com/pdfs/PSE_Chapter3.pdf
http://www.productionsystemsengineering.com/pdfs/PSE_Chapter3.pdf
http://doi.org/10.1007/s00170-017-0442-7
http://dx.doi.org/10.3390/su11143949
http://dx.doi.org/10.1007/s10479-020-03526-7
http://dx.doi.org/10.1007/s00170-019-03804-0
http://dx.doi.org/10.1080/07408170304431
http://dx.doi.org/10.1080/21693277.2017.1422812
http://dx.doi.org/10.1016/j.jksues.2018.03.001
http://dx.doi.org/10.1051/matecconf/20166806005
https://web.mst.edu/~gosavia/tezcan_gosavi.pdf
https://web.mst.edu/~gosavia/tezcan_gosavi.pdf
http://dx.doi.org/10.5267/j.ijiec.2016.5.001
http://dx.doi.org/10.1287/opre.36.2.343
http://dx.doi.org/10.1108/13552510510601348


Mathematics 2022, 10, 1686 21 of 21

21. Pérez-Lechuga, G.; Gress, E.S.H.; Karelyn, A.A.; Orán, M.G.M. Some Efficiency Measures in the Operation of Flexible Manu-
facturing Systems: A Stochastic Approach, Society for Industrial and Applied Mathematics. In Proceedings of the 2009 SIAM
Conference on Mathematics for Industry, San Francisco, CA, USA, 9–10 October 2009; Society for the Industrial and Applied
Mathematics (SIAM): Philadelphia, PA, USA, 2009; pp. 31–36.

22. Pérez-Lechuga, G.; Venegas-Martínez, F.; Martínez-Sánchez, J.F. Mathematical Modeling of Manufacturing Lines with Distribution
by Process: A Markov Chain Approach. Mathematics 2021, 9, 3269. [CrossRef]

23. Karlin, S. Linear Growth, Birth-and-Dead Processes. J. Math. Mech. 1958, 1, 643–662.
24. Kendall, D.G. On the Generalized “Birth-and-Death” Process. Ann. Math. Stat. 1948, 19, 1–15. doi: 10.1214/aoms/1177730285.

[CrossRef]
25. Bharucha-Reid, A.T. Elements of the Theory of Markov Processes and Their Applications; Dover Publications Inc.: New York, NY, USA,

2010; pp. 89–93, ISBN 9780486695396.
26. Lamens, A.; Consael, R. Sur le processus non-homogène de naissance et de mort. Acad. R. Belg. Bull. Cl. Sci. Ser. 1957, 43, 597–605.
27. Vvedenskaya, N.D.; Logachov, A.V.; Suhov, Y.M.; Yambartsev, A.A. A local large deviation principle for inhomogeneous

birth-death processes. Probl. Inf. Transm. 2018, 54, 263–280. [CrossRef]
28. Bellman, R. A Survey of the Mathematical Theory of Time-Lag, Retarded Control, and Hereditary Processes. RAND Monograph.

EE.UU. 1954. Available online: https://www.rand.org/content/dam/rand/pubs/reports/2009/R256.pdf (accessed on 24
April 2022).

29. Stidham, S., Jr. Regenerative processes in the theory of queues, with applications to the alternating-priority queue. Adv. Appl.
Probab. 1972, 4, 542–577. Available online: https://www.jstor.org/stable/1425993 (accessed on 5 May 2022). [CrossRef]

30. Savsar, M. Modeling of a two-stage merge production with buffer storage. JKAU Eng. Sci. 1992, 4, 67–81. [CrossRef]
31. McClain, J.O.; Moodie, D.R. A Comment on “Buffer Space Allocation in Automated Assembly Lines”. Oper. Res. 1991, 39, 857–860.

[CrossRef]
32. Pravin, K.J. A linear programming approach to capacity estimation of automated production lines with finite buffers. Int. J. Prod.

Res. 1987, 25, 851–867.
33. Zhou, M.; DiCesare, F. Petri net modelling of buffers in automated manufacturing systems. IEEE Trans. Syst. Man Cybern. Part B

(Cybern.) 1987, 26, 157–164. [CrossRef] [PubMed]
34. Prombanpong, S.; Kaewyu, J.; Thanadulthaveedech, N.; Matwangsang, M. A buffer design for mitigation downtime effect in an

automated transfer line. Int. J. Innov. Manag. Technol. 2013, 4, 155.
35. Xia, B.; Chen, J.; Zhang, Z. An Exact Method for the Analysis of a Two-Machine Manufacturing System with a Finite Buffer

Subject to Time-Dependent Failure. Math. Probl. Eng. 2015, 2015, 916193. [CrossRef]
36. Faria, J.; Matos, M.A.; Pinto, N.E.M. Optimal design of work-in-process buffers. Int. J. Prod. Econ. 2006, 99, 144–155. [CrossRef]
37. The Path to Better Incident Management Starts Here. Available online: https://www.atlassian.com/incident-management/kpis/

common-metrics (accessed on 24 April 2022).
38. Reliability Metrics 101: Mean Time to Repair (MTTR). Available online: https://www.maxgrip.com/resource/reliability-metrics-

101-mean-time-to-repair-mttr/ (accessed on 24 April 2022).
39. Atighi, I.; Soleimannejad, J.; Akbarinasab, A.; Moradpour, S. Providing a Practical Model to Reduce Maintenance Costs: A

Case Study in Golgohar Company. World Acad. Sci. Eng. Technol. Int. J. Econ. Manag. 2019, 13, 1457–1460. Available online:
https://zenodo.org/record/3593154#.YmWPO_PMI6U (accessed on 7 February 2022).

40. Naraphorn Paoprasert, N.; Htet Lin, W.Y.; Muneekaew, T. Assessing Risk Priority Numbers of Failures in the Screw Tightening
Machine of a Hard Disk Drive Production System. J. Mach. Eng. 2022, 22, 124–137. Available online: http://jmacheng.not.
pl/Application-of-Reliability-Centered-Maintenance-in-Screw-Tightening-Machine-of-Hard,145272,0,2.html (accessed on 7
February 2022). [CrossRef]

41. Mohammad, Z.; Aggarwal, G. OEE Evaluation of Long Life Food Product Line. Int. J. Emerg. Technol. Eng. Res. (IJETER) 2016, 4,
61–66. Available online: https://ijeter.everscience.org/Manuscripts/Volume-4/Issue-8/Vol-4-issue-8-M-13.pdf (accessed on 5
April 2022).

42. Nahas, N.; Nourelfath, M. Joint optimization of maintenance, buffers and machines in manufacturing lines. Eng. Optim. 2018,
50, 37–54. [CrossRef]

43. Stanley, B.G. The future of manufacturing systems engineering. Int. J. Prod. Res. 2018, 56, 224–237. [CrossRef]
44. Symonov, D. Usage of mathematical modeling on the industrial enterprises. In Proceedings of the Conference: DO Desen-

volvimento Mundial Como Resultado de Realizações em Ciência e Investigação Científicaat, Lisboa, Portugal, 9 October 2020.
[CrossRef]

45. Pérez Lechuga, G. Optimal logistics strategy to distribute medicines in clinics and hospitals. J. Math. Ind. 2018, 8, 2. [CrossRef]
46. Pérez-Lechuga, G.; Aguilar-Velázquez, S.L.; Cisneros-López, M.A. A model for the location and scheduling of the operation of

second-generation ethanol biorefineries. J. Math. Ind. 2019, 9, 3. [CrossRef]

http://dx.doi.org/10.3390/math9243269
http://dx.doi.org/10.1214/aoms/1177730285
http://dx.doi.org/10.1134/S0032946018030067
https://www.rand.org/content/dam/rand/pubs/reports/2009/R256.pdf
https://www.jstor.org/stable/1425993
http://dx.doi.org/10.2307/1425993
http://dx.doi.org/10.4197/Eng.4-1.4
http://dx.doi.org/10.1287/opre.39.5.857
http://dx.doi.org/10.1109/3477.484449
http://www.ncbi.nlm.nih.gov/pubmed/18263017
http://dx.doi.org/10.1155/2015/916193
http://dx.doi.org/10.1016/j.ijpe.2004.12.019
https://www.atlassian.com/incident-management/kpis/common-metrics
https://www.atlassian.com/incident-management/kpis/common-metrics
https://www.maxgrip.com/resource/reliability-metrics-101-mean-time-to-repair-mttr/
https://www.maxgrip.com/resource/reliability-metrics-101-mean-time-to-repair-mttr/
https://zenodo.org/record/3593154#.YmWPO_PMI6U
http://jmacheng.not.pl/Application-of-Reliability-Centered-Maintenance-in-Screw-Tightening-Machine-of-Hard,145272,0,2.html
http://jmacheng.not.pl/Application-of-Reliability-Centered-Maintenance-in-Screw-Tightening-Machine-of-Hard,145272,0,2.html
http://dx.doi.org/10.36897/jme/145272
https://ijeter.everscience.org/Manuscripts/Volume-4/Issue-8/Vol-4-issue-8-M-13.pdf
http://dx.doi.org/10.1080/0305215X.2017.1299716
http://dx.doi.org/10.1080/00207543.2017.1395491
http://dx.doi.org/10.36074/09.10.2020.v3.02
http://dx.doi.org/10.1186/s13362-018-0044-5
http://dx.doi.org/10.1186/s13362-019-0060-0

	Introduction
	The Model Background
	Setting Up the Mathematical Model of the Process
	The Deterministic Approach
	The Stochastic Approach
	Takes All Format
	One by One Format
	The Birth-and-Death Model
	The Non-Homogeneous Birth-and-Death Model


	Numerical Examples
	The Case for the Format Takes All
	The Case One by One
	The Case of the Homogeneous Birth–Death Model
	The Case of the Non-Homogeneous Birth–Death Model

	A Brief Discussion of the Results Obtained

	Conclusions
	References

