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Abstract: The popularity of cloud computing has fueled the growth in multiprovision cloud service
composition (MPCSC), where each cloud service provider (CSP) can fulfill multiple tasks, i.e., offer
multiple services, simultaneously. In the MPCSC, users would rather disclose some private data for
more benefits (e.g., personalized services). However, the more private data is released, the more
serious the privacy risk faced by users. In particular, the multiservice provision characteristic of
MPCSC further exacerbates the privacy risk. Therefore, how to balance the privacy risk and benefit
in service selection for MPCSC is a challenging research problem. In this paper, firstly we explore the
service selection problem of balancing privacy risk and benefit in MPCSC (SSBM), then we propose an
improved Kuhn–Munkres (KM) algorithm solution to the SSBM problem. Furthermore, we conduct
a series of simulation experiments to evaluate the proposed approach. The experimental results show
that the proposed approach is both efficient and effective for solving the SSBM problem.

Keywords: cloud computing; data security; privacy risk; personalized services; service selection
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1. Introduction

Cloud computing has been widely employed as a promising paradigm for building
complex distributed software systems by composing existing cloud services (CSs) in the
form of business processes [1,2]. With the proliferation of cloud, more and more companies
are seeking to deploy their applications in the cloud [3]. According to Garner [4], the global
cloud services market will exceed 360 billion US dollars in 2022 and maintain rapid growth.
At the same time, a large number of cloud service providers (CSPs) with the ability to
provide multiple CSs are constantly emerging on the web [5,6]. For example, the leading
CSPs such as Microsoft Azure and IBM Cloud can offer nearly 200 types of CSs, and Tencent
Cloud can offer more than 300 types of CSs.

To reduce costs, increase application flexibility and avoid vendor lock-in, the require-
ments of cloud users are usually fulfilled by multiprovision cloud service composition
(MPCSC), where multiple CSPs provide services for the composition and a CSP can offer
more than a service [6–8]. In MPCSC, the CSPs need user data to deliver services, study
user profiles, and provide personalized services. User data is a crucial resource for CSPs,
which can help them understand user preferences and behaviors, thereby improving user
experience and enhancing service competitiveness [9]. For users, disclosing personal data
to CSPs has both benefit and risk [10,11]. In terms of benefits, users can obtain more
convenient services, and reduce transaction time and search costs. For instance, JD.com
uses customers’ personal data to provide them with one-click shopping and personalized
product recommendations. In terms of risks, users lose control over their personal data and
even suffer from data abuse risks, such as unauthorized data use and sharing, consistent
deceptive advertising, spamming, online stalking, etc. [12,13]. In fact, the willingness
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and degree to which users disclose personal data to CSPs depends on their assessment of
privacy risks and potential benefits [14].

Researchers have recently explored the relationship between users’ data disclosure
behavior and their privacy concerns. Most of these works explain the concept of the privacy
calculus, which focuses on the trade-off between the costs (i.e., privacy risks) and benefits of
private data disclosure [11,15,16]. The main premise of the privacy calculus is that despite
strong privacy concerns, users will disclose private data if the benefits they gain justify the
cost of losing privacy. The privacy calculus perspective has been widely applied in various
scenarios, such as e-commerce [11,14], mobile services [17], and healthcare [18], etc.

In a typical MPCSC, the user’s requests (i.e., tasks) need to be assigned to multiple
candidate CSs, which utilize the collected user data to perform the tasks and provide
personalized services. On one hand, users hope that the privacy risks of disclosing data
to these CSs are as small as possible, and on the other hand, they also expect the benefits
of personalized services provided by these CSs to be as large as possible. Therefore, how
to select appropriate CSs for users is one of the most important issues in MPCSC. In this
paper, we attempt to provide a service selection mechanism that enables users to select a
set of candidate CSs with the greatest overall utility by balancing privacy risk and benefit.
Actually, it is very challenging to design such a service selection mechanism in MPCSC. We
summarize three major challenges.

Firstly, users have different privacy preferences for different private data, and each
CS requires different private data and provides corresponding data usage policies. Thus,
the CS’s privacy policies may not fully satisfy the user’s privacy requirements, resulting
in a spectrum of data abuse risks. Moreover, due to the cloud’s openness and virtu-
alization, the CSPs are normally dispatched in different locations and present variable
trustworthiness [5,19]. Once the users’ sensitive data is disclosed to some low-trust CSPs,
users will face more serious privacy leakage risk. In order to help users to select a set of
candidate CSs with low privacy risk, a proper privacy risk assessment model that can
comprehensively consider the user’s privacy requirements, the CS’s privacy policies, and
the CSP’s degree of trustworthiness is needed.

Secondly, since different CSs have different needs for the private data of a user, there
are also differences in the quality of the personalized services they provide to the user.
It is generally believed that the more private data a CS collects, the more accurate the
personalized services it provides to the user [20,21]. Therefore, it needs to establish a
mapping relationship between the number of disclosed private data and the benefit of
personalized services, and to be able to quantitatively evaluate the personalized benefits
provided by CSs.

Thirdly, although the multiservice provision of CSPs really extends the capacity of
candidate CSs and improves the system utility of cloud service composition (CSC) [2], it
also further exacerbates the risk of privacy breaches. When a CSP offers CSs for different
tasks in a CSC, it may collect the private data of a user, and use data mining and machine-
learning technologies to acquire formerly hidden sensitive information [22,23]. For instance,
a CSP can offer a disease prediction service, using a user’s genetic information, which does
not expose the person’s identity. Simultaneously, it can also offer the doctor appointment
service through the user’s ID and phone number without using other information. However,
a combination of these data can unveil the user’s identity and disease. To reduce the
inference of privacy information by CSPs, it is necessary to limit the number of services
provided by each CSP. In a MPCSC, each of the user’s tasks needs to select a suitable
candidate service for execution, and each CSP can provide candidate services for multiple
tasks. Therefore, the service selection issue of balancing privacy risk and benefit in MPCSC
is an n-to-1 task assignment problem. Especially when involving the constraints on the
number of service offering, finding the optimal solution for such task assignment problem
is nontrivial.

Recently, many research works have focused on the problem of service selection in
MPCSC. These works consider the QoS correlation between services [2,24,25], the conflict
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and cooperation relationship between services [7], and the requirements of location, cost,
reliability, security, and so on [8,26]. They mainly select a set of optimal candidate services
from the perspective of satisfying QoS and resource constraints, but most of them ignore
the users’ privacy requirements. Therefore, how to effectively protect user privacy is still a
key issue to be overcome in MPCSC service selection.

In the research of privacy-preserving service composition and selection, some useful
approaches were proposed to control the usage and disclosure of private data. However,
these approaches still have some shortcomings. Firstly, traditional approaches mainly
focus on privacy requirements such as the data sensitivity degree [27,28], the purposes
of using data [28–30], and the data retention time [27,31,32], but rarely consider the data
storage location requirements. In a distributed cloud service collaboration environment,
unrestricted data storage locations will lead to serious privacy leakage risks [33]. In
addition, these approaches also rarely support quantitative matching of privacy policies.
Hence, it is difficult for traditional approaches to accurately evaluate the privacy risks of
cloud services. Secondly, most of these works merely regard the service selection from
the perspective of privacy risk [34,35], while ignoring the potential benefit of private data
disclosure. Although work [11] has studied the issue of e-commerce service selection that
balances the tradeoffs of privacy cost and personalized benefit, they only considered single
service selection. Actually, the composite service selection has higher complexity than
the single service selection. Moreover, the benefit model in [11] does not consider the
correlation between the quality of personalized service and the number of private data.
Thirdly, few of these works consider the multiservice provision characteristic of MPCSC.

In our previous work [6], the privacy-regulation-aware service selection problem for
MPCSC has been considered. However, although it can support user privacy requirement
modeling and privacy policy matching in MPCSC, it can only qualitatively determine
whether privacy policies match privacy requirements, and cannot quantitatively calculate
the degree of dissatisfaction between them. Second, it lacks a mechanism to quantify the
privacy risks and personalized benefits of CSs. Third, its goal is to select a set of candidate
CSs with minimal privacy disclosure cost for users. Hence, it is still insufficient to address
the service selection issue that balances privacy risk and benefit.

In this work, we quantitatively evaluate the privacy risks and personalized benefits of
the CSs and explore the service selection problem that balances privacy risk and benefit
in MPCSC (SSBM). The SSBM problem aims to select suitable candidate CSs for multiple
tasks by balancing privacy risks and benefits, so that the overall utility of the selected CSs
can be maximized while the user’s privacy requirements can be satisfied. Such a problem
is quite different from the traditional service selection problem, because it comprehensively
considers the privacy risks of the user, the personalized benefits provided by the CSs, and
the multiservice provision characteristics of CSPs. Therefore, existing approaches are not
applicable to this new problem. As far as we know, this work is the first to study the
SSBM problem.

To address the SSBM problem, we propose a service selection approach that balances
privacy risk and benefit in MPCSC. Specifically, we first quantitatively evaluate the privacy
risks and personalized benefits of the CSs. Then, we formulate the SSBM problem as an
optimization problem with multiple privacy constraints. Furthermore, since the SSBM
problem is an n-to-1 task assignment problem with constraints on the number of service
offerings and has high complexity, we propose an improved KM algorithm [36,37] solution
to solve the problem. The main contributions of this paper are as follows:

(1) An integer programming optimization model is used to formulate the SSMB problem,
which takes into account the privacy risks of the user, the personalized benefits
provided by the CSs, and the multiservice provision characteristics of CSPs.

(2) A privacy risk model is proposed to measure the dissatisfaction degree between a
CS’s privacy policies and the user’s privacy preferences, and the CS’s privacy risk is
evaluated by combining privacy policy dissatisfaction degree, private data sensitivity
degree, and CSP’s trust degree.
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(3) A benefit model is put forward to measure the benefit of personalized service provided
by CSs, which employs sigmoid function to model the nonlinear relationship between
the quality of personalized service and the number of private data required.

(4) A solution using the improved KM algorithm is designed to solve the SSBM problem.
The experimental results demonstrate that the proposed approach can significantly im-
prove the risk–benefit ratio and performance compared with benchmark approaches.

The rest of this paper is structured as follows. Section 2 describes the motivation and
scenario of the SSMB problem. Section 3 formally specifies the SSMB problem. Section 4
presents a solution to solve the SSMB problem. The experiments and results are illustrated
in Section 5. The related work is reviewed in Section 6. Finally, the conclusion and further
works are given in Section 7.

2. Motivation and Scenario

In this section, we demonstrate the relevant characteristics of the SSBM problem with
an online pharmacy CSC example. Bob, a hypertensive patient, wishes to purchase daily
blood pressure medication through an online pharmacy. The online pharmacy CSC consists
of four tasks that are executed in sequence, including prescription checking, medicine ordering,
payment, and shipping (t0–t3). In this example, a total of four CSPs (CSP0–CSP3) are involved,
each of which can offer candidate CSs for multiple tasks, as shown in Table 1.

Table 1. The CSPs and their candidate CSs.

CSPs
Tasks

t0 t1 t2 t3

CSP0 CS00 CS01 CS02
Not Available

(N/A)
CSP1 N/A CS11 CS12 N/A
CSP2 CS20 N/A CS22 CS23
CSP3 CS30 CS31 N/A CS33

When Bob uses the pharmacy CSC to purchase medicines, he needs to disclose a
set of private data to the participating CSs of the pharmacy CSC, e.g., name, ID, address,
gender, age, phone number, zip code, bank card number, password, insurance number,
prescription, medicines, diagnosis results, allergic history, medical history, medication
history, occupation, salary, delivery location, delivery time, and so on. Bob finds that
each candidate CS requires not only a set of necessary private data to complete the task
function, but also a set of unnecessary private data to provide some personalized services.
Meanwhile, Bob also finds that for different candidate CSs that perform the same task, they
may require different private data. The private data required by each candidate CS and the
personalized services provided are shown in Table 2.

To better illustrate the scenario, Bob presents several reasonable requirements for
selecting candidate CSs. First, in order to protect data privacy, Bob expects to select a set
of candidate CSs with the lowest possible privacy disclosure risks to perform the tasks.
Second, in order to obtain more high-quality personalized services, Bob hopes to select a set
of candidate CSs that can provide the highest possible personalized benefits by sacrificing
some private data. Third, in order to reduce the aggregation and inference of private data
by the CSPs, Bob also wants to limit the maximum number of services that the CSP can
provide simultaneously.

In order to effectively solve the problem of service selection that balances privacy
risk and benefit, Bob requests a cloud service broker, CSB, to complete this task. After
analyzing Bob’s request, the CSB learns that the service selection problem is an n-to-1 task
assignment problem and can be quickly solved by the KM algorithm [36,37]. However, the
CSB encounters some challenges in applying the KM algorithm to assign tasks. The first
and most important challenge is how to quantify the privacy risk of a CS, which is highly
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dependent on the privacy requirements of the user and the privacy protection capability of
the CSP. Another challenge is how to quantify the personalized benefit provided by a CS,
which depends on the number of private data required by the CS. To this end, we provide
the following solutions.

Table 2. The input data and personalized services of the candidate CSs.

Candidate
Services

Inputs
Personalized Services

Necessary Private Data Unnecessary Private Data

CS00 prescription allergies history, medication history personalized medicine

CS01
name, address, phone number,

medicines, checking results age, gender, occupation, salary medicine recommendation

CS02
bank card number, password,

reservation code name, phone number personalized payment

CS11
insurance number, phone number,

medicines, checking results medical history, medication history medicine recommendation

CS12
name, ID, phone number, bank card

number, reservation code address, zip code personalized payment

CS20 prescription diagnosis results personalized medicine

CS22
bank card number, password,

reservation code phone number personalized payment

CS23
name, phone number, zip code,

payment code delivery location personalized delivery

CS30 prescription
allergies history, medical history,

medication history, diagnosis
results

personalized medicine

CS31
ID, phone number, address,
medicines, checking results age, gender, medical history medicine recommendation

CS33
name, gender, address, phone

number, payment code delivery time personalized delivery

The prerequisite for quantifying the CS’s privacy risk is to choose the risk measurement
indicators. For this reason, through relevant research and analysis [27,35], we empirically
divided the measurement indicators of privacy risk into three main criteria: the sensitivity
degree of the data, the trust degree of the CSP, and the degree of the user’s dissatisfaction
regarding the gap between the CS’s privacy policies and the user’s privacy preferences.
Specifically, the user specifies a set of privacy preferences for different private data, such
as the sensitivity degree of the data, the purposes of using the data, the storage locations
of the data, and the retention time of the data. Correspondingly, each CSP also provides
a set of data usage policies for its CSs. When the CS’s data usage policies cannot satisfy
the user’s privacy preferences, the CS’s provider may illegally use the user’s private data,
resulting in serious privacy risks. The greater the degree of dissatisfaction, the greater the
privacy risk [27]. In addition, because each piece of private data has a different sensitivity
degree and each CSP also has a different trust degree, the disclosure of more highly sensitive
private data to CSs provided by low-trust CSPs will cause users to face more serious privacy
risks [6,38]. Hence, we comprehensively measure the above three indicators through a
privacy risk assessment process, and quantify the risk value and normalize it to a range of
0 to 1, where 0 means no risk at all, while 1 means the highest risk. For example, as shown
in Table 3, the trust degrees of CSP0 and CSP3 are 0.4 and 0.8, respectively. Although CS30
requires more sensitive data and greater privacy dissatisfaction than CS00, its privacy risk
may still be lower than CS00. Hence, Bob is willing to assign the order tasks to CS30.
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Table 3. The CSPs and their trust degrees.

CSPs CSP0 CSP1 CSP2 CSP3

Trust degrees 0.4 0.7 0.5 0.8

To quantify the personalized benefit provided by a CS, we model the correlation
between the quality of personalized service and the number of private data required. In
general, the more private data a CS requests from the user, the easier it is for the provider
to establish a complete user profile, which can improve the accuracy of personalized
services [20,21]. To this end, according to the number of private data required, we use a
benefit function to quantify the benefit value to a range of 0 to 1, and 0 means no benefit
at all, while 1 means maximum benefit. For example, because CS01 requires more private
data than CS11, CS01 can provide more benefits than CS11. Therefore, Bob is more willing
to assign the order tasks to CS01.

Finally, in order not to lose generality, we will illustrate the detailed evaluation process
for privacy risk and personalized benefit in Section 3, and conduct large-scale experiments
in Section 5.

Based on the pharmacy CSC example, the service selection architecture that balances
privacy risk and benefit for an MPCSC is shown in Figure 1.
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In Figure 1, the cloud service broker serves as a mediator between CSPs and cloud
users. It is in charge of discovering and selecting candidate CSs provided by different CSPs,
and generating an optimal CSC that satisfies the user’s requirements including functional
and nonfunctional. The nonfunctional ones typically comprise a set of quality-of-service
(QoS) parameters, e.g., reliability, availability, response time, price, and reputation, etc. Due
to that we are mainly concerned about the risk and benefit of private data disclosure in this
paper, we omit other QoS parameters for simplicity. However, the proposed architecture
and model can be applied to service selection problems with different QoS parameters.

The core components of the cloud broker include:

(1) Cloud service composition manager: it firstly receives the user’s requirements about
functions and privacy disclosure, and establishes a service composition plan that
describes tasks and their relationships. Then, it searches for candidate CSs for each task
from the cloud service repository. Furthermore, it coordinates a risk/benefit calculator,
privacy risk evaluator, and cloud service selector to assign suitable candidate CSs to
multiple tasks. Finally, it generates an optimal service composition solution.

(2) Risk/benefit calculator: It calculates the privacy risk and benefit of each candidate CS
based on the privacy sensitivity preferences of the user, the private data disclosure
information of the candidate CSs, and the trust degrees of the CSPs.

(3) Privacy risk evaluator: Based on the privacy risk information of the candidate CSs, it
evaluates whether each candidate CS satisfies the privacy risk threshold constraint.

(4) Cloud service selector: According to the results of the privacy evaluation, the privacy
risk and benefit information of the candidate CSs, the upper bound of service pro-
vision, and the privacy risk and benefit balance weight, the cloud service selector is
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in charge of solving the SSMB problem by assigning the suitable candidate CSs to
multiple tasks.

3. Problem Model

In this section, we first focus on defining the understanding of the privacy disclosure
requirements, MPCSC model, privacy risk model, and personalized benefit model by a
set of formal descriptions, and then clearly demonstrate a service selection problem that
balances privacy risks and personalized benefits is in MPCSC.

3.1. Privacy Disclosure Requirements

According to the provisions of the General Data Protection Regulation (GDPR) [33],
data consumers can only collect private data for legal purposes. At the same time, the
GDPR also requires data consumers not to use the collected data for other purposes, and the
storage location and retention time of the data must be consistent with those necessary for
the stated purpose. To comply with GDPR, each user specifies a set of privacy preferences
for their private data, e.g., the sensitivity of the data, the purpose of using the data, the
storage location of the data, and the retention time of the data. Correspondingly, each CSP
also provides a set of privacy policies for their CSs. The users expect CS’s privacy policies
to best satisfy their privacy preferences.

In addition, the users not only want to reduce the risks of privacy policy violation as
much as possible, but also want to obtain as many the benefits of as many personalized
services as possible, and different users have different preferences for the balance of privacy
risk and benefit. Furthermore, the users do not want to disclose too much private data to
a service, even if the service can provide particularly many benefits. Finally, in order to
reduce the collection of private data by each CSP, the users hope to select as few candidate
CSs as possible from the same CSP. In summary, the privacy disclosure requirements of the
users can be represented as follows:

(1) Private data set PD: PD = {pd0, pd1, . . . , pdp−1} expresses a set of private data of the
user, where pdl is the lth private data item, l ∈ {0, 1, . . . , p − 1}, p (=|PD|) represents
the number of private data in PD.

(2) Privacy sensitivity preferences SP: SP = {<pd0, sd0>, <pd1, sd1>, . . . , <pdp−1, sdp−1>}
expresses a set of privacy sensitivity preferences specified by a user, where <pdl, sdl >
is the lth privacy sensitivity preference, sdl ∈ [0, 1] represents the sensitivity degree of
pdl, 0 indicates insensitive, and 1 indicates particularly sensitive.

(3) Privacy disclosure preferences Pre = {pre0, pre1, . . . , prep−1} is a set of privacy pref-
erences specified by a user. Each privacy preference prel is defined as a tuple <pdl,
Pul, Lcl, rel>, where pdl ∈ PD is a private data item of the user, Pul specifies a set of
purposes for which the pdl can be used, Lcl specifies a set of locations where the pdl
can be stored, reg ∈ N specifies the longest time that the CSPs can retain pdl (in days).

(4) Balance weight w: w ∈ [0, 1] is a weight parameter that expresses the user’s preference
for balancing privacy risk and benefit, w = 0 means that the user is only concerned
about the privacy risk, while w = 1 means that the user is only concerned about the
benefit, and w ∈ (0, 1) means that the user considers the trade-off between privacy
risk and benefit.

(5) Privacy risk threshold rt: rt ∈ 0 ∪ R+ specifies the maximum privacy risk degree of
each service that a user can tolerate.

(6) The upper bound of service provision ub: ub ∈ N+ is the number of services for a CSP
to provide at most in a CSC. For example, ub = 1 informs that the CSP can deliver at
most one service in a CSC, and ub > 1 means that the CSP can offer multiple services
in a CSC.
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Example 1. The privacy disclosure requirements of a user for the pharmacy CSC are as follows:

PD = {name, ID, address, gender, age, phone number, zip code, bank card number, pass-
word, insurance number, prescription, medicines, diagnosis results, allergic history, med-
ical history, medication history, occupation, salary, delivery location, delivery time},
SP = {<name, 0.6>, <ID, 0.8>, <address, 0.6>, <gender, 0.5>, <age, 0.5>, <phone num-
ber, 0.7>, <zip code, 0.5>, <bank card number, 0.75>, <password, 0.75>, <insurance num-
ber, 0.7>, <prescription, 0.7>, <medicines, 0.7>, <diagnosis results, 0.7>, <allergic history,
0.65>, <medical history, 0.65>, <medication history, 0.65>, <occupation, 0.4>, <salary,
0.4>, <delivery location, 0.5>, <delivery time, 0.6>},
Pre = {pre0 = <name, {ordering, payment, shipping, contact, audit}, {DE, FR, UK, US, CN, AU},
60>,

pre1 = <ID, {ordering, payment}, {DE, FR, UK}, 30>, pre2 = <address, {ordering, payment,
shipping, contact}, {DE, FR, UK}, 30>,
pre3 = <gender, {shipping, medicine recommendations}, {DE, FR, UK, US, CN, AU}, 60>,
pre4 = <age, {medicine recommendations}, {DE, FR, UK, US, CN, AU}, 60>,
pre5 = <phone number, {ordering, payment, shipping, contact, audit}, {DE, FR, UK}, 30>,
pre6 = <zip code, {shipping, contact, audit}, {DE, FR, UK, US, CN, AU}, 60>, pre7 = <bank
card number, {payment}, {DE, FR, UK}, 30>,
pre8 = <password, {payment}, {DE, FR, UK}, 30>,
pre9 = <insurance number, {ordering}, {DE, FR, UK}, 30>,
pre10 = <prescription, {prescription checking, audit}, {DE, FR, UK}, 30>,
pre11 = <medicines, {ordering}, {DE, FR, UK}, 30>,
pre12 = <diagnosis results, {personalized medicine}, {DE, FR, UK}, 30>,
pre13 = <allergic history, {personalized medicine}, {DE, FR, UK}, 30>,
pre14 = <medical history, {medicine recommendations,personalized medicine}, {DE, FR, UK},
30>,
pre15 = <medication history, {medicine recommendations, personalized medicine}, {DE, FR,
UK}, 30>,
pre16 = <occupation, {medicine recommendations, personalized payment}, {DE, FR, UK, US,
CN, AU}, 90>,
pre17 = <salary, {medicine recommendations, personalized payment}, {DE, FR, UK, US, CN,
AU}, 90>,
pre18 = <delivery location, {personalized delivery}, {DE, FR, UK, US, CN, AU}, 90>,
pre19 = <delivery time, {personalized delivery}, {DE, FR, UK, US, CN, AU}, 90>},

w = 0.5,
rt = 2,
ub = 2.

3.2. MPCSC Model

A typical MPCSC includes multiple tasks and multiple CSPs, each CSP has a certain
trust degree and can provide candidate CSs for multiple tasks simultaneously.

Let m be the number of CSPs, n be the number of tasks, and o be the number of services
provided by a CSP. The set of cloud service providers are expressed as CSPs = {CSP0, CSP1,
. . . , CSPm−1}, where CSPi is the ith cloud service provider, i ∈ {0, 1, . . . , m − 1}. Each CSPi
has a certain trust degree tdi, where tdi ∈ [0, 1], 0 means completely untrusted, and 1 means
completely trusted, the higher the value of tdi, the stronger the privacy protection provided
by the CSPi.

In a cloud service composition environment, users are willing to deliver their tasks
and sensitive data to CSs, in reliance on the trust relationship established between users
and CSPs. In this paper, the trust degree of the CSPs is a key indicator for assessing the
privacy risk of CSs. The calculation of trust degree needs to consider the behaviors of CSPs,
such as security-related behaviors, QoS-related behaviors, etc.
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At present, many research efforts have proposed trust computing schemes for
CSPs [19,39,40]. As the trust computing scheme proposed in [40] has the advantages
of high speed, low overhead, and consideration of security-related behaviors, this paper
adopts this scheme to evaluate the trust degree of the CSPs. The trustworthiness computing
process of the scheme mainly consists of two phases: (1) It utilizes a set of distributed
monitoring agents to quickly perceive the trusted behavior of VMs in cloud environments.
Specifically, these agents monitor and collect the security-related and QoS-related behavior
of virtual machines. Security-related behavior indicators include authentication mecha-
nisms, authorization mechanisms, security protection mechanisms, and the number of
illegal access or scanning of sensitive ports, etc. QoS-related behavior indicators include
current CPU usage, memory usage, hard disk usage, average response time, and average
task success rate, etc. (2) Based on large-scale, real-time, and multidimensional behavior
data perceived by the distributed agents, it uses a combination of time window and time
decay function to compute the trustworthiness of VMs, which can effectively satisfy the
accuracy requirement of trustworthiness computing. To save space, please refer to [40] for
the detailed computing process.

The set of cloud services provided by CSPi is expressed as CSsi = {CSi0, CSi2, . . . ,
CSio−1}, where CSik is the kth CS provided by CSPi, k ∈ {0, 1, . . . , o − 1}. Each CSik includes
a set of inputs INik, a set of outputs OUTik, a set of functions FUNik, and provides a set of
privacy policies Polik = {pol0

ik, pol1
ik, . . . , polq−1

ik }, where q (=|PreR|) expresses the size of
the privacy policies Polik. Each privacy policy polh

ik is defined as a tuple <pdh
ik, Puh

ik, lch
ik,

reh
ik>, h ∈ {0, 1, . . . , q − 1}, where pdh

ik ∈ INik is a private data item for which the policy is
defined, Puh

ik is a set of purposes for CSik using pdh
ik, lch

ik is the location where the CSikstores
pdh

ik, reh
ik is the time for CSPi to retain pdh

ik (in days).
The tasks and their relationships in MPCSC are usually described by a cloud service

composition plan. Formally, it is represented as a directed acyclic graph G = (T, E), nodes
T = {t0, t1, . . . , tn−1} represent a set of tasks where tj is the jth task, j ∈ {0, 1, . . . , n − 1}, and
edges E = {(te, tg)|te, tg ∈ T} are a set of links between tasks, which represent data and task
dependencies. More specifically, each task tj in graph G has a set of candidate CSs provided
by different CSPs, and a suitable candidate CS needs to be selected to fulfill its function.

3.3. Privacy Risk Model

It is usually difficult to fully satisfy the user’s privacy preferences in the privacy
policies of a CS. Therefore, the CS’s provider may use private data without authorization,
resulting in serious privacy risks. Given CSik’s privacy policies Polik = {pol0

ik, pol1
ik, . . . ,

polq−1
ik } and the user’s privacy preferences Pre = {pre0, pre1, . . . , prep−1}, we first measure the

dissatisfaction degree between each privacy policy of CSik and the corresponding privacy
preference. More specifically, we calculate the dissatisfaction degree corresponding to the
purpose, location, and retention privacy attributes separately, as described in the following:

(1) Purpose dissatisfaction: The purpose attributes of both privacy policies and privacy
preferences are defined as a purpose set; we use the Jaccard coefficient [41] to measure
the distance between them. The degree of dissatisfaction with the purpose attribute is
measured by:

f d
pu(Puh

ik, Pul) =

 0, i f Puh
ik ⊆ Pul

1− |Puh
ik∩Pul |

|Puh
ik∪Pul | , otherwise

(1)

(2) Location dissatisfaction: The privacy preference specifies a set of locations where a
private data can be stored. We measure the degree of dissatisfaction with the location
by judging whether the location attribute of the privacy policy is in the location set
specified by the privacy preference, which is calculated by:
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f d
lc(lc

h
ik, Lcl) =

{
0, i f lch

ik ∈ Lcl
1, otherwise

(2)

(3) Retention dissatisfaction: The retention can be expressed as a numerical value. We
measure the degree of dissatisfaction with the retention by evaluating whether the
retention time of the privacy policy is less than or equal to the retention time of the
privacy preference, which is calculated by:

f d
re(reh

ik, rel) =

{
0, i f reh

ik ≤ rel
1, otherwise

(3)

As can be seen from (2) and (3), the degree of dissatisfaction with the location and
retention attributes takes values of 0 or 1 (satisfied or dissatisfied). If the measurement
result of any one of them is 1, it may cause the whole privacy policy to fail to satisfy the cor-
responding privacy preference. Hence, the degree of dissatisfaction with the gap between
the privacy policy polh

ik and the corresponding privacy preference prel is measured by:

f d
pol(polh

ik, prel) =

{
1, i f f d

lc(lc
h
ik, Lcl) = 1 ∨ f d

re(reh
ik, rel) = 1

f d
pu(Puh

ik, Pul), otherwise
(4)

where Puh
ik ∈ polh

ik, lch
ik ∈ polh

ik, reh
ik ∈ polh

ik, Pul ∈ prel, Lcl ∈ prel, and rel ∈ prel.
The National Institute of Standards and Technology (NIST) has defined risk as a

function of threat probability and impact [42]. In this paper, we adopt the same definition to
evaluate the privacy risk of a CS. Specifically, we determine the threat likelihood based on
the trust degree of the CSP, and consider the impact based on the sensitivity degree of the
disclosed private data and the degree of dissatisfaction with the privacy policy. The more
trustworthy the CSP, the lower the privacy risk, and conversely, the more sensitive the data,
the higher the privacy risk [6,43]. Meanwhile, the more private data disclosed, the higher
the privacy risk [28,38]. The private data disclosed to a service and the corresponding
sensitivity degree of these data can be expressed as:

(1) Privacy disclosure vector DVik: It is a vector of length p, where DVik[l] ∈ [0, 1] denotes
if the private data item pdl is disclosed to CSik, DVik[l] = 1 means yes and 0 no, i ∈ {0,
1, . . . , m − 1}, k ∈ {0, 1, . . . , o − 1}, l ∈ {0, 1, . . . , p − 1}. The DVik[l] is calculated by:

DVik[l] =
{

1, i f pdl ∈ INik
0, otherwise

(5)

(2) Privacy sensitivity vector SV: It is a vector of length p, where SV[l] = sdl denotes the
sensitivity degree of the lth private data item pdl, l ∈ {0, 1, . . . , p − 1}.

Given DVik, SV, f D
ik and tdi, the privacy risk of CSik provided by CSPi can be evaluated by:

f r
ik =

p−1

∑
l=0

DVik[l]× SV[l]× f d
pol(polh

ik, prel)× (1− tdi) (6)

where f r
ik ∈ 0 ∪ R+, f d

pol(polh
ik, prel) ∈ f D

ik .

Example 2. In Table 2, CS00 requests to disclose a set of private data of the user, i.e., prescription,
allergies history, medication history. CSP0

′s trust degree is illustrated in Table 3, i.e., td0 = 0.4.
The user’s privacy requirements for these data are shown in Example 1. Assumed that the privacy
policies specified by CSP0 for these data are as follows:

pol0
00 = < prescription, {prescription checking, audit, medical analysis, advertisement}, US, 90>

pol1
00 = < allergic history, {personalized medicine, medicine recommendations}, DE, 30>
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pol2
00 = < medication history, {medicine recommendations, personalized medicine, advertisement},

UK, 30>

For privacy policy pol0
00, its corresponding privacy preference is pre10, the degree of

dissatisfaction with the purpose attribute can be calculated as:

f d
pu

(
Pu0

00 , Pu10) = 1− 2
4
= 0.5

Likewise, the degree of dissatisfaction with the location attribute can be calculated as:

f d
lc

(
lc0

00, Lc10

)
= 1

In the same way, the degree of dissatisfaction with the retention attribute can be
calculated as:

f d
re

(
reh

ik, rel

)
= 1

Based on the degree of dissatisfaction with the purpose, location and retention at-
tributes, the degree of dissatisfaction with the gap between the policy pol0

00 and the prefer-
ence pre10 can be calculated as:

f d
pol

(
pol0

00, pre10

)
= 1

Similarly, the degrees of dissatisfaction with pol1
00 and pol2

00 can be calculated as:

f d
pol

(
pol1

00, pre13

)
= 0.5 f d

pol

(
pol2

00, pre15

)
= 0.33

The privacy disclosure vector of CS00 can be expressed as:
DV00 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0]
The privacy sensitivity vector for the pharmacy CSC can be expressed as:
SV = [0.6, 0.8, 0.6, 0.5, 0.5, 0.7, 0.5, 0.75, 0.75, 0.7, 0.7, 0.7, 0.7, 0.65, 0.65, 0.65, 0.4, 0.4, 0.5,

0.6]
Based on DV00, SV, f d

pol(pol0
00, pre10), f d

pol(pol1
00, pre13), f d

pol(pol2
00, pre15) and td0, the

privacy risk of CS00 is evaluated as follows:

f r
ik = DV00[10] × SV[10] × f d

pol
(

pol0
00, pre10

)
× (1 − td0)+DV00[13] × SV[13] × f d

pol
(

pol0
00, pre13

)
× (1 − td0)+DV00[15] × SV[15] × f d

pol
(

pol2
00, pre15

)
× (1− td0)

= 1× 0.7× 1× 0.6 + 1× 0.65× 0.5× 0.6 + 1× 0.65× 0.33× 0.6
= 0.743

3.4. Personalized Benefit Model

The more user private data are requested by CSs, the more benefits of personalized
service they provide [18,19]. When the amount of private data required by a CS is relatively
small, it is difficult for the provider to build the user profile based on these data, resulting
in low accuracy of the personalized services provided. As the number of private data
required gradually increases, the accuracy of personalized services is rapidly increasing.
However, when the required private data is close to the upper limit of the private data
disclosed by the user in a CSC, the CSP can establish the user’s basic profile, so the accuracy
of personalized services has gradually slowed down. In short, with the number of private
data required continues to increase, the benefits that the user obtains from personalized
services initially increase slowly, then accelerate, and finally converge, that is, there is a
nonlinear correlation between the benefit and the number of required private data.

Recently, several works use the sigmoid function to measure the correlation between
the quality of experience (QoE) and QoS [44,45]. For this reason, we introduce a sigmoid
function, and make some appropriate translation and scaling transformation to make it
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show the correlation between the quality of the personalized service and the amount of
private data required.

The benefit of personalized service provided by CSik is related to the amount of private
data it requests, which can be measured by:

f b
ik =

1
1 + e−α(npdik−β)

(7)

where f b
ik ∈ (0, 1), i ∈ {0, 1, . . . , m − 1}, k ∈ {0, 1, . . . , o − 1}, npdik =

p
∑

l=0
DVik[l] is the

number of private data required by the CSik, α and β are two domain-specific parameters,
which control the growth rate and the midpoint of the benefit function respectively.

Assuming that PDS is a set of all private data requested by a CSC, it is generally
specified by the developer of the CSC, e.g., a cloud service broker. Each service collects
only a part of the user’s private data, i.e., npd ≤ |PDS|, |PDS| ≥ 0. Since the values of
the original sigmoid function on the X-axis are a set of real numbers where the midpoint is
at 0, the midpoint of the benefit function needs to be translated from 0 to the right along
the X-axis by |PDS|/2 units, i.e., β = |PDS|/2. For example, in the pharmacy CSC, if the
number of the user’s private data values is 20, then β = 10. The α parameter characterizes
the growth rate of the benefit function, and it cannot be set too small or too large. If it is too
small, the growth of the benefit value will be too gentle, and conversely, the growth of the
benefit value will be too steep. Hence, we will set α according to the specific application
scenario. For example, in Figure 2, the curve of α = 0.1 grows too gently, while the curve of
α = 1 grows too steeply. For the pharmacy CSC, it is reasonable to set α to 0.5, as shown by
the curve of α = 0.5.
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Example 3. In Figure 2, β is set to 10, the curve of α = 0.5 start to increase slowly, then accelerate,
and finally converge. For example, when npd = 4, the benefit value corresponding to the curve
α = 0.5 is 0.0474. However, when npd = 16, the benefit value corresponding to the curve α = 0.5
increases to 0.9525.

3.5. Problem Definition

Based on the MPCSC model, privacy disclosure requirements, privacy risk model, and
benefit model, we will formally define the SSBM problem below. To illustrative the SSMB
problem, some specific data structures can be formalized as follows:
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(1) Provision matrix P: It is an m × n matrix, where P[i, j] denotes whether there is a CSik
in CSPi that can execute the task tj, P[i, j] = CSik means CSik is a candidate service of tj
and 0 no, i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . , n − 1}, k ∈ {0, 1, . . . , o − 1}.

(2) Risk matrix R: It is an m × n matrix, where R[i, j] ∈ [0, 1] denotes the normalized
privacy risk of CSik provided by CSPi for task tj, i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . ,
n − 1}, k ∈ {0, 1, . . . , o − 1}. R[i, j] is calculated by:

R[i, j] =

{
f r
ik−min{R}

max{R}−min{R} i f P[i, j] = CSik

0 otherwise
(8)

where max{R} and min{R} express the maximum and minimum values of privacy risks in
all candidate CSs, respectively. Because the privacy risk value of the CS is a non-negative
real number, in order to make it comparable to the value of the benefit, we use the Min–Max
normalization to uniformly scale it to the range [0, 1].

(3) Benefit matrix B: It is an m × n matrix, where B[i, j] ∈ (0, 1) denotes the benefit of CSik
provided by CSPi for task tj, i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . , n − 1}, k ∈ {0, 1, . . . ,
o − 1}. B[i, j] is obtained by:

B[i, j] =
{

f b
ik i f P[i, j] = CSik

0 otherwise
(9)

(4) Evaluation matrix E: It is an m× n matrix, where E[i, j] denotes whether CSik provided
by CSPi for task tj meets the user’s privacy risk threshold constraint, E[i, j] = 1 means
yes and 0 no, i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . , n − 1}, k ∈ {0, 1, . . . , o − 1}. E[i, j] is
obtained by:

E[i, j] =
{

1, i f P[i,j]= CSik ∧ f r
ik ≤ rt

0, otherwise (10)

Example 4. Figure 3 shows the provision, risk, benefit, and evaluation matrixes of the pharmacy
CSC. Figure 3a is a 4 × 4 matrix, where the rows express CSP0–CSP3, and the columns express
t0–t3, and the matrix element CSik represents that it is a candidate service provided by CSPi for task
tj. According to Figure 3a, the risk, benefit, and evaluation matrixes are calculated by (8), (9), and
(10), respectively, as shown in Figure 3b–d. The underlined data in Figure 3d represents candidate
CSs that do not meet the privacy risk threshold constraints.
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Mathematics 2022, 10, 1675 14 of 33

Based on the risk, benefit, and evaluation matrixes, we can select CSs for MPCSC.
The SSBM problem is how to select a CSC with a minimal privacy risk and a maximal
benefit from all candidate CSCs to meet the privacy disclosure requirements of the user.
Obviously, this is a multiobjective optimization problem (MOOP), in which the objectives of
minimizing privacy risk and maximizing benefit often conflict with each other. In this paper,
we convert the SSBM problem with dual objectives into a problem of utility maximization
to balance the privacy risk and benefit. By maximizing the overall utility of a CSC, the task
assignment solution intends to achieve a balance between minimizing the privacy risk and
maximizing the benefit. Aiming at the above problem, we formalize the following two
data structures:

(1) Utility matrix U: It is an m × n matrix, where U[I, j] ∈ [−1, 1) denotes the utility of
CSik provided by CSPi for task tj, i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . , n − 1}, k ∈ {0,
1, . . . , o − 1}. U[i, j] is calculated by:

U[i, j] = w × B[i, j] − (1 − w) × R[i, j] (11)

(2) Assignment matrix A: It is an m × n matrix, where A[i, j] ∈ {0, 1} denotes whether tj
is assigned to CSik (A[i, j] = 1) or not (A[i, j] = 0), i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . ,
n − 1}, k ∈ {0, 1, . . . , o − 1}.

Given U, E, and ub, the SSBM problem is to find a matrix A to:

Max ∑ m−1
i=0 ∑n−1

j=0 U[i, j]× A[i, j] (12)

subject to:
A[i, j] ∈ {0, 1} (i ∈ {0, 1, ..., m− 1}, j ∈ {0, 1, ..., n− 1}) (13)

∑m−1
i=0 A[i, j] = 1 (j ∈ {0, 1, ..., n− 1}) (14)

∑n−1
j=0 A[i, j] ≤ ub (i ∈ {0, 1, ..., m− 1}) (15)

E[i, j]× A[i, j] > 0 (i ∈ {0, 1, ..., m− 1}, j ∈ {0, 1, ..., n− 1}) (16)

where Constraint (13) specifies that the decision variables are binary; Constraint (14)
guarantees that each task is only assigned to one CS; Constraint (15) ensures that the
number of services offered by each CSP does not exceed the upper bound of service
provision; and Constraint (16) ensures that the privacy risk of each assigned CS is below
the privacy risk threshold.

Example 5. In Example 1, w, rt, and ub are specified as 0.5, 2, and 2, respectively. Based on the
risk, benefit, and evaluation matrixes, the utility matrix of the pharmacy CSC is obtained by (11),
as shown in Figure 4a. In Figure 4a, the assignment solution with the maximal utility (−0.005)
should be: {CS00, CS01, CS02, CS33}. However, this solution has three CSs (CS00, CS01, and CS02)
provided by CSP0, which should be eliminated due to the upper bound constraint of service provision,
e.g., ub = 2. Among the remaining candidate solutions, the assignment solution with the maximal
utility (−0.055) is: {CS20, CS01, CS02, CS33}. Finally, the optimal solution that meets the privacy
requirements of the user is found. The assignment matrix of the pharmacy CSC is demonstrated in
Figure 4b.
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4. Solution to the SSBM Problem

The SSBM problem is a typical one-to-many task assignment problem. When the
brute force search method is used to solve this problem, the solution space can be up to O
(mn) [46]. Therefore, we can use the well-known KM algorithm that has a complexity of O
(m3) [36,37,47]. However, the KM algorithm can only solve the generalized task assignment
problem. For the SSBM problem, the KM algorithm has the following limitations:

(1) The KM algorithm always finds the solution with the smallest sum [48]. However, the
SSBM problem requires finding a solution with the greatest utility.

(2) For the SSMB problem, the KM algorithm can always find a result for it, but the
result may not be a feasible solution. For example, when the CSPi cannot provide
candidate CSik for task tj or the candidate CSik cannot satisfy the privacy risk threshold
constraint, i.e., E[i, j] = 0, the KM algorithm may produce incorrect task assignments,
leading to an infeasible solution.

(3) The KM algorithm can only solve the 1-to-1 task assignment problem, that is, m = n,
and a CSP can only serve one task in a CSC. However, the SSMB problem is a typical
n-to-1 task assignment problem. In SSMB, m� n, where “�” means “much larger
than”, and each CSP can provide services for multiple tasks of a CSC.

To deal with the above limitations, we propose an improved KM (IKM) algorithm
solution to solve the SSMB problem. The basic idea of IKM is: firstly, we build a utility
matrix U according to the risk matrix R, benefit matrix B, and balance weight w. Secondly,
we reset the corresponding elements in U according to the evaluation matrix E, and then
extend the reset U matrix to a square matrix M that can be processed by the KM algorithm.
Thirdly, based on M, we use the KM algorithm to solve the SSMB. The IKM solution
includes the following three steps:

Step 1: Utility Matrix Building

In this step, we build the utility matrix of candidate CSs based on their risk and
benefit matrixes. Concretely, for any CSPi belonging to CSPs and tj belonging to T, we first
calculate the normalized privacy risk and benefit of CSik by (8) and (9), respectively, and set
them to R[i, j] and B[i, j]. Then, we calculate the utility of CSik by (11) according to R[i, j],
B[i, j], and w, and set it to U[i, j]. Finally, we return the U matrix. The details of this step are
described in Algorithm 1.

Algorithm 1: Utility matrix building

Input: m: the number of CSPs; n: the number of tasks;
w: the privacy risk and benefit balance weight.

Output: U: a utility matrix.
1: for i = 0, 1, . . . m − 1 do
2: for j = 0, 1, . . . , n − 1 do
3: R[i, j]← calculate the normalized privacy risk of CSik by (8);
4: B[i, j]← calculate the benefit of CSik by (9);
5: U[i, j]← calculate the utility of CSik from R[i, j], B[i, j] and w by (11);
6: end for
7: end for
8: return U;
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Step 2: Utility Matrix Reset and Extension

In step 1, we have built the U matrix. Because the KM algorithm cannot be directly
used to solve the SSMB problem, we need to reset and extend the U matrix in this step.
Specifically, firstly, we find the maximum utility maxu in matrix U, e.g., boxed data in
Figure 4a. Secondly, for any CSPi belonging to CSPs and tj belonging to T, we evaluate
whether CSik satisfies the privacy risk threshold constraint, and set the evaluation result
to E[i, j]. If CSik passes the evaluation check, e.g., E[i, j] = 1, we reset U[i, j] to maxu-U[i, j];
otherwise, we reset U[i, j] to n. This is because we need to find a CSC with the maximum
utility. Besides this, due to U[i, j] ∈ [−1, 1), the utility of a CSC never exceeds n, thus we
use n as a particularly large value to replace those elements in U that have not passed the
privacy evaluation. The reset U matrix of the pharmacy CSC is shown in Figure 5a. Thirdly,
we construct an m× ub rows and n columns matrix M, extend each row in U to ub rows and
update them to the corresponding rows in M. Then we determine whether the number of
rows in M is greater than the number of columns, i.e., m × ub > n. If the equation holds, we
add m × ub − n virtual columns in M, where each column expresses a virtual task. Because
virtual tasks do not need to be assigned services, we set their utility value to 0. Finally, we
return the M matrix. The extended U matrix of the pharmacy CSC is shown in Figure 5b,
and the details of this step are specified in Algorithm 2.

Algorithm 2: Utility matrix reset and extension

Input: m: the number of CSPs; n: the number of tasks;
ub: the upper bound of service provision; U: the utility matrix.

Output: M: a square matrix extended from U matrix.
1: maxu← finds the maximum utility in matrix U;
2: for i = 0, 1, . . . , m − 1 do
3: for j = 0, 1, . . . , n − 1 do
4: E[i, j]← calculate the privacy evaluation result of CSik by (10);
5: if E[i, j] = 1 then
6: U[i, j]← maxu-U[i, j];
7: else
8: U[i, j]← n;
9: end if
10: end for
11: end for
12: for j = 0, 1, . . . , n − 1 do
13: for i = 0, 1, . . . , m − 1 do
14: index← 0;
15: for x = 0, 1, . . . , ub − 1 do
16: M[index++, j]← U[i, j];
17: end for
18: end for
19: end for
20: if m × ub > n then
21: for z = n, n + 1, . . . , m × ub − 1 do
22: for y = 0, 1, . . . , m × ub − 1 do
23: M[y, z]← 0;
24: end for
25: end for
26: end if
27: return M;
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Step 3: KM Algorithm-Based Task Assignment

In this step, we use the KM algorithm to assign suitable candidate CSs to n tasks
according to the M matrix. First of all, we call the KM algorithm to obtain an m × ub
rows and 2 columns temporary matrix N, where each row expresses an assignment. Then,
we form the assignment matrix A according to N. Since there may be some incorrect
assignments in A, they should be eliminated from the assignment solution. Third, we
traverse the A matrix and judge whether the utility corresponding to each assignment is
equal to n, i.e., A[i, j] = 1 and U[i, j] = n. If the judgment conditions are held, we prevent the
assignment of CSs to these tasks and return failure. Finally, we determine whether each
task is assigned to a candidate CS. If yes, we calculate the overall utility of the CSC by (12)
and succeed; otherwise, it is failed. The details of this step are shown in Algorithm 3.

Algorithm 3: Optimal task assignment

Input: M: A square matrix extended from U matrix.
Output: Success: A; Failure: no feasible A is obtained.
1: N← KM (M);
2: Form the assignment matrix A based on N;
3: for j = 0, 1, . . . , n − 1 do
4: for i = 0, 1, . . . m − 1 do
5: if A[i, j] = 1 and U[i, j] = n then
6: return Failure;
7: end if
8: end for
9: end for
10: if for all columns of matrix A satisfy ∑m

i=0 A[i, j] = 1 then
11: calculate the overall utility of the optimal CSC by (12);
12: return Success
13: else
14: return Failure
15: end if

The complexity of the above algorithms depends on the number of CSPs (m), the
number of tasks (n), and the service provision upper bound (ub). The time complex-
ity of Algorithm 1 is O (m × n). The time complexity of Algorithm 2 is decided by:
(1) the time complexity of finding the maximum utility and resetting the U matrix, i.e.,
O (m × n) + O (m × n), and (2) the time complexity of extending the U matrix, i.e., O
(m × n × ub) + O ((m × ub) × (m × ub − n)). Thus, the overall complexity of Algorithm
2 is 2O (m × n) + O ((m × ub)2). For Algorithm 3, its time complexity is determined by:
(1) the time complexity of calling the KM algorithm and forming the assignment matrix,
i.e., O ((m × ub)3) + O (m × ub), and (2) the time complexity of eliminating incorrect task
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assignments and calculating CSC utility, i.e., O (m× n) + O (n). Thus, the overall complexity
of Algorithm 3 is O ((m × ub)3) + O (m × ub) + O (m × n) + O (n).

In the presented scenarios, ub is a constant (typically less than 5), and m >> n. Conse-
quently, the time complexity of the entire solution can be simplified as: O ((m × ub)3) + O
((m × ub)2) + 4O (m × n) + O (m × ub) + O (n) = O (m3).

5. Experiments

Using the hardware and software configuration in Table 4, we make two sets of
experiments to assess the efficiency and effectiveness of the IKM approach. As far as we
know, there is no other research directly related to our study. Hence, we set the MinR and
MaxB as the effectiveness benchmarks and Cplex as the performance benchmark. Since
IKM, MinR, and MaxB are all based on the KM algorithm to solve their problems, their
efficiency is the same, thus we only compare their effectiveness. In addition, both IKM
and Cplex are optimization methods to solve the SSBM problem and have the same result,
therefore we only compare their time performance. Note that, we randomly assigned the
values of some parameters in the experimental section, such as the number of tasks (n), the
number of CSPs (m), the weight of risk and benefit balance (w), the privacy risk threshold
(rt), the number of private data required (npd), and the service provision upper bound (ub).
Such random choices follow a common simulation process, i.e., all the assigned values are
possible in reality.

Table 4. The hardware and software configurations.

Type Configuration

Environment Windows 7 Enterprise (64-bit), JDK 1.8, Eclipse 4.6.0
CPU Intel core i7-4790, 3.60 GHz

Storage 8 G of memory, 1 TB disk

(1) MinR. It adopts the KM algorithm to assign tasks to candidate CSs that satisfy the
user’s privacy disclosure requirements, so as to minimize privacy risk without consid-
ering benefit. The MinR problem can be formulated as follows:

Min ∑ m−1
i=0 ∑n−1

j=0 R[i, j]× A[i, j] (17)

subject to (13)–(16).
(2) MaxB. It adopts the KM algorithm to assign tasks to candidate CSs that satisfy the

users’ privacy disclosure requirements, so as to maximize benefit without considering
privacy risk. The MaxB problem can be formulated as follows:

Max ∑ m−1
i=0 ∑n−1

j=0 B[i, j]× A[i, j] (18)

subject to (13)–(16).
(3) Cplex. It solves the optimization problem proposed in Section 3.5 with IBM’s CPLEX

Optimizer v12.2 [49] and assigns tasks based on the solution.

5.1. Experimental Setting

To comprehensively evaluate IKM, we first compare its effectiveness with MinR and
MaxB in experiment set #1, and then compare its efficiency with Cplex in experiment set #2. The
detailed experimental settings of set #1 and set #2 are shown in Tables 5 and 6, respectively.
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Table 5. The experimental setting of Set #1.

m n w rt npd ub

Set #1

Set #1.1 20, 40, . . . , 200
10, 20, . . . , 100 0.5 2 [1, 10] 2Set #1.2 40, 80, . . . , 400

Set #1.3

100 50 0.1, 0.2, . . . , 0.9

2 [1, 10] 2
Set #1.4 4 [1, 10] 2
Set #1.5 4 [11, 20] 2
Set #1.6 2 [1, 10] 4

Table 6. The experimental setting of Set #2.

m n ub

Set #2

Set #2.1
20, 40, . . . , 200

10, 20, . . . , 100

2
Set #2.2 4
Set #2.3

40, 80, . . . , 400
2

Set #2.4 4

In set #1, we use various SSBM scenarios by changing six parameters in the experi-
ments: (1) the number of tasks (n); (2) the number of CSPs (m); (3) the weight of the risk
and benefit balance (w); (4) the privacy risk threshold (rt); (5) the number of private data
required (npd), and (6) the service provision upper bound (ub). Specifically, in set #1.1, m
changes from 20 to 200 with a step of 20, n = m/2, npd is randomly generated from the range
[1, 10], w, rt, and ub are set to 0.5, 2, and 2, respectively. In set #1.2, m changes from 40 to
400 with a step of 40, and the other parameters are set as in set #1.1. In set # 1.3, n and m are
fixed at 50 and 100 respectively, w changes from 0.1 to 0.9 with a step of 0.1, and the other
parameters are set as in set # 1.1. In set # 1.4, rt is changed to 4, and the other parameters
are set as in set # 1.3. In set #1.5, npd is randomly generated from the range [11,20], and
the other parameters are set as in set # 1.4. In set #1.6, ub is expanded to 4, and the other
parameters are set as in set #1.3.

Due to the solution time of the SSBM problem is mainly affected by the parameters
n, m, and ub, in set #2, we conducted four sets of subexperiments by changing n, m, and
ub. Specifically, in set #2.1, all parameter settings are the same as set #1.1. In set #2.2, ub is
changed to 4, and other parameter settings are the same as set #2.1. In set #2.3, all parameter
settings are the same as set #1.2. In set #2.4, ub is expanded to 4, and other parameter
settings are the same as set #2.3.

In experiment sets #1 and #2, because not every CSP can offer CSs for all tasks, we
generate the candidate CSs of each CSP randomly with 20–40% of n. The trust degree of
each CSP is randomly generated in the range [0.25, 0.75]. The sensitivity degree of each
private data value is randomly generated in the range [0.25, 0.75]. The privacy preferences
and the privacy policies are randomly generated for each private data value. Specifically, for
a privacy preference prel = <pdl, Pul, Lcl, rel>, Pul is randomly generated from a purpose set
containing 10 different purposes, Lcl is randomly generated from a location set containing
10 different locations, and rel is assigned randomly from 1–360 days. For a privacy policy
polh

ik = <pdh
ik,Puh

ik, lch
ik, reh

ik>, Puh
ik, and reh

ik are the same as the setting of corresponding
privacy attributes in prel, and lch

ik is assigned randomly from 10 different locations. The
parameters α and β of the benefit function are set to 0.5 and 10, respectively. In each
experiment, 100 instances of experiments were run and the results are averaged.

5.2. Effectiveness Evaluation

To assess the effectiveness of IKM, we use four assessment indicators: the overall
utility of a solution, the privacy risk of a solution, the benefit of a solution, and the benefit-
to-risk ratio of a solution. For the ease of description, we use utility, risk, benefit, and
benefit-to-risk ratio to represent the overall utility, privacy risk, benefit, and benefit-to-risk
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ratio of a solution, respectively. Besides this, the risk described in the following experiments
refers to the original privacy risk of a solution, i.e., the privacy risk before normalization.

Since MinR and MaxB only consider risk or benefit, respectively, the utility of MinR is
actually a negative value for the normalized risk of the solution it finds, while the utility
of MaxB is actually the benefit of the solution it finds. Furthermore, with the disclosure
of private data, both MinR and MaxB obtain certain benefit and risk, and increase or
decrease as the parameters n, m, w, npd, rt, and ub vary. In order to compare the margin
of change in the risks and benefits of different approaches, we propose a benefit-to-risk
ratio indicator, which is defined as the ratio of benefit to risk for a solution. The greater the
benefit a solution obtains, the higher its benefit-to-risk ratio. Conversely, the higher the risk
a solution takes, the lower its benefit-to-risk ratio.

Figures 6–11 present the effectiveness of IKM in experiment set #1 and the influence of
six parameters, i.e., n, m, w, rt, npd, and ub. On the whole, IKM finds the optimal solution
with a utility between MinR and MaxB. Furthermore, the risk and benefit of each approach
vary with the changes of n, m, w, rt, npd, and ub. In most cases, the benefit-to-risk ratio of
IKM is better than that of MinR and MaxB.

Figure 6 illustrates the effect of increasing m on the utility, risk, benefit, and benefit-to-
risk ratio. As shown in Figure 6a, as m increases, the utilities of IKM and MaxB increase
rapidly, while the utility of MinR gradually decreases. The reason is that n increases
proportionally with the increase of m, resulting in more candidate CSs being selected.
Furthermore, MinR always selects the candidate CSs with the lowest risk, which leads to
low risk and low benefit, and its utility gradually decreases as m increases. MaxB always
selects the candidate CSs with the highest benefit, which leads to high risk and high benefit,
and its utility increases rapidly as m increases. IKM always selects the candidate CSs with
the greatest utility by balancing the risk and benefit, resulting in its utility increaseing with
the increase of m, and is between MinR and MaxB. For example, in Figure 6a, the average
utilities of MinR, IKM, and MaxB are −1.29, 3.48, and 24.67, respectively.

In Figure 6b,c, the risks and benefits of all the approaches increase with the increase of
m, and the growth rate of the benefit is faster than the growth rate of the risk. In Figure 6d,
the benefit-to-risk ratios of all the approaches also increase with the increase of m. In all
cases, MinR shows the lowest benefit-to-risk ratio, IKM shows the highest benefit-to-risk
ratio, and MaxB’s benefit-to-risk ratio is slightly lower than IKM. The reason behind this
phenomenon is similar to Figure 6a. For example, in Figure 6d, the average benefit-to-risk
ratios of MinR, IKM, and MaxB are 0.07, 0.30, and 0.27, respectively.

When m/n enlarges from 2 to 4, the result presented in Figure 7 is different from
Figure 6. When Figure 7a is compared with Figure 6a, the average utilities of MinR, IKM,
and MaxB significantly increase by 38.43%, 35.09%, and 7.25%, respectively. This is because
as m enlarges to 4n, the average range of candidate CSs for each task also enlarges. Similarly,
if Figure 7b,c is compared with Figure 6b,c, the risks and benefits of IKM and MaxB increase
at different margins, and, furthermore, the growth rate of benefits is faster than that of
risks. In addition, the risk and benefit of MinR decrease at different margins, and the
reduction rate of risk is faster than that of benefit. For example, if we compare Figure 7d
with Figure 6d, we find that the average benefit-to-risk ratios of MinR, IKM, and MaxB
increase by 18.78%, 10.26%, and 9.11%, respectively.

Figure 8 demonstrates the effect of w on the utility, risk, benefit, and benefit-to-risk
ratio after fixing m and n. It can be seen from Figure 8a that, since MinR and MaxB only
consider risk or benefit, respectively, their utilities are not affected by w, and are a fixed
value in all cases, e.g., −1.24 and 21.86. However, the utility of IKM increases with the
increase of w, and is always between MinR and MaxB. For example, in Figure 8a, the
average utility of IKM is 5.38. Similarly, in Figure 8b,c, the benefit and risk of IKM also
increase with the increase of w and are between MinR and MaxB. From Figure 8d, we can
also see that the benefit-to-risk ratio of IKM is significantly higher than that of MinR. At
the beginning, it increases rapidly with the increase of w, and reaches the maximum value
when w = 0.4. Then it exceeds MaxB and decreases slightly as w continues to increase.
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This is because when w is relatively small, the benefit growth rate of IKM is significantly
faster than that of risk. When w > 0.4, the risk growth rate of IKM catches up with the
benefit growth rate. In particular, when w = 0.6, the benefit of IKM has basically reached
the upper limit, while its risk still continues to increase, resulting in a slight decrease in the
benefit-to-risk ratio. It is worth noting that in all cases where w > 0.4, the benefit-to-risk
ratio of IKM is still higher than that of MaxB.
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Figure 6. Effectiveness vs. number of CSPs (Set #1.1). (a) Utility; (b) risk; (c) benefit; (d) benefit−to−risk
ratio.
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Figure 9. Effectiveness vs. weight of risk and benefit balance (Set #1.4). (a) Utility; (b) risk; (c) benefit;
(d) benefit−to−risk ratio.
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Figure 9 shows the effect of relaxing the rt constraint. Comparing Figure 9a with
Figure 8a, the (average) utilities of MinR, IKM, and MaxB increase by 1.61%, 8.43%, and
13.04%, respectively. The reason is that the increase in rt relaxes the restrictions on the range
of candidate CSs, which leads to an increase in the utility of all the approaches. Similarly,
comparing Figure 9b,c with Figure 8b,c, the risks and benefits of all the approaches increase
with the increase of rt, and the growth rate of risk is faster than that of benefit. In particular,
the risk of MaxB increases significantly. It is because MaxB always selects the candidate
CSs with the highest benefit, resulting in that more private data is disclosed, and the risk
increases rapidly. When comparing Figure 9d with Figure 8d, the benefit-to-risk ratios
of all the approaches decline to different degrees. Since the risk growth rate of MaxB
is significantly faster than its benefit growth rate, in the case of w ≥ 0.4, IKM further
outperforms MaxB in terms of the benefit-to-risk ratio. For example, in Figure 9d, the
(average) benefit-to-risk ratios of MinR, IKM and MaxB decrease by 0.6%, 6.76% and
27.09%, respectively.

Figure 10 illustrates the effect of raising the value range of npd. Comparing Figure 10a
with Figure 8a, the (average) utilities of MaxB and IKM increase by 290.19% and 125.50%,
respectively, while the utility of MinR decreases by 173.38%. This is because the increase in
npd leads to an increase in the risks and benefits of all the approaches. At the same time, due
to benefit being nonlinearly related to npd, especially when npd > 10, the increase of npd has
a different effect on each approach. Specifically, compared with Figure 8b,c, in Figure 10b,c,
the (average) risks of MinR, IKM and MaxB increase by 854.81%, 138.31%, and 102.35%, and
the (average) benefits increase by 6020.66%, 250.36%, and 126.39%, respectively. It can be
seen clearly that the growth rate of risk is significantly faster than that of benefit. Therefore,
comparing with Figure 8d, the (average) risk–benefit-ratios of MinR, IKM and MaxB in
Figure 10d increase by 541.72%, 87.32%, and 11.90%, respectively. It is worth noting that in
all cases, the benefit-to-risk ratio of IKM is significantly higher than MaxB, and in the case
of w ≤ 0.5, its benefit-to-risk ratio also exceeds MinB. However, as w continues to increase,
its benefit-to-risk ratio gradually declines and is lower than MinB. This is because when
w ≤ 0.5, the benefit growth rate of IKM is significantly faster than its risk growth rate, and
when w > 0.5, the benefit of IKM has basically reached its upper limit, but its risk still grows
rapidly, resulting in a decline in the benefit-to-risk ratio.

Figure 11 depicts the effect of increasing ub. When ub increases from 2 to 4, we can
compare Figure 11a with Figure 8a. The (average) utilities of MinR, IKM, and MaxB all
slightly increase, i.e., 3.22%, 3.65%, and 3.43%. Similarly, when comparing with Figure 8d,
in Figure 11d, the (average) benefit-to-risk ratios of all the approaches also increase slightly,
i.e., 3.12%, 3.38%, and 3.86%. The reason behind these results is that increasing ub expands
the range of candidate CSs, thus improving the utility and benefit-to-risk ratio. We need
to point out that when ub = 2, the capacity of candidate CSs meets the need to obtain the
optimal solution. Thus, increasing ub does not significantly affect the utility, risk, benefit,
and benefit-to-risk ratio.

5.3. Efficiency Evaluation

To evaluate the efficiency of IKM, we compared the average execution time of IKM
and Cplex in solving the SSBM problems. Figures 12 and 13 present the time taken by
all the approaches to find a solution and the effects of n, m, and ub in experiment set #2.
Generally, and overall, IKM is much faster than Cplex, and the larger the m, the more
obvious this trend.
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As shown in Figure 12a,b, a larger m consumes more time, but Cplex shows a much 
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As shown in Figure 12a,b, a larger m consumes more time, but Cplex shows a much
more rapid growth trend than IKM in all cases. In Figure 12a, when m increases from 20
to 200, the time taken by Cplex increases from 3.39 ms to 94.33 ms, while the consumed
time of IKM only increases from 0.15 ms to 5.11 ms. The results observed from Figure 12b
show the influence of increasing ub on time consumption. If we compare Figure 12b with
Figure 12a, we notice that ub expands from 2 to 4 and the execution time of IKM shows
a rapid growth trend, especially in some cases where m is relatively large. However, the
execution time of Cplex remains basically the same and is still much longer than that of
IKM. For example, in Figure 12b, when m increases from 20 to 200, the time taken by Cplex
increases from 3.57 ms to 95.24 ms, while the consumed time of IKM only increases from 0.2
ms to 10.89 ms. The reason is that the search space of IKM expands with the enlargement
of ub. A lucky situation is that ub is usually very small, e.g., ub = 2.

Figure 13 shows the efficiency results in experiment sets # 2.3 and 2.4. In this set
of experiments, as m enlarges to 4n, the time consumption of all the approaches further
increases compared to experimental sets # 2.1 and 2.2, but the growth trend of Cplex is
faster. Comparing Figure 13a with Figure 12a, the time consumption significantly increases.
For example, when m increases from 40 to 400, the consumed time of Cplex increases from
5.33 ms to 246.22 ms, while the time taken by IKM only increases from 0.22 ms to 20.33 ms.
As ub expands from 2 to 4, Figure 13b replaces Figure 12b, the consumed time of all the
approaches further increases. They are similar to those of Figure 12b, e.g., when m increases
from 40 to 400, the consumed time of Cplex increases from 6.02 ms to 247.49 ms, while the
time consumed by IKM increases from 0.3 ms to 122.59 ms.

5.4. Discussion

From the above experimental results, we can make the following conclusions.
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(1) IKM, MinR, and MaxB take the same execution time to solve their problems, and the
utility of IKM is between MinR and MaxB. However, in most cases, IKM is better than
MinR and MaxB when comparing the actual benefit received with the risk assumed.
Additionally, IKM and Cplex have the same result in solving the SSMB problem.
However, in terms of performance, the time overhead of IKM is much smaller than
that of Cplex. Thus, comprehensively comparing these approaches, IKM is considered
to be a better approach to finding the optimal solution to the SSBM problem.

(2) As npd increases, the utilities of IKM and MaxB increase, while the utility of MinR
decreases. Therefore, for users who balance privacy risk and benefit and users who
only care about benefit, they can obtain more benefits by appropriately selecting CSs
that require more private data, while for users who only care about privacy, they
should select as many CSs as possible that require less private data.

(3) When npd is relatively small, the benefit-to-risk ratio of IKM increases as w increases.
It is higher than MinR in all cases, and exceeds MaxB when w ≥ 0.4. However, in the
case of relatively large npd, the benefit-to-risk ratio of IKM is always higher than MaxB,
it decreases with the increase of w, and is lower than MinR when w > 0.5. Therefore,
for users who balance privacy risk and benefit, they should adjust w according to a
different npd to obtain a higher benefit-to-risk ratio.

(4) Although expanding m/n and ub can improve the utility and benefit-to-risk ratio, it
also brings more time consumption. In addition, relaxing the rt constraint can increase
utility, but it also leads to a decrease in the benefit-to-risk ratio. In summary, in service
selection, privacy disclosure requirements can be set by a user according to the utility,
profit-to-risk ratio, and time consumption with alternative combinations of m, n, w,
npd, rt, and ub.

(5) Since expanding m/n can increase the utility and benefit-to-risk ratio of all the ap-
proaches, CSPs should increase the supply of candidate service types in order to obtain
more service provision opportunities. Additionally, because different user groups
have different privacy disclosure requirements, CSPs should also disclose private data
and provide personalized services based on the user groups that provide services.

(6) For any two tasks in MPCSC, if they are assigned to services provided by the same
CSP, then the CSP will collect multiple pieces of private data from the user, and can
infer more privacy information from the collected data. Therefore, this type of task
assignment will increase the overall privacy risk of a CSC. In order to calculate this
part of the increased privacy risk, it needs to expand the objective function of the
SSBM problem. The expanded SSBM problem is as follows:

Max ∑m−1
i=0 ∑n−1

j=0 U[i, j]× A[i, j] + ∑m−1
i=0 ∑n−1

j=0 ∑n−1
j′=0 R∗[i, j, j′]× A[i, j]× A[i, j′] (19)

subject to (13)–(16).

where R* is an m × n × n matrix, R*[i, j, j′]∈[0, 1] express the increasing degree of task j′s
risk when task j is assigned to CSP i and task j′ is also assigned to CSP i, i ∈ {0, 1, . . . , m − 1},
j ∈ {0, 1, . . . , n − 1}, j′ ∈ {0, 1, . . . , n − 1}. The extended SSMB problem is a nonlinear 0–1
programming problem, it has a higher complexity than the SSMB problem and cannot be
solved by the IKM approach. Cplex can be used to solve this problem [50]. We did not
consider this problem in the current paper and plan to address it in future work.

(7) The service selection approach proposed in this paper is practical and feasible. As
shown in Figure 1, users only need to submit their functional requirements and privacy
requirements to the cloud service broker. The cloud service broker can utilize the cloud
service composition manager to discover candidate CSs from different CSPs. The
cloud service composition manager then evaluates the privacy risks and personalized
benefits of these candidate CSs, and selects a set of CSs with the maximum utility
for users to use. The abovementioned service discovery, evaluation, and selection
processes are automatically completed by the cloud service composition manager,
and do not require user participation. In future work, we intend to develop a web
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application-based service selection tool for the proposed approach, where users can
set their functionality and privacy requirements by simply filling in and selecting
some parameter values in web pages. Therefore, the users can use it very easily.

(8) In MPCSC, each CSP can provide services for multiple tasks and expect users to
select as many services as possible. However, if a user selects too many services from
the same CSP, it will lead to serious privacy leakage risks, and will also face high
service prices and vendor lock-in. The proposed approach selects CSs from multiple
CSPs, which can effectively reduce privacy risks and obtain services with lower prices
and higher quality. At the same time, the proposed approach can also motivate
CSPs to continuously enhance privacy protection capabilities, reduce asking prices,
and improve service quality to compete for more service provision opportunities.
Indeed, selecting services from multiple CSPs may incur some financial cost as well
as technical difficulties compared to selecting services from a single CSP. However, in
general, the benefits of selecting services from multiple CSPs can offset these costs,
and furthermore, as can be seen from our simulation experiments, the proposed
approach is technically practical and feasible.

6. Related Work
6.1. Service Selection for MPCSC

With the emergence of a large number of CSPs that can offer multiple services on
the web, the service selection for MPCSC has become more complicated. Recently, many
research efforts have been focusing on service selection based on the relationship between
services, such as bundled service provision, complementarity between services and QoS
correlation between services. In [2], He et al. proposed a composition service selection
framework, where an iterative multiattribute combined auction model is employed to
select services, and the complementarity between services is considered. Aiming at the QoS
correlation between services provided by the same service provider, Deng et al. [24] put
forward a correlation-aware service pruning method in the selection of candidate services.
Targeting the hybrid quality correlation between services provided by different service
providers, Zhang et al. [25] proposed a quality correlation query approach for service
composition, which uses a quality correlation index graph to achieve efficient queries for
quality correlations.

Due to the many advantages of using services and resources from multiple cloud
providers, e.g., access to distributed resources, avoiding vendor lock-in, and high appli-
cation elasticity, more and more cloud customers are migrating their applications from a
single cloud provider to multiple cloud providers. Some researchers have started to explore
service selection and deployment issues in a hybrid cloud, federated cloud, and multicloud.
Ma et al. [7] proposed a CS composition approach for data-intensive applications in a
hybrid cloud. This approach formalizes the CS selection problem based on the conflict
and collaboration relationship between CSs, and uses the IBM ILOG CPLEX optimization
solution to solve the problem. Considering the requirements of reliability, security, cost of
computing power, data storage, and inter-cloud communication, Wen et al. [26] presented
an approach for deployment workflow applications on federated clouds. To deal with
the deployment problem of multiple composite applications, Shi et al. [8] put forward a
composite applications deployment approach based on the GA algorithm, which selects ap-
propriate CSs from multiple clouds for multiple composite applications under cost budget
constraint, so that the average response time is minimized.

The above work considers the service selection problem in MPCSC based on the
relationship between services and different service provision strategies. These works
select the optimal candidate services from the perspective of satisfying QoS and resource
constraints, while ignoring the privacy protection requirements. However, in MPCSC,
privacy is a critical user requirement.
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6.2. Privacy-Preserving Service Selection

In recent years, users have increasingly paid attention to the privacy of their personal
data. How to select the best services for service composition and meet the user privacy
requirements has become a critical issue. Several research contributions have focused on
service selection and composition that protects user privacy. These works usually use
automated technology to match the provider’s privacy policy with the user’s privacy
preferences, and then select a set of services with the highest matching degree to build
service composition. The work in [27] presented a privacy-aware service composition and
ranking framework, which verifies the compliance between users’ privacy requirements
and services’ privacy policies, and selects the service composition with the highest privacy
level from the verified multiple service composition schemes. Meng et al. [31] put forward
a privacy-aware cloud service selection approach that models the users’ preferences and
CSs’ privacy policies, and recommended a set of privacy trusted CSs to users by a policy-
matching algorithm. Bharati et al. [29] proposed a method to integrate Blockchain technique
and GDPR rules to enhance cloud user privacy, which records a set of operations performed
by CSPs on data in the Blockchain network, and verifies whether the operations performed
by CSPs comply with GDPR requirements. Targeting the service selection problem in the
data as a service (DaaS) composition, Tbahriti et al. [30] presented a privacy model that
specifies the privacy requirements and policies of the services, and verified the compatibility
between privacy requirements and policies in DaaS composition. Aiming at the access
control requirements and privacy requirements in CSC, Amini et al. [28] combined an
attribute-based access control model and a purpose-based privacy model to protect the
privacy of users while controlling access to services by unknown users.

To help the users select privacy-sensitive IoT services in a smart environment, Alom et al. [32]
formulated the privacy checking problem as a knapsack problem, and proposed both knap-
sack privacy checking techniques and knapsack graph-based privacy checking techniques to
solve the problem, thereby recommending a suitable set of IoT services to users. Targeting the
privacy-preserving workflow scheduling problem in geographically distributed data centers,
Xiao et al. [51] proposed a privacy-preserving workflow scheduling algorithm, which aimed
to minimize the data transfer time between data centers for workflows while satisfying
multilevel data privacy requirements.

To deal with the service selection issue based on privacy risk, Yu et al. [34] defined the
privacy risk aware service selection problem as a multiconstrained optimal path problem,
and used the extended MCSP/MCSP-K algorithms to find an optimal solution that satisfies
the QoS and privacy constraints. Similarly, Belabed et al. [35] formulated the privacy
protection web service selection problem as a multiple-choice knapsack problem, and
proposed three methods, i.e., based on the best first search algorithm, based on proposition
satisfiability, and based on answer set programming, to solve the composite service selection
problem with the least privacy risk.

In our previous work [6], an approach for privacy regulation-aware CS selection
for MPCSC is presented, and the CS selection problem is modeled as an optimization
problem with privacy constraints, where an optimal solution can be found by pre-processed
KM algorithm.

Although the above work has merit, the privacy protection composite service selection
is still an open issue. Table 7 compares some related work with our proposed method,
including the privacy requirements, privacy policy matching, privacy risk measurement,
personalized benefit measurement, and multiservice provision characteristics. In Table 7,
we find that the mentioned work can express part of the privacy requirements, and support
the matching checks between privacy policies and privacy requirements, but their privacy
requirements rarely fully consider privacy attributes such as sensitivity, purpose, location,
and retention. Moreover, several works have focused on privacy risk measurement for
services, but they generally do not consider the potential benefit of disclosing private data.
Furthermore, few research efforts paid attention to the multiservice provision characteristic
of the CSPs. Different from existing methods, our proposed method can express the users’
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privacy requirements more comprehensively, support quantitative measures of privacy risk
and personalized benefit, and also consider the multiprovision characteristic of the CSPs.
Therefore, the proposed method is able to trade-off privacy risk and personalized benefitin
service selection according to the user’s preferences.

Table 7. The comparison of privacy-preserving service selection methods.

Works
Privacy Requirements Privacy Policy

Matching
Privacy

Risk
Personalized

Benefit
Multiservice

ProvisionSensitivity Purpose Location Retention

Costante [27] Yes Yes No Yes Yes Yes No No
Meng [31] Yes Yes No No Yes No No No

Tbahriti [30] No Yes No Yes Yes No No No
Amini [28] Yes Yes No Yes Yes No No Yes
Barati [29] No Yes No No Yes No No No
Alom [32] No Yes No Yes Yes No No No

Yu [34] No No No No No Yes No No
Belabed [35] No Yes No Yes Yes Yes No No

Xiao [51] Yes No No No No No No Yes
Liu [6] Yes Yes Yes Yes Yes No No Yes

This work Yes Yes Yes Yes Yes Yes Yes Yes

6.3. Risk–Benefit Balance in Private Data Disclosure

Focusing on the privacy risks and social benefits trade-off of information sharing in
online social networks, Yang et al. [52] put forward a utility-based trade-off framework
that models the privacy risks and social benefits of data sharing, and maximizes the overall
sharing utility of users by balancing privacy risks and benefits. Similarly, Sourya et al. [53]
proposed an integer-programming model to help users make private data disclosure
decisions in social networks. This model provides users with privacy settings suggestions
for their profile attributes, so that users can obtain the greatest social benefits while avoiding
some privacy risks.

To address the problem of data sharing that balances privacy risks and benefits in
internet-of-things (IoT) applications, Mahmoud et al. [54] proposed a user-centric privacy-
protection IoT data sharing architecture, which provides a data-sharing model that balances
privacy risk and potential benefit to help users determine the degree of data sharing.

Focusing on the cost and benefit of private data disclosure in e-commerce transactions,
Zhu et al. [11] proposed a cost–benefit analysis approach for private data disclosure based
on the multiattribute utility theory (MAUT). This approach quantitatively evaluates the dis-
closure costs and benefits of private data, and recommends the greatest utility e-commerce
company to users for transactions by balancing the costs and benefit.

Aiming at the privacy risks and benefits of personal data release in web services,
Bikash et al. [55] presented a personal data storage architecture that enables users to store
their private data in a unified data repository. Based on this architecture, the authors
designed a set of access control policies based on the trade-off of privacy risks and benefits,
and controlled the release of data through these policies.

The above work has conducted research on the issue of private data disclosure that
balances risk and benefit in social networks, IoT, e-commerce, and web services. Compared
with the above work, our work not only considers the risk–benefit balance in private data
disclosure, but also considers the service selection in MPCSC with privacy constraints.

Role-based collaboration (RBC) has been proposed as a promising complex problem-
solving methodology, and its environments—classes, agents, roles, groups, and objects (E-
CARGO) model has been verified as a powerful model for complex systems. Zhu et al. [48]
formalize the group role assignment (GRA) problem and propose an efficient solution by
adapting the KM algorithm. The RBC process is a generalized problem-solving process,
which can be used to illustrate many industry problems. GRA as a general problem model
can provide templates for modeling many application problems. RBC and E-CARGO pro-
vide us with good guidelines and inspirations to investigate the SSBM problem discussed
in this paper.
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7. Conclusions

The users enjoy various benefits provided by personalized services, but at the cost of
disclosing more private data. Especially in MPCSC, when a CSP provides multiple services
at the same time, it may infer the previously hidden private information through the
collected multiple private data, which may lead to more serious privacy leaks. Therefore,
how to select a set of best candidate CSs with tradeoffs between privacy risk and benefit,
and meanwhile meet the user’s privacy disclosure requirements, remains challenging for
the design of the MPCSC.

In this work, we present the privacy disclosure requirements in MPCSC according
to the privacy preferences of users and the multiservice provision characteristic of CSPs.
In consideration of the requirement of privacy disclosure, we quantitatively assessed the
privacy risks and potential benefits of CSs, and formalized the SSBM problem as an integer
programming optimization problem. Because the KM algorithm cannot be used to solve
the SSBM problem directly, we designed an improved KM algorithm, and compared it with
three benchmark approaches, i.e., MinR, MaxB and Cplex. Experimental results show:

(1) IKM, MinR, and MaxB have the same time performance. But in terms of utility, IKM
is between MinR and MaxB, and in terms of benefit-to-risk ratio, IKM outperforms
MinR and MaxB in most cases.

(2) IKM and Cplex have the same result in solving the SSMB problem. However, in terms
of performance, the time consumption of IKM is much less than that of Cplex.

Hence, comprehensively comparing these approaches, IKM is considered as a better
approach to finding the optimal solution to the SSBM problem.

For future work, we will make the service selection process more adaptable, so that if
the user’s privacy disclosure requirements and the cloud service environment change over
time, the service selection process will automatically adjust to achieve the new optimal
system utility. At the same time, the process of dynamically selecting services from different
CSPs according to user privacy requirements is very complicated and requires certain costs,
such as time cost, performance cost, etc. Therefore, another future direction is to evaluate
the cost-of-service selection, and use it as a basis for the user to decide whether to start a new
service selection process. Moreover, since this paper mainly analyzes the service selection
process through simulation experiments, we plan to further automate and transparent this
process in future work to provide a service selection tool that can be used in real-world
scenarios. Furthermore, we also plan to apply the proposed approach to other related
applications, such as crowdsourcing task assignment, big data task placement, service
selection in edge computing and IoT, etc.
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