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Abstract: The present paper aims to provide production systems with a decision-making tool that
allows the assessment of the resilience of their equipment, processes and/or sub systems and,
certainly, the system itself. The ultimate goal is to detect the critical points of a production system
in order to gain strength, efficiency and resilience to face new and existing threats and challenges.
In this regard, this paper presents a model that aims to calculate the resilience score of a process
from various parameters and to rate it on the resilience scale using linguistic terms. In order to
manage uncertainty, a fuzzy model has been put forward with the objective of being an integral tool
of maintenance strategy surveillance and definition. Finally, and towards putting into practice the
proposed model, a real case study, in the context of mining operations, is presented. This will help the
process identify the areas/equipment for improvement and afterwards overcome weaknesses that
may affect the entire system’s resilience. The aforementioned model provides great support to the
decision-making process in the field of plant maintenance strategies and physical asset management.
We believe that the main impact of this proposal is that through the use of this type of decision tool,
the correct definition of maintenance strategies and the appropriate selection of system topologies
could be made regarding the systemic resilience as an overall objective.

Keywords: resilience; fuzzy logic; maintenance; production systems

MSC: 68U35

1. Introduction

Resilience in engineered systems corresponds to the ability to withstand disruptive
events, avoiding an interruption in operations. Otherwise, if the interruption occurs,
the resilient system recovers as quickly as possible [1]. To deploy the full resilience in a
system, two main characteristics have to be considered: the systems’ taxonomy and all
the resources assigned to the system in order to assure the operational continuity. This is
where the maintenance function and the management of physical assets become relevant.
It is through the definition of appropriate maintenance strategies and the allocation of
resources (human and technical) that the required levels of operational continuity can be
reached [2,3]. More recently, some authors have linked the correct selection of maintenance
strategies to improved levels of resilience at the system level [4]. However, despite the
fact that several authors have made efforts to measure resilience levels and link them to
maintenance strategies [5,6], it is still difficult to correctly quantify and build awareness
about the impacts that adjustments in maintenance strategies and system topologies can
have on system resilience.

Regarding the quantification of the system’s resilience, some definitions are needed,
among them: the best method to measure it and how to deal with important levels of
uncertainty [7]. The relative importance of resilience correlates and their values are un-
certain, mainly in complex engineering systems and with a great number of components
distributed according to different topologies. Those relationships can be modelled using
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linguistic expressions and using the fuzzy set theory [8]. Such theory constitutes a support
to the subjective or natural language descriptors of systems’ characteristics and provides a
methodology to allow for resilience modeling and the assessment process [9].

From that, this work proposes a model based on a fuzzy logic model to measure
and/or express the resilience derived from different systems topologies and with different
maintenance strategies intending to make the system a more robust and reliable one.

The remainder of this paper is divided into four sections: Section 2 contains the
theoretical background, Section 3 proposes the proposed methodology, Section 4 shows
a case study of the application of the proposed methodology. Additionally, in Section 5,
a sensitivity analysis and the discussion of the results is provided. Finally, conclusions,
limitations and further research avenues are discussed in Section 6.

2. Theoretical Background

Production systems are designed to operate and deliver their outputs in an efficient
and sustainable manner. To achieve that, the existing equipment within the system must
offer guarantees of operational continuity and should be ready to deal with the risks in
a most effective mode. There is no doubt that threats (disruptive events) to operational
continuity will exist continuously. The organisation’s efforts must be directed at avoiding
these disruptive events and, if they do occur, dealing with them in the most appropriate
way possible.

The maintenance function deploys its efforts to keep equipment available and avoid
disruptive events. Reliability reflects the probability that a piece of equipment will remain
operational for a certain period of time. The classical parameter representing the reliability
of a given physical asset is the Mean Time Between Failure (MTBF). On the other hand,
maintainability reflects the probability of repairing a given piece of equipment in a certain
amount of time. This parameter is usually represented by the Mean Time To Repair
(MTTR). Both parameters together constitute an indicator of Availability (A) according to
Equation (1):

Availability =
MTBF

MTBF + MTTR
(%) (1)

The term resilience was coined by Holling [10]. In ecology, the term represents
the ability of a living being or biological system to recover from threats or disruptive
events. The imperative for resilient systems is aligned with the goal of achieving high
performance and long-term sustainability of organizations and systems [11]. In addition,
investing in resilience is also critical in regards to climate matters. According to [12], with
an additional marginal cost (around 3%), our assets can be protected against a changing
climate. Infrastructure resilience constitutes another critical aspect. Mainly, we consider
that investing in more resilient infrastructure in low- and middle- income countries would
return USD 4 in benefits for each USD 1 invested [13]. A resilient system is one that is
capable of providing a predefined level of service or functionality, even in the presence of
disruptive events. From the physical asset management (PAM) point of view, structures
and strategies must be established to provide for and enhance the resilience of physical
assets [14]. Therefore, system resilience depends on the systems structure (topology), and
on the resources allocated to maintain and manage the physical assets.

A suitable resilience metric should consider properties related to the system’s function-
ality in time. In addition, it is desirable that a useful measure of resilience must show sim-
plicity of implementation and computation. Both quantitative and qualitative metrics can
be found in the literature. Linkov [15] summarises a number of metrics for resilience. Some
works addresses specific metrics in specific industry sectors. For instance, Sun et al. [16]
presented a literature review on resilience metrics for transportation infrastructure. Infras-
tructure resilience was researched by Mottahedi et al. [17]. More recently, Yang et al. [5]
presented a quantitative metric that allows for measuring the influence of reliability pa-
rameters on the resilience of an equipment. According to that work, failure rate is the
parameter that constitutes the most important correlation with the equipment’s resilience.
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The loss or reduction of the functionality of a physical asset or system is not a binary
situation, but a gradual one [18]. If we represent such a reduction in functionality as
the distance from a certain minimum value, or as an acceptable range within which the
system must or can function, this level must be previously defined [19]. Similarly, some
authors stress that the degree of recovery does not imply a perfect or total restoration of
the system’s functionality, but rather that the system has returned to a level or state where
it can be considered satisfactorily functional [20]. Therefore, resilience must consider that
the functionality of the system must be compared to certain levels or ranges of acceptance
values. Cholda [20] proposes a metric called “quality of resilience”, which summarises, in a
single term, the frequency and extent of the disruptive event and its impact in functionality.

There is no universally accepted single quantitative model for the assessment of
systems’ resilience. A variety of metrics has been proposed to measure and evaluate
resilience [21]. Some resilience assessment models have been reported regarding different
systems. For instance, organisational resilience [22], supply chain resilience [23] and others.

Cai et al. [6] proposed a model to compute the resilience based on systems’s availability.
Consider one shock or disruptive event that affect the system functionality. Figure 1 deploys
the behavior along time of the system’s availability in the presence of one disruptive event.
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In such figure, A1 represents the availability of the system in a steady state. For model
purposes, we have considered that this steady state goes from instant t0, to instant t1. Then,
at t2, a sudden decrease in the system’s availability occurs. The availability of the system
drops to the value A2. Then the system starts its recovery by reaching a new state or
availability value A3 (at t3). Considering a given time frame, there may be a number “n”
of availability losses. Also, Ai

2 and Ai
3 represent the values of availabilities for each of

the n shocks (1 ≤ i ≤ n). Considering a given time frame, there may be a number “n” of
availability losses. Also, Ai

2 and Ai
3 represent the values of availabilities for each of the n

shocks (1 ≤ i ≤ n) and A1 represents the availability of the system in a steady state. The
Equation (2) shows the Cai’s model to compute the system’s resilience based on the system
availability over time.

ρ =
A1

n ln(t1)

n

∑
i=1

(
Ai

2 Ai
3

ln
(
ti
3 − ti

2
)) (2)

Thus, regarding the system’s availability and considering that every loss of function-
ality at the system level (overall impact) is caused by one or more availability losses at
the equipment level (local causes), the assessment of such impact is needed. In addition,
it is also relevant to recognize that the degree in which those local functionality losses
impact the overall system’s functionality depend on the topological structure of the system.
Various models link the availabilities of each piece of equipment to the availability of the



Mathematics 2022, 10, 1677 4 of 16

system taking into consideration its topology. Table 1 shows some of the equations that
associate availability to the most common equipment configurations [24]. In this equation,
µi corresponds to the repairing rate and λi represents the failure rate of each piece of
equipment i.

Table 1. Equations to estimate a system’s availability [24].

Configuration Equation

Series As =
1−n
∏
i−1

( λi
(λi+µi)

)

Redundancy (r/n)
As =

n
∑

k=r

(
k
n

)µk λn−k

(λ+µ)n

Active Redundancy (with n elements) As = 1 −
n
∏
i−1

( λi
(λi+µi)

)

Frequently, handling resilience factors and their values constitutes a challenging
task. Mainly, this is down to such factors and values are uncertain and/or imprecise.
Some authors [25,26] have pointed that the uncertain values and decisions rules are much
better defined and processed by linguistic expressions than by precise (crisp) numbers.
This situation leads to the possibility of modelling such terms and values using fuzzy
terms [27,28]. Fuzzy set theory supports subjective and natural language descriptors
in a wide field of areas. Using such approach, the uncertainties can be described by a
set of predefined linguistic expressions. This allows dealing with subjective expressions
and handling expert judgment in a readily and simplified manner. Since there is great
diversity of resilience conceptions and the utilization of imprecise information, there
is also great potential to describe the systemic resilience through the use of linguistic
expressions [8,29,30].

In the literature, there is a number of works devoted to dealing with the resilience con-
cept using linguistic expressions, with experts’ judgment based on fuzzy logic. Mottahedi
et al. [17] address the application of expert judgement as a basis of the resilience estimation.
In this work, resilience is defined a concept which is disaggregated into several levels of ab-
straction. Each level considers a set of other factors named as generic and influencing ones.
The resilience in communities is addressed by [31]. The proposed structure is based on two
parameters: the repair time and the consequences of the failure. The main advantage of
this work is intrinsically simple and comprehensive. COVID-19 has been a very relevant
research topic in the last two years. From the point of view of a resilience assessment using
fuzzy logic, Said et al. [32] propose a framework where the goal is to calculate a resilience
score for a process in the context of COVID-19. The main characteristic of this proposal
is that the model’s outcome corresponds to a term expressed as one of five predefined
echelons. Zarei et al. [33] presented a paper where a framework for resilience assessment
that uses a fuzzy-based multicriteria decision-making process. This MCDM lies on a fuzzy
based Analitic hierarchy process (AHP) and VIKOR techniques. Again, as the precedent
references, this approach lies on the experts’ judgments.

Perhaps the work that comes closest to our suggested approach is that presented by
Bukowski et al. [4]. They use fuzzy logic to give support to maintenance decisions including
the concept of resilience. The analysis takes into account the maintenance support potential
to estimate a resilience level in organizations. However, as the previously mentioned
papers, this work lies on expert opinions to model the maintenance support potential and
obtain the resilience estimation.

From what we have extracted from the literature so far, there is no research that is
consistently capable of defining a value or expression for resilience based on objective data.
All the works found are based on linguistic terms or expert judgement.
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Our work is intended to develop a fuzzy-based resilience assessment model consider-
ing highly engineered systems. The main focus of this paper is the selection or assessment
of maintenance strategies based on the resilience concept. Moreover, the proposed model is
capable of dealing with uncertainty through the integration of the fuzzy approach using a
set of decisions or evaluation rules to derive a fuzzy value of the resilience in a system. In
the next section, we describe the proposed methodology.

3. Proposed Methodology

The main principle that rules this work is the following: the functionality of a system,
from the point of view of the physical asset management and maintenance, is the availability
of each piece of equipment and at the system level. Therefore, and considering that
each availability loss (system level) is a consequence of the impact of an individual or
combination (at equipment level) of disruptive events, the system’s resilience is determined
by the characteristics of the system itself, the maintenance strategies and the corresponding
resources assigned to them.

This paper proposes a system based on decision rules to evaluate the resilience of
a system. The input of this system consists of a vector of two elements. These elements
correspond to:

1. The average value of system availability drops over a given period of time.
2. The average value of the time required for the availability restoration to a value equal

to or greater than the value of the pre-shock availability.

Then, these values are forwarded into a fuzzy rule system that is responsible for
processing the logic and delivering a system resilience value. In the next lines, we provide
further methodological details of the proposal.

3.1. Preparing Input Values

The input values of the fuzzy system are obtained from a time series containing values
of the system availability. This time series reflects the variations over time of this parameter
and takes into account the topology of the system and the effect of a series of disruptive
events at the equipment level. The aforementioned time series can contain:

• Historical data, making possible an ex-post analysis of the resilience from the be-
haviour of the system, or

• Data produced synthetically (ex-ante) as a result of a RAM analysis [34–36] using
Monte Carlo Experiments [37].

For modeling and RAM analysis of the system, reliability block diagrams (RBD) are
used. The reliability block diagrams [38] represent a system through a collection of blocks
according to different connections or logics (series, parallel, stand-by, etc.). Such diagrams
are capable of incorporating the behaviour of the equipment’s reliability and maintainability
through the Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) values
of each piece of equipment [24]. Therefore, from those diagrams it is possible to derive the
availability of an entire system [18,24].

On the other hand, and as a way to measure the impact on system resilience of chang-
ing maintenance strategies on a particular piece of equipment or system topology, Monte
Carlo simulation experiments are performed. Monte Carlo simulation experiments are used
to solve reliability, maintainability and availability estimation problems [39]. This is usually
applied when the systems have a high complexity that make it very difficult to solve ana-
lytically. With the increase in computational speeds and memory size of computers, Monte
Carlo methods have become more widely used and accepted by maintenance researchers.
Some applications in reliability and maintenance analysis can be found in [40,41]. Figure 2
shows the diagram depicting the proposed methodology.



Mathematics 2022, 10, 1677 6 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

used to solve reliability, maintainability and availability estimation problems [39]. This is 
usually applied when the systems have a high complexity that make it very difficult to 
solve analytically. With the increase in computational speeds and memory size of com-
puters, Monte Carlo methods have become more widely used and accepted by mainte-
nance researchers. Some applications in reliability and maintenance analysis can be found 
in [40,41]. Figure 2 shows the diagram depicting the proposed methodology. 

 
Figure 2. Flowsheet between RBD-based Monte Carlo simulation and Fuzzy Resilience Indicator. 

From these experiments, several scenarios can be analysed, obtaining for each of 
them a time series with the system availability values. Considering those generated time 
series, they may present n shocks or disruptive events, with each one including two terms 
which represent two characteristic magnitudes: the loss or drop in functionality and the 
duration of the recovery time, Li and Ti, respectively. From these n tuples, the average 
values of each parameter corresponding to the series of data analysed are obtained: 𝐿ത and 𝑇ത. These two parameters correspond to crisp numbers, which in order to evaluate 
the resilience condition of the system, must be transformed into linguistic concepts. 

As it was mentioned earlier, 𝐿ത and 𝑇ത constitute the inputs for the fuzzy system that 
allows for the assessment of the resilience of the system. In summary, information flows 
from the system representation, using reliability block diagram, to a set of fuzzy rules to 
extract the resilience concept (literal and numeric representation), as shown in Figure 3. 

 
Figure 3. Proposed Model representation. 

3.2. The Fuzzy Inference System 
A fuzzy inference system (FIS) was defined and where the Mamdani approach was 

adopted [42]. Such a model involves three main components or phases: fuzzification, in-
ference and defuzzification. Therefore, the tuplet of crisp numbers of the input parameters 
(𝐿ത and 𝑇ത) are transformed into a fuzzy set (T* and q*, respectively). In the same way, the 
output variable and resilience (R*) also correspond to a fuzzy variable.  

In order to fuzzify those values, and with the aim to test different configuration of 
the fuzzy-based system, several alternative strategies and fuzzy systems structures were 

Figure 2. Flowsheet between RBD-based Monte Carlo simulation and Fuzzy Resilience Indicator.

From these experiments, several scenarios can be analysed, obtaining for each of them
a time series with the system availability values. Considering those generated time series,
they may present n shocks or disruptive events, with each one including two terms which
represent two characteristic magnitudes: the loss or drop in functionality and the duration
of the recovery time, Li and Ti, respectively. From these n tuples, the average values of
each parameter corresponding to the series of data analysed are obtained: L and T. These
two parameters correspond to crisp numbers, which in order to evaluate the resilience
condition of the system, must be transformed into linguistic concepts.

As it was mentioned earlier, L and T constitute the inputs for the fuzzy system that
allows for the assessment of the resilience of the system. In summary, information flows
from the system representation, using reliability block diagram, to a set of fuzzy rules to
extract the resilience concept (literal and numeric representation), as shown in Figure 3.
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3.2. The Fuzzy Inference System

A fuzzy inference system (FIS) was defined and where the Mamdani approach was
adopted [42]. Such a model involves three main components or phases: fuzzification,
inference and defuzzification. Therefore, the tuplet of crisp numbers of the input parameters
(L and T) are transformed into a fuzzy set (T* and q*, respectively). In the same way, the
output variable and resilience (R*) also correspond to a fuzzy variable.

In order to fuzzify those values, and with the aim to test different configuration of
the fuzzy-based system, several alternative strategies and fuzzy systems structures were
implemented, tested and compared. The best two systems are presented in this paper.
The difference between these two strategies essentially lies in the number of terms or
fuzzy variables that explain the two input variables and the output variable. That is, two
alternative sets of rules were generated that consider 3 and 5 terms for each variable. In the
case of the rules that deals with three fuzzy linguistic terms, Tables 2–4 show the intervals
and the respective membership functions:
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Table 2. Functionality drop membership functions with three terms.

Functionality Drop Function Type Parameters

High trapmf [0 0 0.2 0.25]
Medium trimf [0.2 0.3 0.4]

Low trapmf [0.35 0.4 1 1]

Table 3. Recovery time membership functions with three terms.

Recovery Time Function Type Parameters

Short trimf [0 0 0.2]
Long trimf [0.15 0.3 0.4]

Very_Long trimf [0.35 1 1]

Table 4. Resilience level membership functions with three terms.

Resilience Level Function Type Parameters

Not_Resilient trimf [0 0.2 0.4]
Intermediate trimf [0.3 0.5 0.7]

Resilient trimf [0.6 0.8 1]

Since the objective is to translate the input variables into a measure of resilience (a
fuzzy measure by itself), and this transformation is defined on the basis of a set of inference
rules, the rules adopted in this study to relate the inputs and output are shown in Table 5.

Table 5. Fuzzy rules using three terms for each variable.

¯
L

¯
T R

High Short Resilient
High Long Resilient
High Very Long Intermediate

Medium Short Resilient
Medium Long Intermediate
Medium Very Long Intermediate

Low Short Intermediate
Low Long Not Resilient
Low Very Long Not Resilient

In the case of the rules that deals with five fuzzy linguistic terms, Tables 6–8 show
the intervals and the respective membership functions. The rules adopted to relate the
inputs and output, considering five linguistic terms in the case of each variable, are shown
in Table 9.

Table 6. Functionality drop membership functions with five terms.

Functionality Drop Function Type Parameters

High trapmf [0 0 0.2 0.3]
Medium_High trimf [0.2 0.35 0.5]

Medium trimf [0.34 0.5 0.65]
Medium_Low trimf [0.5 0.65 0.8]

Low trapmf [0.7 0.8 1 1]



Mathematics 2022, 10, 1677 8 of 16

Table 7. Recovery time membership functions with five terms.

Recovery Time Function Type Parameters

Short trimf [0 0 0.3]
Medium_Short trimf [0.2 0.35 0.5]

Long trimf [0.35 0.5 0.65]
Medium_Long trimf [0.5 0.65 0.8]

Very_Long trimf [0.7 1 1]

Table 8. Resilience level membership functions with five terms.

Resilience Level Function Type Parameters

No_Resilient trimf [0 0.15 0.3]
No_Res_Low trimf [0.2 0.35 0.5]

Medium trimf [0.35 0.5 0.65]
Inter_Resil trimf [0.5 0.65 0.8]
Resilient trimf [0.7 0.85 1]

The rules adopted in this study to relate the inputs and output considering variables
represented by five linguistic terms each are shown in Table 9.

Table 9. Fuzzy rules using five linguistic terms for each variable.

L T R

1. High Short Resilient
2. High Medium_2 Resilient
3. High Long Inter_Resil
4. High Medium_3 Inter_Resil
5. High Very_Long Medium
6. Medium_High Short Resilient
7. Medium_High Medium_2 Inter_Resil
8. Medium_High Long Inter_Resil
9. Medium_High Medium_3 Medium
10. Medium_High Very_Long Medium
11. Medium Short Inter_Resil
12. Medium Medium_2 Medium
13. Medium Long Medium
14. Medium Medium_3 No_Res_Inter
15. Medium Very_Long No_Res_Inter
16. Medium_Low Short Medium
17. Medium_Low Medium_2 Medium
18. Medium_Low Long No_Res_Inter
19. Medium_Low Medium_3 No_Res_Inter
20. Medium_Low Very_Long No_Resilient
21. Low Short Medium
22. Low Medium_2 No_Res_Inter
23. Low Long No_Res_Inter
24. Low Medium_3 No_Resilient
25. Low Very_Long No_Resilient

To establish a point of comparison with the results produced by both fuzzy systems,
resilience values were calculated for each series using the Cai et al. model [6]. This proce-
dure was implemented using MATLAB code. This code initially reads the availability data
set from the RAM analysis. Then, the program automatically detects the disruptive events
in the series and identifies the representative values of each of them, as shown in Figure 3,
which calculates the mean values of these parameters and inputs such values to the fuzzy
inference base. The output fuzzy value corresponding to resilience is obtained. Finally, the
resulting output of the fuzzy inference model can be transformed into a crisp output (In
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this approach, the defuzzification method maps convex crisp sets to their centroid. The x
coordinate of the centroid corresponds to the defuzzified value). Alternatively, the output
may remain as a fuzzy concept and be used as a linguistic term (Figure 4).
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In the next section, we demonstrate the use and validity of the proposed system
through an example based on a real system. The structure and reliability and maintainability
values of the components of that system served as the basis for the RAM analysis, the
Monte Carlo experiments, and finally, in order to obtain the time series with the systemic
availability values.

4. Case Study

The purpose of this section is to validate the proposed model performing a case study.
This study is based on a set of three fleets which operate in a mining operation located
in northern Chile. In its open pit operation, there are three different types of equipment:
Drilling fleet, Loading fleet and Truck fleets.

For the drilling process, the following five separate units (represented by the D letter)
are considered, according to three types of drilling machines:

• Drilling Machine D1 (2 units)
• Drilling Machine D2 (2 units)
• Drilling Machine D3 (1 units)

The loading process is carried out using three electric shovels of the same type and
condition (represented by the S01, S02 and S03 codes). Finally, the ore transport system is
carried out by 43 trucks (represented by the H letter) separated into three distinct sub-fleets:

• Truck A (34 units)
• Truck B (6 units)
• Truck C (3 units)
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As it was described before, to assess the resilience of a system or equipment, one
must take into consideration time series with the availability of either an equipment, sub
system or of an entire system. That series usually contains a set of n disruptive events or
loss of functionality over a given period of time. To start the analyses, we use the time
series of actual availability at fleet level consisting of 17 consecutive months. Subsequently,
a series of XXX experiments was generated including modifications to the maintenance
strategies of critical equipment. Also, in order to measure the effect of varying redundancy
levels on systemic resilience, experiments were generated where the number of such pieces
of equipment was modified. In Figure 5, it is possible to observe one sample series that
contains the monthly average availability behavior of the entire fleet. Such a series was
created considering the actual values of reliability (MTBF) and maintainability (MTTR) of
each piece of equipment extracted from the historic records of the equipment.
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As can be seen in the time series depicted in Figure 5, the system’s availability has four
shocks that affect the functionality at the system level (The arrows show four reductions
in availability and their respective recoveries). Regarding Figure 5, one can say that the
resilience can be expressed by the following parameters: Ai

2, Ai
3, ti

2 y ti
3, with i = 1, . . . , 4.

The values are used to perform the resilience assessment according to Table 10.

Table 10. Availability and time values used to perform the resilience assessment.

Shock (i) Ai
2 Ai

3 ti
2 ti

3

1 0.5114 0.7726 3 1
2 0.7113 0.8198 7 5
3 0.7952 0.7382 12 10
4 0.8123 0.7643 15 13

Using the data originated by the detected shocks along the time series, average avail-
ability loss and average duration for every recovery processes were computed. Using
the fuzzy rules listed in Table 1, we obtained the output value, as shown in Figure 4. In
parallel, and in order to compare the accuracy of the values calculated through the fuzzy
rules, these values, Ai

2, Ai
3, ti

2 and ti
3 were used to calculate resilience using Cai’s model

(Equation (2)).
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5. Results Discussion

As per the aforementioned and aiming at the validation of the results generated from
the fuzzy based proposed approach, we have compared the resilience values obtained by
Cai’s model [6] with the defuzzified values produced by the three- and five-rule fuzzy-
based inference systems. The resilience values using Cai’s model were extracted from
the work published by Durán, Aguilar and Capaldo [43] and calculated from the model
expressed by Equation (1) (Figure 3). Those values represent the systemic resilience ob-
tained from the availability time series generated in a series of Monte Carlo-based-RAM.
Such analysis includes different maintenance strategies (preventive actions with different
frequencies and levels of sophistication) and some experiments generated from new fleet
configurations (different levels of redundancy).

As a premise for the development of this part of the study, and in order to prioritize
some pieces of equipment, a criticality analysis was initially performed. Considering
the results of the RAM (reliability, availability and maintainability) analysis, the critical
equipment in each sub-fleet was identified. This hierarchisation was carried out using the
Jack Knife diagram [44]. Through the use of such technique, it was possible to identify, in
decreasing order, which pieces of equipment have the greatest impact at system level. That
impact is understood in terms of system downtimes and unavailability. The purpose of
this approach is to be able to focus efforts and analysis on that equipment, with the aim
of increasing their availability over time by adjusting preventive maintenance strategies.
Table 11 shows the MTBF and MTTR values, main reliability and maintainability indicators,
as well as failure frequencies and total times for general corrective maintenance for each of
the considered devices.

Table 11. Maintainability and reliability data of critical equipment.

Device Corrective Maint Duration [h] Frequency [n] MTBF [h] MTTR [h] Quadrant

D07 6691.00 707 3.10 9.46 AC CR
D05 4786.86 669 4.71 7.15 AC CR
D08 4138.20 361 17.84 11.46 AC
H25 2691.52 545 10.31 4.93 CR
S02 1571.08 945 7.75 1.66 CR
H34 1345.68 393 20.20 3.42 LC
H43 1340.14 349 22.88 3.83 LC
H31 1299.42 398 19.76 3.26 LC
H04 1143.93 418 17.55 2.73 LC

AC: Acute; CR: Chronic; LC: Low Criticality.

The Jack Knife Diagram for all critical devices is presented below (Figure 6).
With regard to the Figure 6 and the values shown in Table 12, we can see that the

drilling machines have the greatest impact at the system level, mainly the D07 and D05,
as both present reliability and maintainability problems, i.e., they fail more frequently
and their average repair times are high. In the case of the D08 drill, it presents only
maintainability problems as it is the highest among all the pieces of equipment. In the
chronic quadrant (CR), the devices H25 and S02 appear, both with reliability problems
because they fail more frequently, particularly the electric shovel S02, which suffered
945 unplanned stoppages.
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In the following paragraphs, it is shown how the proposed model can be used to
evaluate, from a resilience point of view, various scenarios including different preventive
maintenance strategies (expressed by different frequencies and different durations). Also,
some comparison experiments were developed to assess how changes in the topological
structure of the system impact the resilience of the system.

Different types of experiments were put forward for evaluation. With these experi-
ments, the aim was to measure the behavior of the system resilience regarding alterations in
maintenance strategies in a set of critical equipment. Such modifications were implemented
by varying the frequency and complexity (expressed by different preventive interventions’
durations) of preventive interventions in such critical equipment.

As it was mentioned before, a number of maintenance strategies applied to critical
equipment were simulated. This allowed the verification of the feasibility of using the
fuzzy approach to express the resilience performance of the system. These hypotheses can
be divided into three groups:

(i) The establishment of a simultaneous preventive maintenance plan for the nine most
critical pieces of equipment within the fleet. The preventive interventions were
designed with a duration of 6 h. In the experiments, these interventions were applied
with three different frequencies (3, 6 and 9 months). This group is called Exp_1.

(ii) Preventive interventions on each of the critical equipment items separately, with three
different durations (6, 9 and 12 h) and the same frequencies as mentioned in paragraph
i. The corresponding experiments were grouped in a category called Exp_2.

(iii) Finally, some experiments were conducted to assess the effect in systemic resilience
applying a redundancy increment to the critical assets by incorporating, separately,
one piece of equipment to each one of the sub-fleets of drilling machines. This was
intended to measure the behaviour of the resilience index at the fleet level system as a
whole. These experiments are grouped into the Exp_3 category.

To assess the system availability behaviour according to each defined scenario (i, ii
and iii), Monte Carlo experiments were run with 1000 iterations for each scenario. RAM
analysis and Monte Carlo experiments were performed with the R-MES software suite. In
each experiment, a new set of monthly system-level availability data was generated for
each scenario. With each data set, the proposed fuzzy-based model was applied.

In order to perform a correct comparison of values, the results obtained through the
analytical model were normalised and with this, these results are between 0 and 100% (the
same scale as the defuzzified values of the output of the two proposed fuzzy systems). The
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resiliency values obtained from two fuzzy rule bases, with three and five linguistic terms
(FUZZY_3 and FUZZY_5, respectively), were compared to the results obtained through
the use of Cai’s analytical. These comparisons are expressed by relative percentage error
measures. The data was obtained through 36 simulation experiments. Table 12 shows the
relative error values (%) for both when compared with values obtained from Cai’s model
(EXP_1 and EXP_2).

Table 12. Relative errors among defuzzified values and the values obtained through an analytical
model (EXP_1 and EXP_2).

FUZZY 3 mf FUZZY_5 mf

Frequencies Frequencies

Equip. 3 Months 6 Months 9 Months 3 Months 6 Months 9 Months
EXP_1 System 3% 11% 34% 2% 5% 10%

EXP_2
Prev. Maint.
duration 6 h

D07 5% 33% 36% 5% 19% 15%
D05 2% 3% 12% 1% 2% 7%
D08 6% 2% 1% 3% 1% 0%
H25 2% 5% 7% 3% 5% 5%
S02 5% 36% 37% 5% 10% 17%
H34 11% 37% 11% 5% 14% 5%
H43 3% 33% 37% 2% 18% 14%
H31 31% 33% 31% 18% 27% 5%
H04 11% 17% 31% 5% 2% 6%

EXP_2
Prev. Maint.

duration 12 h

D07 33% 34% 1% 12% 29% 3%
D05 34% 0% 35% 11% 1% 13%
D08 0% 11% 34% 1% 5% 15%
H25 11% 2% 20% 5% 1% 4%
S02 5% 35% 3% 5% 26% 3%
H34 7% 35% 2% 2% 14% 1%
H43 6% 5% 36% 3% 2% 32%
H31 36% 4% 5% 14% 3% 4%
H04 34% 1% 7% 10% 1% 6%

EXP_2
Prev. Maint.

duration 18 h

D07 33% 34% 2% 9% 8% 1%
D05 4% 1% 35% 3% 0% 17%
D08 36% 36% 13% 28% 3% 3%
H25 36% 35% 4% 12% 12% 3%
S02 29% 1% 32% 6% 0% 9%
H34 0% 4% 35% 0% 4% 12%
H43 2% 4% 36% 1% 3% 11%
H31 1% 3% 6% 2% 2% 5%
H04 34% 3% 5% 11% 7% 3%

Table 12 was formatted as a thermal map to highlight the largest errors. This reveals
clearly that the smaller magnitude of the errors is generated by the fuzzy-based model
which operates with five linguistic terms for each variable. Thus, as can be seen in Table 12,
the FUZZY_5 model leads to closer results when compared to the values obtained by an
analytical model. In addition, the FUZZY_5 model has a lower dispersion of errors.

With regard to the inclusion of extra equipment to the drilling fleet, i.e., increasing
redundancy by adding equipment with the same reliability and maintainability characteris-
tics, it can be seen in Table 13 that the resilience values obtained by the two versions of the
fuzzy system are relatively small. In fact, the results obtained by the FUZZY_5 system are
much closer to the values obtained analytically, and do not exceed 2% of relative error.
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Table 13. Relative errors among defuzzified values and the values obtained through an analytical
model to assess increment in redundancy (EXP_3).

FUZZY_3 mf FUZZY_5 mf

EXP_3

Additional piece of D05 12% 2%

Additional piece of D07 2% 1%

Additional piece of D08 13% 2%

6. Conclusions

We have presented a decision support system that based on fuzzy reasoning and using
as a measure of system functionality time series containing the value of system’s availability
delivers the value of system resilience. This system allows estimating the value of resilience
as a result of having applied different maintenance strategies on individual equipment
or groups of them. In addition, the proposed system allows, through alterations in the
RBDs, which represent the system’s structure, to assess the impact on system’s resilience to
adding new equipment or removing existing ones from it.

The major difference between our proposal and previous works lies in that we will
define a fuzzy based resilience model that will allow the estimation of a highly engineered
system resilience regarding the system topology and dealing with uncertainty and fuzziness
of the operational parameters, besides the main convenience of using linguistic expressions
as a means of standardization in different levels of abstraction.

Regarding the managerial implications, the proposed model may be viewed as a
decision tool that will allow managers to map the relationships that may exist between
maintenance and operational strategies, different systems topologies, and perceptions
about disruptive events in complex engineering systems. Moreover, the model defined
will be used as a simulation-based optimization tool to solve real world problems and
sensibilization assessments.

In other words, whenever there is a new hypothesis about modifying the maintenance
strategy for a particular piece of equipment or set of them or altering the topology of the
system by adding new instances of a critical piece of equipment, the use has to perform the
following procedure: implement modifications in the system RBD by changes in the MTBF
and MTTR parameters of the equipment. Then, Monte Carlo experiments are performed to
generate the Availability series at the system level. With this new time series, the proposed
model is executed.

Changes made to the strategy and/or topology will express themselves, to a lesser or
greater degree, in the behaviour of the availability and therefore in the values of L and T.
These new values are entered into the fuzzy rule base from which a new fuzzy term (literal)
and value can be extracted, allowing the user to have an evaluation (confirmation) of
his hypothesis.

The use of the proposed model to estimate the behavior of the system resilience and
obtain optimized operational, maintenance and structural decisions constitutes the main
contribution of this work. Therefore, reliability, maintainability and availability metrics
are central elements of this research, all of them under different levels of abstraction and
aggregation and through a fuzzy perspective. No previous works have been devoted to the
tentative mapping of the effects of different strategies on the resilience of physical assets
and systems. The results show the usefulness of incorporating resilience aspects for driving
maintenance strategies of physical assets.
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4. Bukowski, L.; Werbińska-Wojciechowska, S. Using fuzzy logic to support maintenance decisions according to resilience-based
maintenance concept. Eksploat. Niezawodn. Maint. Reliab. 2021, 23, 294–307. [CrossRef]

5. Yang, B.; Zhang, L.; Zhang, B.; Wang, W.; Zhang, M. Resilience Metric of Equipment System: Theory, Measurement and Sensitivity
Analysis. Reliab. Eng. Syst. Saf. 2021, 215, 107889. [CrossRef]

6. Cai, B.; Xie, M.; Liu, Y.; Liu, Y.; Feng, Q. Availability-based engineering resilience metric and its corresponding evaluation
methodology. Reliab. Eng. Syst. Saf. 2018, 172, 216–224. [CrossRef]

7. Yodo, N.; Wang, P. Engineering resilience quantification and system design implications: A literature survey. J. Mech. Des. Trans.
ASME 2016, 138, 111408. [CrossRef]

8. Kammouh, O.; Zamani Noori, A.; Taurino, V.; Mahin, S.A.; Paolo Cimellaro, G.; Nishkian Professor of Structural Engineering,
E.; Hall, D. Deterministic and fuzzy-based methods to evaluate community resilience. Earthq. Eng. Eng. Vib. 2018, 17, 261–275.
[CrossRef]

9. Zadeh, L.; Aliev, R. Fuzzy Logic Theory and Applications: Part I and Part II; World Scientific Publishing: Singapore, 2018.
10. Holling, C.S. Resilience of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [CrossRef]
11. Negri, M.; Cagno, E.; Colicchia, C.; Sarkis, J. Integrating sustainability and resilience in the supply chain: A systematic literature

review and a research agenda. Bus. Strategy Environ. 2021, 30, 2858–2886. [CrossRef]
12. Mena, M. El cambio climático y la infraestructura básica. La Tercera. 26 February 2021. Available online: https://www.latercera.

com/opinion/noticia/el-cambio-climatico-y-la-infraestructura-basica/4AHKAOFRMNFX3HUA4W572WUKAU/ (accessed on
16 March 2022).

13. World Business Council for Sustainable Development. Business Climate Resilience: Resilience Thriving through the Transformation;
World Business Council for Sustainable Development: Geneva, Switzerland, 2019.

14. Van der Merwe, S.E.; Biggs, R.; Preiser, R. A framework for conceptualizing and assessing the resilience of essential services
produced by socio-technical systems. Ecol. Soc. 2018, 23, 12. [CrossRef]

15. Linkov, I.; Eisenberg, D.A.; Plourde, K.; Seager, T.P.; Allen, J.; Kott, A. Resilience metrics for cyber systems. Environ. Syst. Decis.
2013, 33, 471–476. [CrossRef]

16. Sun, W.; Bocchini, P.; Davison, B.D. Resilience metrics and measurement methods for transportation infrastructure: The state of
the art. Sustain. Resil. Infrastruct. 2020, 5, 168–199. [CrossRef]

17. Mottahedi, A.; Sereshki, F.; Ataei, M.; Qarahasanlou, A.N.; Barabadi, A. Resilience estimation of critical infrastructure systems:
Application of expert judgment. Reliab. Eng. Syst. Saf. 2021, 215, 107849. [CrossRef]

18. Bishop, M.; Carvalho, M.; Ford, R.; Mayron, L.M. Resilience is more than availability. In Proceedings of the Proceedings New
Security Paradigms Workshop, Marin County, CA, USA, 12–15 September 2011.

19. Albasrawi, M.N.; Jarus, N.; Joshi, K.A.; Sarvestani, S.S. Analysis of reliability and resilience for smart grids. In Proceedings of the
Proceedings—International Computer Software and Applications Conference, Vasteras, Sweden, 21–25 July 2014.

20. Cholda, P.; Tapolcai, J.; Cinkler, T.; Wajda, K.; Jajszczyk, A. Quality of resilience as a network reliability characterization tool. IEEE
Netw. 2009, 23, 11–19. [CrossRef]

21. Shin, S.; Lee, S.; Judi, D.R.; Parvania, M.; Goharian, E.; McPherson, T.; Burian, S.J. A systematic review of quantitative resilience
measures for water infrastructure systems. Water 2018, 10, 164. [CrossRef]

22. Annarelli, A.; Battistella, C.; Nonino, F. A framework to evaluate the effects of organizational resilience on service quality.
Sustainability 2020, 12, 958. [CrossRef]

23. Tao, Y.-J.; Lin, Y.-S.; Lee, H.-S.; Gan, G.-Y.; Tu, C.-S. Using a Product Life Cycle Cost Model to Solve Supplier Selection Problems in
a Sustainable, Resilient Supply Chain. Sustainability 2022, 14, 2423. [CrossRef]

24. Bourouni, K. Availability assessment of a reverse osmosis plant: Comparison between Reliability Block Diagram and Fault Tree
Analysis Methods. Desalination 2013, 313, 66–76. [CrossRef]

25. Arsovski, S.; Putnik, G.; Arsovski, Z.; Tadic, D.; Aleksic, A.; Djordjevic, A.; Moljevic, S. Modelling and enhancement of
organizational resilience potential in process industry smes. Sustainability 2015, 7, 16483–16497. [CrossRef]
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