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Abstract: In this article, a model-free control (MFC) using super twisting nonlinear fractional order
sliding mode for aerodynamic heating ground simulation of hypersonic vehicles (AHGSHV) is
proposed. Firstly, the mathematical model of AHGSHV is built up. To reduce order and simplify the
dynamic model of AHGSHV, an ultra-local model of MFC is taken into consideration. Then, time delay
estimation can be used to estimate systematic uncertainties and external unknown disturbances. On
the basis of the original fractional order sliding mode surface, the nonlinear function fal is introduced
to design the nonlinear fractional order sliding mode surface, which can guarantee stability, increase
convergence rate, and reduce static error and saturation error. In addition, the super twisting reaching
law is used to improve the control performance of the reaching phase, resulting from the existence
of sign function in the integral term, and it can effectively reduce the high-frequency chattering.
Moreover, the Lyapunov function is used to prove the stability of the whole system. Finally, several
numerical simulations show that the designed controller has more advantages than others.

Keywords: aerodynamic heating ground simulation; hypersonic vehicles; model-free control; nonlin-
ear fractional order sliding mode

MSC: 93B05; 93B18; 93B52

1. Introduction

During a high-speed flight, the surface of hypersonic vehicles (HV) [1] moves rel-
ative to the airstream, which generates a lot of heat, causing the rapidly rising surface
temperature of HV. This phenomenon is known as aerodynamic heating [2]. Excessive
surface temperature not only affects the normal operation of HV, but also poses a threat to
structural safety of the air frame and stability of internal electronic equipment. Therefore,
it is necessary to simulate the thermal environment of HV during high-speed flight for
thermal protection systems (TPS) [3].

There are two main kinds of aerodynamic heating ground simulation of hypersonic
vehicles (AHGSHV): convection heating [4] and radiation heating [5]. The wind tunnel [6]
is a typical convection heating facility, which is mainly realized by the high-speed relative
motion between the airstream medium and the test piece. Because of too high fight
Mach number, the complex thermal environment cannot be accurately simulated by the
wind tunnel. It just generally provides the limited data parameters for the design of
aerodynamic thermal shape structure, which is not suitable for the research of structural
characteristics. By contrast, radiation heating is based on the thermal effect of resistance to
radiate heat energy outward. The thermal radiation elements include chromium-nickel [7],
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silicon-carbon [8], graphite [9], and quartz lamps. Compared with other thermal radiation
elements, quartz lamp heaters [10] have some excellent properties, such as small size, large
power, small thermal inertia, and safe operation. Some researchers focus on studying quartz
lamp heaters. In [11], the power optimization of non-uniform aerodynamic heating based
on a quartz lamp array is analyzed. In [12], a numerical method based on a finite volume
method for a quartz lamp heating system is used for thermal testing. In [13], a new type of
quartz lamp heater with a high heating rate is up to 1500 ◦C. Based on the above research,
we establish a quartz lamp heaters platform for AHGSHV. In Figure 1, there are four parts
in the control system for AHSGSHV: a control center, a power regulator, quartz lamp
heaters, and temperature sensor. The control center can facilitate feedback information
exchanges between reference temperature trajectory and actual output temperature value,
associated with analog-to-digital conversion. The transistor, named silicon-controlled
rectifier (SCR), is a power regulator by adjusting the input power of quartz lamp heaters.
Quartz lamp heaters obtain different power values to have a controlled thermal radiation
ability and provide a variable thermal environment for untested HV. The temperature
sensor, K_Thermocouple, has a high-temperature detection ability and exchanges feedback
temperature values of the thermal environment to the control center.

Figure 1. The flow chart of the control system for AHGSHV [14].

The quartz lamp heaters platform, named AHGSHV system, is a nonlinear system
with large thermal inertia and time delay. For such a complex system, the traditional linear
controller cannot meet the requirements of accurate tracking. Therefore, a number of advanced
control theories have been applied widely for nonlinear objects, such as fuzzy logic control [15],
neural network control [16], adaptive control [17], and sliding mode control (SMC) [18]. In [15],
an interval type-2 fuzzy logic control combined with the Takagi-Sugeno-Kang (TSK) technique
is compared with a type-1 TSK fuzzy logic control and a traditional proportional-derivative
(PD) for an inverted pendulum and cart model. In [16], a reachability analysis approach of
neural network with Bernstein polynomials is proposed. In contrast with Sherlock and Verisig,
the proposed scheme can present comparable or even better approximation performance.
Among these control approaches, fuzzy logic control is independent of the accurate systematic
model and only requires input gain and output measurement, which has certain robustness to
fault tolerance; neural network control can approximate some nonlinear systems. However,
both of them need a large amount of rulemaking and parameter tuning, which may reduce
the likelihood and effectiveness of implementation.

In order to solve the problems mentioned above, model-free control (MFC) [19] is
taken into consideration for the AHGSHV system, which generally utilizes an ultra-local
model to replace the complex mathematical model of the controlled object, rather than
relying on the system dynamic model heavily. MFC usually has two parts: a closed-loop
controller and a real-time compensator. An intelligent proportional-integral-derivative
controller (IPID) is usually chosen as the closed-loop controller. In [20], an IPI sliding
mode control is developed for direct power control of the doubly fed induction generator
wind turbine systems in terms of stochastic wind and parameter variations. In [21], an
IPD neural network control based on time-delay estimation is applied to five DOFs lower
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limb exoskeleton. However, the linear superposition of PID can cause the contradiction
from rapidity to overshoot. Hence, SMC can be regarded as the closed-loop controller to
replace PID.

Sliding mode control (SMC) is one of the most influential methods and has the char-
acteristics of fast response, the insensitivity to dynamic uncertainties and disturbances.
Because of these advantages, SMC is widely used in a variety of controlled objects. In order
to enhance further control accuracy and convergence speed, many controllers combined
with SMC are put forward, such as terminal SMC, adaptive SMC, fuzzy SMC, and neural
networks SMC. In [22], a terminal SMC is proposed to control the position and attitude
of the quadrotor aircraft. In [23], a new adaptive sliding mode fault-tolerant control for
event-triggered dynamic systems is designed. In [24], a fuzzy SMC is proposed and applied
for the wind power generation system to achieve optimal power tracking by adjusting
the speed of the generator. In [25], for a class of piezoelectric actuated systems, a new
online neural-network-based SMC scheme is developed to obtain robust adaptive precision
motions. In [26], a sliding surface without a reaching phase is presented for uncertain
fractional-order systems. Two different methods, integer reaching law and fractional reach-
ing law, are applied to keep the trajectories on the initial sliding surface. At the same time,
these schemes are all integral order in lack extra degrees of freedom from integrator and
differentiator and it may lead to more chattering [27]. So, the fractional theory should be
combined with SMC.

The linear fractional order SMC (LFOSMC) is widely used in some controlled ob-
jects, such as permanent magnet synchronous motor [28], robotic manipulator [29], fully-
actuated, and under-actuated nonlinear systems [30]. In [31], this paper proposes a frac-
tional order PIλD sliding mode with a neural network for hypersonic vehicles. In [30],
an interval type-2 fuzzy fractional order super twisting algorithm (IT2FFOSTA) is em-
ployed for fully-actuated and under-actuated nonlinear systems. However, the structure
of LFOSMC is simple, and the tuning parameters are only the coefficients of proportional,
integral, and differential terms [32,33]. Then, a nonlinear FOSMC (NFOSMC) is designed by
referring to a nonlinear function fal [28,34], which has the characteristics of fast convergence
and reduces steady-state error and saturate error. NFOSMC contains the advantages of
LFOSMC and the nonlinear function fal [35]. In addition, combined with reaching the law
of super twisting algorithm, the sign function appears in the integral term, which can effec-
tively reduce the high-frequency chattering [36]. Based on NFOSMC and super twisting
algorithm, a super twisting nonlinear fractional order sliding mode control (STNFOSMC)
is proposed for the AHGSHV system.

On the other hand, because of some uncertainties and external disturbances of the
AHGSHV system, it cannot guarantee accurate convergence. In terms of a real-time com-
pensator, it can use an estimation technique to observe all unknown terms and disturbances.
Time delay estimation (TDE) [37] can effectively obtain the unknown lumped system
dynamics owing to time-delayed signals from inputs and outputs, instead of changing con-
troller gains or system parameters. TDE, as an estimation technique, provides a model-free
nature because of its simple structure and easy use. So, in this paper, a STNFOSMCTDE
based on MFC is designed for the AHGSHV system.

The main contributions of this paper are listed:

1. Based on the thermal radiation characteristics of quartz lamp heaters, an aerodynamic
heating ground simulation, named AHGSHV system, is established and we propose a
mathematical model of the AHGSHV system by energy conservation.

2. Due to high nonlinearities and strong couplings from trigonometric functions and high
order terms, a STNFOSMCTDE strategy is obtained to guarantee fast response, strong
robustness, and accurate tracking. In the frame of model-free control, a STNFOSMC,
as a closed-loop controller and a TDE, as lumped uncertainties estimator is integrated
into an ultra-local model.

3. The nonlinear function fal is introduced into a fractional order sliding mode surface
for the goal of reducing steady-state error and saturate error.
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4. A wing of HV is chosen as the calculated object and the reference temperature trajec-
tory in time sequence is got by flow simulation of SolidWorks 2018.

5. Through comparative simulations, simulation results are used to verify that the
STNFOSMCTDE controller is superior to the compared controller in terms of rapidity,
overshoot, and anti-interference ability.

In this paper, a conception of aerodynamic heating ground reproduction with quartz
lamp heaters is presented and we pay more attention to the theoretical analyses of the
AHGSHV system and its control method. However, we ignore that not only is the heating
environment considered, but also vibration, sound, and their coupling analyses are needed,
during a real hypersonic fighting environment.

The structure of this paper is as follows. In Section 2, the model of the AHGSHV
system is given in detail. In Section 3, the design of the controller is discussed and the
proof of Lyapunov stability is given. In Sections 4 and 5, comparison and analysis of
the simulation results are to verify the reliability of the proposed method. Finally, the
conclusions of the paper are presented in Section 6.

2. AHGSHV System Modeling

In this section, the flow chart of the AHGSHV system is introduced, and the math-
ematical model of the AHGSHV system is established, which is composed of two parts:
electrical energy and thermal radiation energy. As is shown in Figure 2, the whole system
mainly includes three parts: aerothermal data acquisition, control system, and experimental
feedback. In the first part, the parameters of HV’s three-dimensional model, material, flight
environment, flight altitude, flight speed, angle of attack and so on, should be predeter-
mined. Then, the thermal environment of HV is simulated through the hydrodynamics
simulation platform (SolidWorks 2018 Flow Simulation), and the numerical analysis results
are as the expected output value of the AHGSHV system, which are used to compare with
the actual output value in the control system. In the second part, the filament type of
quartz lamp heaters should be confirmed as well. According to the selected parameters,
the mathematical model of quartz lamp heaters is established, and the controller with good
robust performance is designed to track the expected output value. In the third part, the
TPS of HV is tested and analyze whether the selected materials and designed structures
can withstand the thermal environment.

Figure 2. The flow chart of the AHGSHV system.
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2.1. Electrical Energy

The AHGSHV system is based on quartz lamp heaters. By adjusting their input power,
the AHGSHV system can possess a controlled thermal radiation ability.

The electrical energy as the total input W(t) ∈ R+ of AHGSHV system (J) can be
calculated:

W(t) = P(t) ∗ t (1)

where, P(t) ∈ R+ is the electrical power (W) and t ∈ R+ is the heating time (S) of quartz
lamp heaters.

Concretely, on the basis of an SCR adjusting voltage circuit, P(t) can be described:

P(t) =
U2(t)

R
(2)

U(t) =

√
1
π

∫ π

α(t)

[√
2UI sin(ωt)

]2
d(ωt) = UI

√
sin[2α(t)]

2π
+

π − α(t)
π

(3)

where, U(t) ∈ R+ is the output voltage (V) of quartz lamp heaters; R ∈ R+ is the total
resistance of the quartz lamp filament; UI ∈ R+ is the voltage (V) of source; ωt ∈

[
0 π

]
is phase position (rad); α(t) ∈

[
0 π

]
is the conduction angle of the thyristor (rad).

Then, substituting (2) and (3) to (1), W(t) can be obtained:

W(t) = P(t) ∗ t =
U2

I
R

{
sin[2α(t)]

2π
+

π − α(t)
π

}
t (4)

2.2. Thermal Radiation Energy

The sum of thermal radiation energy generated by quartz lamp heaters [38] may consist
of four ones: internal energy of the constant volume heat capacity; heating losses from
heating conduction and heating radiation; viscous flowing energy dissipation; pressure
energy from expansion or compression.

In macroscopic size, the shear strength of the quartz lamp is weak, so the effect of
viscous dissipation on heat flow is slight, and the volume ratio of thermal expansion is
small. Hence, assuming that the whole system satisfies the following conditions: (1) heat
generated by viscous dissipation of specimens is not considered; (2) thermal expansion
during heat transfer in AHGSHV is ignored, Q(t) ∈ R+ (J) can be further got:

Q(t) = cm[T1(t)− T0] + A
{

β[T1(t)− T0] + λ[T1(t)− T0] + εσFT4
1 (t)t

}
(5)

where, the first term on the right represents the internal energy; c ∈ R+ and m ∈ R+ are the
specific heat capacity (J/kg·K) and the mass (kg) of the filament, respectively. T1(t) ∈ R+

and T0 ∈ R+ are the current temperature (K) and initial temperature (K), respectively;
the second term refers to the heat loss in the process of heat convection, heat conduction
and heat radiation; A ∈ R+ is a surface area (m2) of the quartz lamp tube; β ∈ R+ is
the convective coefficient (W/m2·K) and λ ∈ R+ is the conductive coefficient (W/m·K);
ε ∈ R+ is the blackness and σ ∈ R+ is the Stephen Boltzmann’s constant (W/m2·K4);
F ∈ R+ is an angle coefficient.

2.3. Energy Conservation of the AHGSHV System

According to the law of energy conservation, the AHGSHV system’s mathematical
model can be given:

U2
I

R

{
sin[2α(t)]

2π
+

π − α(t)
π

}
t = cm[T1(t)− T0] + A

{
β[T1(t)− T0] + λ[T1(t)− T0] + εσFT4

1 (t)∆t
}

(6)

As a consequence, we develop a link between T1(t) and α(t) as a fundamental mathe-
matical model of the whole AHGSHV system.
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3. Controller Design and Stability Analysis

In Figure 3, the super twisting nonlinear fractional order sliding mode mode-free
control with TDE (STNFOSMCTDE) is designed. The controller consists of two parts: MFC
based on TDE, and STNFOSMC. MFC is used to simplify the mathematical model. The
uncertainties and external disturbances are observed by TDE. Based on fractional order,
the nonlinear function fal is introduced to increase the convergence rate of the system, and
reduce the static error and saturation error. According to the sign function appearing on
the integral term, it can effectively reduce the chattering phenomenon caused by high-
frequency switching. Therefore, the control effect in the reaching phase can be improved
by combining it with the super twisting reaching law.

Figure 3. Schematic illustration for the STNFOSMCTDE control strategy.

3.1. Model-Free Control

To further reduce order and simplify the dynamic model of the AHGSHV system, we
introduce MFC, which can be well-explained by an ultra-local model. Its general form can
be written:

y(n)(t) = G(t) + χu(t) (7)

where, y(n)(t) is an nth-order derivative of output, and G(t) is the sum of all the unknown
disturbances, and χ is a constant without any concrete meaning. u(t) is the input.

As a change, taking the derivative (6) by t→ 0+ can be computed:

U2
I

R

{
sin[2α(t)]

2π
+

π − α(t)
π

}
= cm

dT1(t)
dt

+ A
[
(β + λ)

dT1(t)
dt

+ εσFT4
1 (t)

]
(8)

where dT1(t)/dt is the time derivative of T1(t), and (8) can be transformed:

dT1(t)
dt

=
1

cm + A(β + λ)

{
U2

I
R

{
sin[2α(t)]

2π
+ 1
}
− AεσFT4

1 (t)

}
−

U2
I

Rπ[cm + A(β + λ)]
α(t) (9)

According to (9), α(t) is the input corresponding to u(t) of (7), and dT1(t)/dt is
the output, which corresponds to y(n) and n is equal to 1. Considering that trigono-
metric functions have obvious periodic oscillations and high-order terms are nonlinear,{

U2
I {sin[2α(t)]/(2π) + 1}/R− AεσFT4

1 (t)
}

/[cm + A(β + λ)] can be viewed as the sum of
all the disturbances and they contain both the input disturbances and output disturbances,
corresponding to G(t) of (7). The polynomial parameters in front of α(t) can be determined
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by the specification of quartz lamp heaters, which corresponds to χ of (7). Therefore, the
complicated AHGSHV system can be replaced by an ultra-local model.

Define y∗(t) as the reference value of output, and e(t) as the tracking error of output,
e(t) can be expressed:

e(t) = y∗(t)− y(t) (10)

Substituting the derivative of (10) to (7), the tracking error equation can be calculated:

de(t)
dt

=
dy∗

dt
− G(t)− χu(t) (11)

3.2. Time Delay Estimation

The estimation of uncertainties and unknown disturbances is the key role of MFC.
TDE [39] uses time-delayed signals from system response and control input to estimate
the sum of unknown disturbances by introducing a small delay interval. The sum of the
unknown disturbances with a real time is approximately estimated. TDE is defined:

G(t) ≈ Ĝ(t) = G(t− ν) =
dy(t− ν)

dt
− χu(t− ν) (12)

where, ν ∈ R+ is a small delay interval (s), which depends on sampling period of hardware
and Ĝ(t) is the observation value of G(t).

Define the following equation:

G̃(t) = G(t)− Ĝ(t) (13)

where, G̃(t) is the observation error.
With the TDE observer, (11) can be further expressed:

de(t)
dt

=
dy∗

dt
− Ĝ− χu(t) (14)

3.3. STNFOSMCTDE

Compared with the traditional integer-order sliding mode controller, STNFOSMC
has three advantages. The first one is that fractional order PID has more extra degrees of
freedom from integrator and differentiator than integer-order PID. Secondly, the fractional
order PID combined with the nonlinear function fal has the characteristics of reducing
static error and saturation error and increasing the convergence speed. Thirdly, the super
twisting reaching law reduces the high-frequency chattering.

The nonlinear fractional order PID sliding mode surface is designed:

s1(t) = ϕna f al(e, γ, η) + ϕnbDφ−1
t f al(e, γ, η) + ϕncDψ

t f al(e, γ, η) (15)

where

f al(e, γ, η) =

{
|e(t)|γsign[e(t)] |e(t)| > η

e(t)
η1−γ |e(t)| < η

sign[e(t)] =


1 e(t) > 0
0 e(t) = 0
−1 e(t) < 0

0 < γ < 1, η > 0, and ϕna, ϕnb, and ϕnc are positive coefficients. φ > 1, ψ > 0, and Dφ−1
t , Dψ

t
are fractional integral and fractional derivative, respectively.

In addition, the f al(e, γ, η) is a piecewise form owing to the existence of |e(t)| = η;
during the sliding mode control, the (15) has the continuity property because the mentioned
above TDE is a real-time compensator. When the system state is at the points |e(t)| = η,
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TDE will be a feedforward compensator. The nonlinear term of f al(e, γ, η) is determined
by γ, and the static error can be changed by adjusting the value of γ. The larger e(t) and
the smaller gain make the system have minor saturation error. Besides, the another is that
the smaller e(t) and the larger gain led to the quick convergence.

The time derivative of s1(t) can be obtained:

ds1(t)
dt

=

{
ϕnaγ|e(t)|γ−1 de(t)

dt + ϕnbDφ
t f al(e, γ, η) + ϕncDψ+1

t f al(e, γ, η) |e(t)| > η
ϕna

η1−γ
de(t)

dt + ϕnbDφ
t f al(e, γ, η) + ϕncDψ+1

t f al(e, γ, η) |e(t)| < η
(16)

where the (15) has the differentiability except the points |e(t)| = η; because of the (12) as a
feedforward compensator, the (16) has the continuity property of its derivative.

Sliding mode surface must meet the requirement of accessibility. In order to ensure
that the sliding mode surface can be reached in any initial state, we use the reaching law
to ensure accessibility and normal motion phase. Super twisting algorithm combined
the reaching law function can reduce the chattering phenomenon which caused by high
frequency switching. Super twisting reaching law can be written:

ds1(t)
dt

= −λ3|s1(t)|1/2sign[s1(t)]− λ4

∫
sign[s1(t)]dt + g̃(t) (17)

where sign[s1(t)] =


1
0
−1

s1(t) > 0
s1(t) = 0
s1(t) < 0

, λ3 > 0 and λ4 > 0 are control rate of super

twisting reaching law. g̃(t) is the perturbation term and is globally bounded, which satisfies

g̃(t) =

{
ϕnaγ|e(t)|γ−1G̃(t) |e(t)| > η

ϕna
1

η1−γ G̃(t) |e(t)| < η
|g̃(t)| ≤ v|s1(t)|1/2 (18)

where v ∈ R.
Substituting (14) and (17) to (16), u(t) can be calculated:

u(t) =



χ−1 dy∗
dt − χ−1Ĝ + 1

ϕnaγ|e(t)|γ−1χ{
ϕnbDφ

t f al(e, γ, η) + ϕncDψ+1
t f al(e, γ, η) + λ3|s1(t)|1/2sign[s1(t)] + λ4

∫
sign[s1(t)]dt

}
|e(t)| > η

χ−1 dy∗
dt − χ−1Ĝ +

η1−γ

ϕnaχ{
ϕnbDφ

t f al(e, γ, η) + ϕncDψ+1
t f al(e, γ, η) + λ3|s1(t)|1/2sign[s1(t)] + λ4

∫
sign[s1(t)]dt

}
|e(t)| < η

(19)

3.4. Stability Analysis

In order to ensure that sliding mode surface meets the requirement of stability. The
following Lyapunov function [18,30] for the STNFOSMCTDE scheme is defined:

V(s) = 2λ4|s1(t)|+
1
2

(
−λ4

∫
sign[s1(t)]dt

)2
+

1
2

(
λ3|s1(t)|1/2sign[s1(t)] + λ4

∫
sign[s1(t)]dt

)2
(20)

The Lyapunov function can be written as a quadratic form:

V(s) = δTJδ (21)

where, δT =
[
|s1(t)|1/2sign[s1(t)] −λ4

∫
sign[s1(t)]dt

]
, J =

[
4λ4+λ3

2

2 − λ3
2

− λ3
2 1

]
. J is a

positive definite matrix and V(s) > 0.

To calculate
.

V(s), we must calculate
.
δ

T
. The time derivative of δT is:

.
δ

T
=

[
d
{
|s1(t)|1/2sign[s1(t)]

}
dt −d{λ4

∫
sign[s1(t)]dt}

dt

]
(22)
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where the first term of (22) is given:

d
{
|s1(t)|1/2sign[s1(t)]

}
dt

=
1
2
|s1(t)sign[s1(t)]|−1/2

{
−λ3|s1(t)|1/2sign[s1(t)]− λ4

∫
sign[s1(t)]dt + ṽ|s1(t)|1/2sign[s1(t)]

}
(23)

where, the second term of (22) is given:

−
d
{

λ4
∫

sign[s1(t)]dt
}

dt
= −λ4|s1(t)|1/2sign[s1(t)]∣∣∣|s1(t)|1/2sign[s1(t)]

∣∣∣ (24)

Then, substituting (23) and (24) to (22),
.
δ

T
can be written:

.
δ

T
= − 1

|s1(t)sign[s1(t)]|1/2 ∗
[
|s1(t)|1/2sign[s1(t)] −λ4

∫
sign[s1(t)]dt

]
∗
[

λ3−ṽ
2 λ4
− 1

2 0

]
= − δTK

|s1(t)sign[s1(t)]|1/2 (25)

where K =

[
λ3−ṽ

2 λ4
− 1

2 0

]
.

Then, substituting (25), δT and J, the time derivative of V(s) is:

.
V(s) = 2

.
δ

T
Jδ = − 2δTKJδ

|s1(t)sign[s1(t)]|1/2 = − 2δT

|s1(t)sign[s1(t)]|1/2

[
λ3−ṽ

2 λ4
− 1

2 0

]
∗ 1

2
∗
[

4λ4 + λ3
2 −λ3

−λ3 2

]
δ (26)

where

L = L1L2 =
λ3

2

[
2λ4 −

ṽ(4λ4+λ3
2)

λ3
+ λ3

2 −λ3 +
ṽ
2

−λ3 +
ṽ
2 1

]
L1 =

[
λ3−ṽ

2 λ4
− 1

2 0

]
L2 =

[
4λ4 + λ3

2 −λ3
−λ3 2

]
(27)

And L is a positive definite matrix when it satisfies
[
λ3
(
2λ4 + λ3

2)]/(4λ4 + λ3
2) > ṽ,

2λ4 − 4ṽλ4/λ3 − ṽ2/4 > 0, δTδ > 0, so,
.

V(s) < 0. Some details of the calculation L are
given in the Appendix A.

Using (21), an inequality can be obtained:

εmin{J}‖δ‖2
2 ≤ V(s) ≤ εmax{J}‖δ‖2

2 (28)

‖δ‖2
2 =

{
|s1(t)|1/2sign[s1(t)]

}2
+

{
−λ4

∫
sign[s1(t)]dt

}2
(29)

where ‖δ‖2
2 is the Euclidean norm; εmin{J} and εmax{J} are minimum eigenvalue and

maximum eigenvalue of matrix J, respectively.
Using (28), an inequality can be calculated:

ε1/2
min{J}‖δ‖2 ≤ V1/2(s) ≤ ε1/2

max{J}‖δ‖2 (30)

Using (29) and (30), inequalities can be got:

|s(t)|1/2 ≤ ‖δ‖2 ≤
V1/2(s)
ε1/2

min{J}
(31)

− ‖δ‖2
2 ≤ −

V(s)
εmax{J}

(32)

Using (31), an inequality can be got:

− 1/|s(t)|1/2 ≤ −
ε1/2

min{J}
V1/2(s)

(33)

Using (26), an inequality can be obtained:
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.
V(s) = − δTLδ

|s1(t)sign[s1(t)]|1/2 ≤ −
ζmin{L}‖δ‖2

2

|s1(t)sign[s1(t)]|1/2 (34)

where ζmin{L} is the minimum eigenvalue of matrix L.
The (34) can be calculated by (32) and (33):

.
V(s) ≤ − ζmin{L}‖δ‖2

2

|s1(t)sign[s1(t)]|1/2 ≤ −
ε1/2

min{J}ζmin{L}‖δ‖2
2

V1/2(s)
≤ −

ε1/2
min{J}ζmin{L}V(s)

V1/2(s)εmax{J}
(35)

Let
.

V(s) = −
ε1/2

min{J}ζmin{L}V1/2(s)
εmax{J}

= −ϑV1/2(s) (36)

where ϑ = ε1/2
min{J}ζmin{L}/εmax{J}; T = 2V1/2(s0)/ϑ; when the time is after T, the

system state can converge to 0 in finite time. Therefore, the stability of the AHGSHV
system can be proved. Moreover, the perturbation term g̃(t) is globally bounded by (18),
and δT is convergent, so, the observation error G̃(t) is also bounded, their gains satisfy:
λ4 > λ3

(
5vλ3 + 4v2)/(2λ3 − 4v) [40].

4. Flow Simulation Results

In this section, Flow Simulation of SolidWorks 2018 is used to simulate heating environ-
ment of HV with determined parameters which can obtain the reference output temperature.

The wing of HV is selected as the simulation object. The specific parameters of the
wing are as follows: wing root 3550 mm, wingspan 1250 mm, leading edge sweep angle 70◦,
trailing edge sweep angle 15◦, plate thickness 160 mm, leading edge radius 40 mm. The
material of the wing is nickel base superalloy GH105. The flight environment is: altitude
20 km, speed 5.5 Mach, angle of attack 10◦ cruise. Figure 4 is the wing model drawn in Flow
Simulation of SolidWorks according to the above parameters. As is shown in Figure 4b, it
is a three-dimensional simulation drawing of the model by Flow Simulation. In addition,
Figure 4c,d are the sampling points and a fitting curve of surface average temperature,
respectively. Figure 4d is used as the reference output value to compare the actual output
of the quartz lamp heaters controller. The fitting curve is:

y∗ = 7.224 ∗ 10−6t6 − 0.001041t5 + 0.05614t4 − 1.353t3 + 11.86t2 + 43.25t + 279.2 (37)

Figure 4. (a) Three-dimensional drawing and (b) flow simulation of the hypersonic vehicle’s wing;
(c) sampling points and (d) a fitting curve of surface average temperature.
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5. Simulation Results

In order to verify the superiority of STNFOSMCTDE, the simulation is carried out in
Matlab Simulink. At the same time, it is compared with LFOSMC, IPID and traditional PID
in actual output tracking, error tracking without and with external disturbances.

5.1. LFOSMC Controller

The sliding mode surface of LFOSMC is given:

s0(t) = ϕae(t) + ϕbDφ−1
t e(t) + ϕcDψ

t e(t) (38)

where ϕa > 0, ϕb > 0, ϕc > 0, and ϕa, ϕb, and ϕc are the coefficients of proportional,
integral and derivative terms of fractional order, respectively, which are used for parameters
adjustment; Dφ−1

t and Dψ
t are the fractional integral and derivative of the sliding mode

surface, respectively.
Super twisting reaching law of LFOSMC is written:

.
s0 = −λ1|s0(t)|1/2sign[s0(t)]− λ2

∫
sign[s0(t)]dt (39)

where λ1 and λ2 are control rate of super twisting reaching law.
According to (15), (38) and (39), LFOSMC is designed:

u(t) = χ−1 dy∗

dt
− χ−1Ĝ +

ϕbDφ
t e(t)

ϕaχ
+

ϕcDψ+1
t e(t)
ϕaχ

+
1

ϕaχ

{
λ1|s0(t)|1/2sign[s0(t)] + λ2

∫
sign[s0(t)]dt

}
(40)

5.2. IPID Controller and Traditional PID Controller

The AHGSHV system is closed the loop via the IPID controller which is designed as
follows:

u(t) = χ−1
[
−Ĝ +

dy∗

dt
+ Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)
dt

]
(41)

where Kp, Ki and Kd are the coefficients of proportional, integral and derivative terms of
IPID.

Traditional PID controller is defined as follows:

u(t) = Ktpe(t) + Kti

∫
e(t)dt + Ktd

de(t)
dt

(42)

where Ktp, Kti and Ktd are the coefficients of proportional, integral and derivative terms of
traditional PID.

5.3. Simulation Results Analysis

The specific parameters of the selected quartz lamp heaters are c = 130 J/kg·K,
ρ = 1.935× 104 kg/m3 , m = 1.46 × 10−2 kg, A = 2.9 × 10−3 m2, β = 11.6 W/m2·K,
λ = 174 W/m·K, UI = 220 V, R = 3.08 Ω, ε = 0.97, σ = 5.67× 10−8 W/m2·K4 , F = 1.
The parameters of STNFOSMCTDE are χ = −100, ν = 0.03, ϕna = 5, ϕnb = 1, ϕnc = 1,
φ = 0.5, ψ = 120.8, γ = 0.4, η = 0.3, λ3 = 1000, λ4 = 1; the parameters of LFOSMC
are χ = −300, ν = 0.03, ϕa = 1.5, ϕb = 0.5, ϕc = 110, φ = 80.5, ψ = 100.3, λ1 = 5000,
λ2 = 3000; the parameters of IPID and PID are χ = 500, ν = 0.03, Kp = −2000, Ki = −10,
Kd = −0.1, Ktp = −0.05, Kti = −10, Ktd = −0.006. All parameters are in Tables 1–5.
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Table 1. Parameters of the quartz lamp heaters.

Symbol Parameter (Unit) Description

c 130 J/kg·K specific heat capacity of the quartz lamp filament
ρ 1.935× 104 kg/m3 density of the quartz lamp filament
m 1.46× 10−2 kg mass of the quartz lamp filament
A 2.9× 10−3 m2 surface area of the quartz lamp tube
β 11.6 W/m2·K convective coefficient
λ 174 W/m·K conductive coefficient
UI 220 V voltage of source
R 3.08 Ω total resistance of the quartz lamp filament
ε 0.97 blackness
σ 5.67× 10−8 W/m2·K4 Stephen Boltzmann’s constant
F 1 angle coefficient

Table 2. Parameters of the STNFOSMCTDE controller.

ν ϕna ϕnb ϕnc φ

−100 0.03 5 1 1 0.5
ψ γ η λ3 λ4

120.8 0.4 0.3 1000 1

Table 3. Parameters of the LFOSMC controller.

χ ν ϕa ϕb ϕc

−300 0.03 1.5 0.5 110
φ ψ λ1 λ2

80.5 100.3 5000 3000

Table 4. Parameters of the IPID controller.

χ ν * Kp Ki Kd

500 0.03 −2000 −10 −0.1
* The sampling frequency of designed experiment platform is 100 HZ, and in this simulation, three times of
sampling period is chosen.

Table 5. Parameters of the traditional PID controller.

Ktp Kti Ktd

−0.05 −10 −0.006

As is shown in Figure 5, the tracking temperature trajectory performances have been
obtained with four different controllers. These simulation results effectively demonstrate
the superiorities of fractional order, nonlinear function fal, super twisting reaching law; TDE
and an ultra-local model. Figure 5a is a reference temperature trajectory of a hypersonic
vehicle’s wing corresponding to Equation (37), which is from 288.15 K to 1180.319 K. As
a whole, there is a similar trend of tracking temperature trajectory performances for four
different controllers. From the partial enlarged drawing of Figure 5c, STNFOSMCTDE and
LFOSMC have fast response and non-overshoot phenomena, whereas IPID and PID have
max overshoot because of FOSMC and super twisting reaching law. FOSMC can bring
extra degrees of freedom from integrator and differentiator and avoid some contradictions
between rapidity and overshoot from PID linear superposition. Moreover, from Figure 5f,
the chattering of PID is obvious from 0 s to 0.3 s and that of LFOSMC is very large after
3.0 s, but that of STNFOSMCTDE is very small after 6.0 s, because of the nonlinear function
fal, which achieves a balance between saturation error and convergent rate.
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Figure 5. Simulation results without extra disturbances: (a) reference temperature trajectory of
a hypersonic vehicle’s wing; (b) tracking temperature trajectory; (c) partial enlarged drawing of
tracking temperature trajectory; (d) tracking errors; (e,f) partial enlarged drawings of tracking errors
among (1) STNFOSMCTDE, (2) LFOSMC, (3) IPID and (4) PID.

Noting that the resistance of quartz lamp heaters changes with temperature, the
variational resistance is taken as the external disturbance. The external disturbance, time-
varying resistance, is expressed as:

R = 3.08 ∗ (1 + 0.0045y∗) (43)

In Figure 6a, there is a line of time-varying resistance respect to time and temperature.
From Figure 6f, the chattering of PID is more than 5.0 K from 0 s to 0.4 s, and those of
IPID and LFOSMC are obvious after 0.5 s, whereas that of STNFOSMCTDE is the same
as before which there is no external disturbances. No matter whether there are external
disturbances, STNFOSMCTDE has better rapidity and smaller overshoot. Some reasons are
explained: by contrast with PID, IPID has a TDE, as lumped uncertainties estimator, which
is integrated into an ultra-local model and TDE plays a role of online compensation; due to
adding the nonlinear function fal, fast response, strong robustness, and accurate tracking
are guaranteed simultaneously along with NFOSMC and super twisting reaching law.
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Figure 6. Simulation results with (a) extra disturbances: (b) tracking temperature trajectory; (c)
partial enlarged drawing of tracking temperature trajectory; (d) tracking errors; (e,f) partial enlarged
drawings of tracking errors among (1) STNFOSMCTDE, (2) LFOSMC, (3) IPID and (4) PID.

Figures 7 and 8 are some simulation results of tracking reference step temperature
trajectory without and with external disturbances, respectively. As is shown in Figure 7a,
the reference step temperature trajectory is 800 K between 0 s and 10 s and 1200 K after
10 s. The chattering of PID is obvious from 0 s to 0.3 s and from 10 s to 10.3 s, while
STNFOSMCTDE, LFOSMC and IPID are almost no chattering. Considering the external
disturbance in Figure 8, LFOSMC has the largest overshoot, followed by PID and IPID,
while STNFOSMCTDE has no overshoot. The chattering of the LFOSMC is very large and
close to 1400 K from 0 s to 0.03 s and 10 s to 10.03 s and that of PID is also obvious from 0 s
to 0.2 s and 10 s to 10.2 s. So, the step target can be tracked stably by STNFOSMCTDE.
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Figure 7. Simulation results without extra disturbances: (a) reference step temperature trajectory;
(b) tracking temperature trajectory; (c,d) partial enlarged drawings of tracking temperature trajectory;
(e) tracking errors; (f,g) partial enlarged drawings of tracking errors among (1) STNFOSMCTDE,
(2) LFOSMC, (3) IPID and (4) PID.
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Figure 8. Simulation results with (a) extra disturbances: (b) tracking temperature trajectory; (c) and
(d) partial enlarged drawings of tracking temperature trajectory; (e) tracking errors; (f,g) partial
enlarged drawings of tracking errors among (1) STNFOSMCTDE, (2) LFOSMC, (3) IPID and (4) PID.

Hence, these simulation results have demonstrated that the STNFOSMCTDE controller
is more effective than the other three controllers, because of fractional order, nonlinear
function fal, ST reaching law, and TDE. In addition, via model-free control, NFOSMC, super
twisting reaching law, and TDE are integrated into an ultra-local model to achieve high
tracking precision, fast convergent response, and strong robustness.

In addition, some numerical indicators [18,30] are calculated for quantitative compari-
son between STNFOSMCTDE and other schemes. These numerical indicators consist of
integral absolute error (IAE), average chattering magnitude (ACM), the average deviation
of the sliding variables (ADS), and control energy factor (CE). The calculation results are
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listed in Table 6. Some details are explained that condition 1 is tracking Figure 5a reference
temperature trajectory without external disturbances; condition 2 is tracking Figure 5a ref-
erence temperature trajectory with external disturbances; condition 3 is tracking Figure 7a
reference step temperature trajectory without external disturbances; condition 4 is tracking
Figure 7a reference step temperature trajectory with external disturbances.

Table 6. Numerical indicators for STNFOSMCTDE, LFOSMC, IPID, and PID.

IAE ACM ADS CE

STNFOSMCTDE 53.238 0.0259 3.978 424.261

Condition1
LFOSMC 79.631 0.0309 6.523 582.743

IPID 356.273 1.022 2324.482
PID 228.397 0.484 3377.336

STNFOSMCTDE 49.633 0.0752 0.325 374.457

Condition2
LFOSMC 60.723 0.0943 0.669 446.086

IPID 640.691 0.704 1300.251
PID 161.903 0.399 2707.088

STNFOSMCTDE 83.418 0.0529 1.5815 390.284

Condition3
LFOSMC 115.676 0.0824 2.0693 523.026

IPID 404.183 0.163 948.589
PID 534.141 0.175 942.382

STNFOSMCTDE 81.591 0.404 0.966 376.947

Condition4
LFOSMC 114.289 0.609 1.496 573.784

IPID 509.087 1.013 718.184
PID 774.194 1.509 1472.41

Referring to Table 6, STNFOSMCTDE has improved the dynamics performance in
comparison with LFOSMC over 33.1%, 15.9%, 39.1%, 27.2% in terms of IAE, ACM, ADS,
CE under the condition 1; 18.3%, 20.3%, 51.4%, 16.1% under condition 2; 27.9%, 35.8%,
23.6%, 25.4% under condition 3; 28.6%, 33.7%, 35.4%, 34.3% under condition 4. Accordingly,
the numerical indicators validate the superiority of STNFOSMCTDE to LFOSMC, IPID and
PID, in terms of control accuracy, convergence rate, and chattering.

6. Conclusions

In this paper, an aerodynamic heating ground simulation for HV, named AHGSHV
system, is set on the basis of thermal radiation characteristics of quartz lamp heaters.
According to the law of energy conservation, the mathematical model of AHGSHV system
is obtained with high nonlinearities and strong couplings from trigonometric functions
and high order terms. In order to guarantee satisfactory control performance, fractional
order, nonlinear function fal, super twisting reaching law, TDE are integrated into an
ultra-local model, called STNFOSMCTDE. Thanks to fractional order, it can provide extra
degrees of freedom from integrator and differentiator. The nonlinear function fal, combined
with super twisting reaching law, achieves a balance from saturation error to convergent
rate and reduces chattering phenomenon to further improve the rapidity and stability.
Moreover, TDE plays a key role of online compensation which can observe uncertain
terms and disturbances. Then, the stability of STNFOSMCTDE is proved by Lyapunov
stability proof method. Finally, two simulation software, SolidWorks 2018 and MATLAB,
are used to verify that some superiorities of STNFOSMCTDE to other controllers in terms
of rapidity, overshoot and anti-interference ability. Some numerical indicators validate the
effectiveness of STNFOSMCTDE in terms of IAE, ACM, ADS, CE for maximum 33.1%,
35.8%, 51.4%, 34.3%, respectively. In the future, we will pay more attention to AHGSHV
system experiments. For some selected HV, thermal protection experiments are ready with
STNFOSMCTDE. Moreover, coupled thermal, structural and vibrational analyses should
be considered.
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Appendix A

If L ∈ R2×2 is a positive definite matrix, then it satisfies:

2λ4 −
ṽ
(
4λ4 + λ3

2)
λ3

+ λ3
2 > 0

∣∣∣∣∣ 2λ4 −
ṽ(4λ4+λ3

2)
λ3

+ λ3
2 −λ3 +

ṽ
2

−λ3 +
ṽ
2 1

∣∣∣∣∣ > 0 (A1)

Based on λ3 > 0, λ4 > 0 and 0 < ṽ < v, the (A1) is calculated:

λ3
(
2λ4 + λ3

2)
4λ4 + λ32 > ṽ2λ4 −

4ṽλ4

λ3
− ṽ2

4
> 0 (A2)
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