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1. Introduction

Let Q : Rn → Rn be a homogeneous form of degree two. An autonomous polynomial
system of ODEs

v̇(t) = Q(v(t)),

where the vector function v is defined on some real interval, will be referred to as a quadratic
system. In the special case when n = 2, we can write such a system in the form

ẋ = α1x2 + 2β1xy + γ1y2

ẏ = α2x2 + 2β2xy + γ2y2,
(1)

where α1,2, β1,2, γ1,2 are real constants. The origin of Rn is always a critical point of a
quadratic system.

A (real) Markus algebra associated to a quadratic form Q, which will be denoted by
AQ, is a space Rn equipped with a (nonassociative in the general case) product (Rn, ·)
defined by

u · v =
1
2
(Q(u + v)−Q(u)−Q(v)).

This product is obviously commutative. The idea to study quadratic ODEs via its
real algebra was considered by many authors. In [1–3], Boujemaa et al. considered un-
boundedness of the solutions in quadratic systems and stated a reduction theorem based on
the existence of an ideal generated by an idempotent element. Burdujan [4–7] considered
quadratic systems with derivations, automorphisms, nilpotents of order three and the
application in Lie triple system theory. Krasnov et al. [8,9] considered the connections be-
tween algebras and integral (quadratic) systems and partial differential equations. Kinyon
and Sagle [10–12] considered many general relations between commutative algebras and
quadratic systems of ODEs and quadratic maps (for this paper the most important result is
the result on blow-up solutions [10]). Kutnjak [13,14] considered the relation between com-
mutative algebras and quadratic maps in correspondence to chaotic dynamics in quadratic
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homogeneous difference systems. Some partial results in R3 are known for the case when
the system contains a plane of singular points (for details, see [15]).

It is easy to verify that the Markus algebra of a planar quadratic system of the form (1)
has the following multiplication rules

· e1 e2

e1 α1e1 + α2e2 β1e1 + β2e2
e2 β1e1 + β2e2 γ1e1 + γ2e2

(2)

where the vectors e1 and e2 denote the standard basis of R2.
First applications of this ring-theoretic approach to the study of quadratic ODEs were

provided by Markus in [16]. The standard monograph on this topic is [17].
The methods using Markus algebras techniques are useful in the study of quadratic

systems because there exist many connections between the properties of quadratic systems
and their algebras. Some of those connections are (see [10,11,17] for proofs):

• The quadratic system v̇(t) = Q(v(t)) has ray solutions if and only if there exists a
nonzero idempotent in

(
AQ, ·

)
, i.e., an element e ∈ AQ such that e 6= 0 and e · e = e.

Any ray solution implies unstable dynamics near the origin. The solutions to v̇(t) =
Q(v(t)) lying on a line through the idempotent are called blow-up solutions. Note
that this implication holds in any dimension.

• The quadratic system v̇(t) = Q(v(t)) has a line of critical points if and only if there
exists a nonzero nilpotent of index two in

(
AQ, ·

)
, i.e., an element n ∈ AQ such that

n 6= 0 and n · n = 0.
• The quadratic system v̇(t) = Q(v(t)) has an invariant r-dimensional linear subspace

Er if and only if
(
AQ, ·

)
has an r-dimensional subalgebra [16]. Note that the invariance

of Er means that for any initial condition v0 ∈ Er the flow v(t; t0, v0) remains within
Er for any time t > t0 and any initial time t0 > 0.

• The quadratic system v̇(t) = Q(v(t)) can be solved by reduction if and only if the(
AQ, ·

)
contains a nontrivial ideal.

• If v̇ = Q1(v) and v̇ = Q2(v) are two quadratic systems defined on vector spaces V1 and
V2, respectively, and if A1 and A2 are the corresponding Markus algebras (associated
to Q1 and Q2, respectively), then a linear map Φ : V1 → V2 is a solution-preserving
map between the two systems if and only if Φ is a homomorphism from A1 into A2.
Those two systems are equivalent if and only if their Markus algebras are isomorphic.

The last statement is especially important, since it means that we can attempt to
fully classify possible behaviour of quadratic systems of a certain type if we develop the
classification theory for some class of nonassociative algebras and treat only those explicit
quadratic systems that emerge from such classification.

In the sequel, we will use terms idempotent and nilpotent in the restricted sense, i.e.,
they will only refer to nonzero elements.

The starting point for our first result in the above remarks and the following lemma
which proves that locally the trajectories of the scaled linear system and the (corresponding)
linear system coincide (up to the time scaling) in the half-planes determined by the common
factor of the quadratic system.

Lemma 1. The quadratic system

x′ = dx
dτ = (δx + γy)(ax + by) = Q1(x, y)

y′ = dy
dτ = (δx + γy)(cx + dy) = Q2(x, y)

(3)

with a common factor can be treated in terms of linear system

ẋ = dx
dt = ax + by = L1(x, y)

ẏ = dy
dt = cx + dy = L2(x, y).

(4)
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The common factor δx+γy of (3) represents a line of singular points and splits the (x, y)−plane
in two half-planes: on the half-plane δx + γy > 0 solutions of system (3) have the same orientation
as the solutions of (4), while on the half-plane δx + γy < 0, the solutions of quadratic system have
reversed time comparing to the linear one (i.e., t −τ).

Proof. Let us consider two ODEs corresponding to (3) and (4), respectively

dy
dx

=
cx + dy
ax + by

, (5)

dy
dx

=
(δx + γy)(cx + dy)
(δx + γy)(ax + by)

. (6)

By y = Sol(x0,y0)(x) let us denote the solution of (5) and (6) with initial condition
y(x0) = y0, where δx + γy 6= 0. Obviously the trajectories of (3) and (4) with the initial
conditions x(0) = x0, y(0) = y0 are lying on the (same) curves y = Sol(x0,y0)(x) in
(x, y)−plane. We just need to find out what is the time orientation of the trajectories.
Let (xN(τ), yN(τ)) denote the (parametric) solution of (3), and let (xL(t), yL(t)) denote the
(parametric) solution of (4). Then yL(t) = Sol(x0,y0)(xL(t)) and yN(τ) = Sol(x0,y0)(xN(τ)).

The relation between τ and t follows from x′
ẋ = y′

ẏ = dt
dτ = δx + γy:

• on the half-plane δx + γy > 0, dt
dτ is always positive, implying, (xN(τ), yN(τ)) and

(xL(t), yL(t)) have the same orientation
• on the half-plane δx + γy < 0, dt

dτ is always negative, implying, (xN(τ), yN(τ)) and
(xL(t), yL(t)) have the opposite orientation

It is of obvious interest whether the origin is a (Lyapunov) stable critical point or not.
In the planar case, the analysis is rather simple. In Theorem 1 we observe that the result
can be nicely expressed using a suitable 2× 2 matrix.

Theorem 1. A planar quadratic system has a stable origin if and only if it can be factorized in
the form [

ẋ
ẏ

]
= (γx + δy)

[
α β
−β α

][
x
y

]
(7)

where β is nonzero.

Proof. The result follows from Lemma 1, the one-to-one relation between systems and
algebras [16], the result [18] of Kaplan and Yorke on nilpotents and idempotents, and the
result due by Kinyon and Sagle on blow-up solutions [11].

According to the Kaplan–Yorke’s result, any real finite dimensional algebra contains
at least one nonzero idempotent or nonzero nilpotent of rank two. The existence of an
idempotent implies by result of Kinyon and Sagle unbounded trajectories starting arbitrary
close to origin which implies instability of the origin. In dimension two, this implies directly
that (1) must be of the form (3). Note that the line γx + δy represents the nilpotent in the
corresponding algebra (2). The rest of the proof follows by Lemma 1 and the well known
theory of planar linear systems; see for example ([19], Section 4) for details. ccording to
Lemma 1, just the phase portraits with bounded trajectories (i.e., foci and centres) assure
the stability of the origin in (3) which yields directly that (1) must be of the form (7) and
concludes the proof.

The main purpose of this paper is to show that matrix characterisation of stability also
has an alternative formulation which is ring-theoretic in nature.

To explain our new result, we must also consider an obvious complexification of
AQ which will be denoted by CQ. This complexification is an involutive complex algebra
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modeled on the space CQ = AQ ⊕ iAQ ≈ Cn. Its multiplicationby a complex number and
involution are defined by

(a, b) ◦ (c, d) = (a · c− b · d, a · d + b · c),
(ζ + iη)(a, b) = (ζa− ηb, ζb + ηa),

(a, b)∗ = (a,−b)

for all a, b, c, d ∈ AQ and all ζ, η ∈ R. We can identifyAQ with a real subalgebraAQ⊕{0} ⊂
CQ. The concept of an idempotent, i.e., an element satisfying e2 := e · e = e makes sense in
an arbitrary ring. The purpose of our paper is to formulate an analogue of Theorem 1 in
terms of purely ring theory framework and offer a possible path toward the generalization
to a three-dimensional real space stability problem.

2. Main Result

In this section, we prove our main result.

Theorem 2. A planar quadratic system, different from ẋ = 0, ẏ = 0, has a stable origin if and only
if its associated complex Markus algebra is spanned by (two) idempotents, while the only idempotent
in its associated real Markus algebra is the zero element.

We refer to the system ẋ = 0, ẏ = 0 as the trivial system. We will divide our arguments
into two separate statements.

Proposition 1. Let v̇ = Q(v) be one of the nontrivial planar systems from Theorem 1. Then
the only idempotent of AQ is its zero element. The algebra CQ contains precisely two nonzero
idempotents which are linearly independent over C, and therefore CQ = span{p1, p2) where
(p1)

2 = p1 and (p2)
2 = p2.

Proof. Systems from Theorem 1 can be rewritten as

ẋ = (γx + δy)(αx + βy) = αγx2 + (yαδ + yβγ)x + y2βδ,

ẏ = (γx + δy)(−βx + αy) = −βγx2 + (yαγ− yβδ)x + y2αδ

while the corresponding (real) Markus algebra is given by the following multiplication
rules

∗ e1 e2

e1 αγe1 − βγe2
1
2 (αδ + βγ)e1 +

1
2 (αγ− βδ)e2

e2
1
2 (αδ + βγ)e1 +

1
2 (αγ− βδ)e2 βδe1 + αδe2

The complex Markus algebra can be given by the same multiplication rules if we
assume (e1)

∗ = e1 and (e2)
∗ = e2 in addition. We can solve the equation p2 = p for both

algebras simultaneously if we use complex arithmetics.
The condition (xe1 + ye2)

2 = xe1 + ye2 leads, if we expand the left-hand side according
to the multiplication roules above, to the system

αγx2 + (αδ + βγ)xy + y2βδ = x
−βγx2 + (αγ− βδ)xy + y2αδ = y

Its solutions, apart from the obvious one, i.e., x = y = 0, are

x1 =
αγ− βδ + (αδ + βγ)i
(α2 + β2)(γ2 + δ2)

, y1 =
αδ + βγ + (βδ− αγ)i
(α2 + β2)(γ2 + δ2)
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and

x2 =
αγ− βδ− (αδ + βγ)i
(α2 + β2)(γ2 + δ2)

, y2 =
αδ + βγ + (αγ− βδ)i
(α2 + β2)(γ2 + δ2)

which is elementary. Those solutions are well-defined since γ = δ = 0 would imply ẋ = 0,
ẏ = 0, while β 6= 0 is an explicit assumption of Theorem 1. It is obvious that x2 = x1 and
y2 = y1 which implies

p2 = x2e1 + y2e2 = x1e1 + y1e2 = (x1e1 + y1e2)
∗ = p∗1

If we assume that all solutions are real, it follows

αδ + βγ = 0
βδ− αγ = 0

(8)

yielding
αβδ + β2γ = 0
αβδ− α2γ = 0

and
(α2 + β2)γ = 0

which implies γ = 0. This could only be possible under the condition δ 6= 0, but then

αδ = βδ = 0

would imply α = β = 0, which is a contradiction.
To prove that p1 and p2 are linearly independent, suppose for a moment that p1 = λp2. Since

p2
1 = p1 = λp2 and p2

1 = λ2 p2
2 = λ2 p2

it follows λ2 = λ, i.e., λ = 0 or λ = 1. Since p1 6= 0, the solution λ = 0 is not possible.
Therefore p1 and p2 should be equal, yielding

x1 = x2 and y1 = y2.

The above condition clearly coincides with system (8) which leads to a contradiction.

Proposition 2. Let Q : R2 → R2 be a quadratic form, such that the only idempotent ofAQ is zero,
while CQ is spanned by idempotents. Then there exists a linear transformation on R2 such that the
quadratic system v̇ = Q(v) is equivalent to one of the systems from Theorem 1.

Proof. Step 1. Let p1 = p ∈ CQ be a nonzero idempotent. Since p2 = p implies (p∗)2 =
(p2)∗ = p∗, it follows that p2 = p∗ is also an idempotent. Since AQ is isomorphic to
{x ∈ CQ : x∗ = x}, it follows p1 6= p2. Let us assume that p and p∗ are linearly dependent
over C. Since both are nonzero, there would exist λ ∈ C such that p∗ = λp. In the proof
of Proposition 1, we saw that λ must be 1, i.e., p∗ = p which contradicts our assumption
about AQ

Step 2. Since CQ is two-dimensional as a complex space, {p, p∗} is (one of) its basis.
This means that p ◦ p∗ must be a linear combination of those two elements, i.e., there exist
complex numbers ξ0 and ζ0 such that

p ◦ p∗ = ξ0 p + ζ0 p∗.

As the element p ◦ p∗ is self-adjoint, ζ0 = ξ0 follows. If ξ is any complex number, the element

ξ p + ξ p∗
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is self-adjoint, and thus of the form ξ p + ξ p∗ = (q, 0) for some q ∈ A. We assumed the
element q is not an idempotent. Therefore the equation

(ξ p + ξ p∗) ◦ (ξ p + ξ p∗) = ξ p + ξ p∗

must have ξ = 0 as its only solution. From

ξ2 p + 2ξξξ0 p + 2ξξξ0 p∗ + ξ
2 p∗ = ξ p + ξ p∗

and linear independence of p and p∗, we infer two equivalent equations of the form

ξ2 + 2ξξξ0 = ξ.

If ξ is nonzero, the simplified equation

ξ + 2ξξ0 = 1

must be unsolvable. If we conjugate this equation and multiply it by 2ξ0, we obtain the
following system

ξ + 2ξ0ξ = 1,
4|ξ0|2ξ + 2ξ0ξ = 2ξ0

(9)

whose solution is
ξ =

1− 2ξ0

1− 4|ξ0|2
; |ξ0| 6= 1/2.

Conversely, it is easy to check the complex algebra whose multiplication is given by

p ◦ p = p, p∗ ◦ p∗ = p∗, p ◦ p∗ = ξ0 p + ξ0 p∗, |ξ0| 6= 1/2

the element defined by
1− 2ξ0

1− 4|ξ0|2
p +

1− 2ξ0

1− 4|ξ0|2
p∗

is nonzero, self-adjoint and idempotent. Our assumption on nonexistence of such elements
now implies the only remaining possibility being ξ0 = 1

2 eiψ for some ψ ∈ [0, 2π). In this
case system (9) for ξ and ξ reduces to

ξ + 2ξ0ξ = 1,

ξ + 2ξ0ξ = 2ξ0,

which has (infinitely many) solutions only if ξ0 = 1
2 , i.e., ψ = 0 must also be excluded.

Step 3. We can decompose the idempotent p into p = a + ib where a, b ∈ AQ. Since
p 6= p∗, the element b must be nonzero. If a = 0 then p = ib, together with p2 = p, imply
ib = −b2. The left-hand side is an element of iAQ, while the right-hand side is the element
of AQ. This would imply b = 0 and consequently p = 0 which contradicts the assumption.

If a, b could be linearly dependent (we know they must be nonzero elements), then
there would exist a nonzero real number λ such that a = λb would hold. From

(λb + ib) ◦ (λb + ib) = λb + ib

we could derive, in the second component,

2λb2 = b.

If we define q = 2λb, we would have a nonzero element of AQ, satisfying

q2 = 2λ · 2λb2 = 2λ · b = q,
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which would contradict the assumption we made for this Proposition. Hence, a and b
cannot be linearly dependent.

Step 4. SinceAQ is two-dimensional, {a, b} is one of its bases. From the multiplication rules

p2 = p, p∗2 = p∗, p ◦ p∗ =
1
2

(
eiψ p + e−iψ p∗

)
(10)

we can easily compute that the multiplication rules for AQ are given by

a2 = cos ψ+1
2 a− sin ψ

2 b
a · b = b

2
b2 = cos ψ−1

2 a− sin ψ
2 b

(11)

corresponding quadratic system takes the form

ẋ = cos ψ+1
2 x2 + cos ψ−1

2 y2

ẏ = xy− sin ψ
2
(
x2 + y2) (12)

for some value of the parameter ψ ∈ (0, π].
Step 5. Assume first that ψ = π. Then system (12) takes the following form ẋ = −y2,

ẏ = xy which can be written in form of (7) as follows[
ẋ
ẏ

]
= (0x + 1y)

[
0 −1
1 0

][
x
y

]
,

i.e., α = 0, β = −1, γ = 0 and δ = 1.
If ψ ∈ (0, π), the system (12) is linearlly equivalent to

X′ = kY2

Y′ = 2XY + Y2 ; k < −1
8

(13)

where the transformation of the coordinates is given by x = 2X + Y, y = 2 1+cos ψ
sin ψ X +

(cot ψ)Y. Since sin ψ = − 1
4k

√
−(8k + 1) and cos ψ = −

(
1 + 1

4k

)
, this further implies

x = 2X +Y, y = 2√
−8k−1

X + (1+4k)√
−8k−1

Y. Next, note that the following change of coordinates

X = − 1
2 (αγ + βδ)u + 1

2 (−αδ + βγ)v
Y = 2αγu + 2αδv

transforms (13) into (7) [
u̇
v̇

]
= (γu + δv)

[
α β
−β α

][
u
v

]
.

The correspondence between the parameter k from (13) and parameters α, β from (7)
is the following

k = −α2 + β2

8α2 .

Remark 1. Note that the coordinate transformation

u = − 1
2 (cos ψ)x + 1

2 (sin ψ)y
v = (1 + cos ψ)x− (sin ψ)y
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takes system (12) into system (13). To verify this, quite tedious computations must be performed.

One has to use the following matrix
[

2 1
2 cot ψ

2 cot ψ

]
, the relation k = − 1

8 cos2 1
2 ψ

and the

following trigonometric identities:

• −4k cos ψ sin ψ− 4k sin ψ− sin ψ = 0,
• 2k− 2k

(
cos2 ψ

)
− cos ψ−1

2 = 0,

• 1
4 (sin 2ψ + 2 sin ψ)

(
cot ψ

2 − cot ψ
)
− cos2 ψ

2 = 0,

• cos2 ψ
2 −

cos ψ+1
2 = 0,

Proof of Theorem 2. If a planar quadratic system Q has a stable origin, it is linearly equiv-
alent to one of the systems 7. According to ([16], Theorem 1), its real Markus algebra AQ
is isomorphic to one of the real Markus algebras Aα,β,γ,δ corresponding to (7). It is easy
to see that the derived complex Markus algebras CQ and Cα,β,γ,δ are also isomorphic. By
Proposition 1, Aα,β,γ,δ has only the zero as an idempotent, while Cα,β,γ,δ is spanned by
idempotents. This clealy implies that the zero element is the only idempotent of AQ, while
CQ is spanned by idempotents.

Conversely, assume that the quadratic system Q is such that AQ contains only the
trivial idempotent, while CQ is spanned by idempotents. According to Proposition 1 and
Theorem 1, Q is linearly equivalent to some quadratic system with a stable origin. Since this
linear equivalence is clearly a bounded mapping, the system Q also has a stable origin.

3. Three-Dimensional Case

In this section, we prove that an immediate generalisation of Theorem 2 is not true in
R3. Such a conjecture would take a form

Statement 1. Let Q : R3 → R3 be a nonzero quadratic map. The system of ODEs v̇(t) =
Q(v(t)), different from v̇ = 0, (A) has a stable origin if and only if (B) its associated
complex Markus algebra is spanned by three idempotents. while the only idempotent in its
associated real Markus algebra is the zero element.

To this end. we consider two (counter)examples which prove that neither of both
implications in A⇔ B is true.

The first example contradicts the necessity of the conditions. In this example. the
origin will be shown to be unstable. while the corresponding algebra will contain enough
complex idempotents and no nontrivial real idempotent.

The second example contradicts the sufficiency of the conditions in the above attempt
of the generalization of Theorem 2. In this example. the system has an unstable origin but
enough complex idempotents.

Example 1 (e(B =⇒ A)). Let us consider the system

dx
dt

= −yz,
dy
dt

= xz,
dz
dt

= x2

with the corresponding multiplication rules

e2
1 = e3, e2

2 = e2
3 = 0, e1 ∗ e2 = 0, e1 ∗ e3 =

1
2

e2, e2 ∗ e3 = −1
2

e1.

The idempotents are determined by the solutions of

x = −yz, y = xz, z = x2 (14)

Obviously, any nontrivial solution must be nonzero in all three components. Therefore,
inserting x = −yz into y = xz yields 1 = −z2 (after canceling by y), proving all four solutions to
(14) being complex.
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A straigtforward computation yields exactly four nontrivial idempotents:(
i + 1√

2
,

i− 1√
2

, i
)

,
(
− i + 1√

2
,

1− i√
2

, i
)

,
(

i− 1√
2

,
i + 1√

2
,−i
)

,
(

1− i√
2

,− i + 1√
2

,−i
)

.

Obviously, condition (B) is fullfilled.
To prove (eA), let us search for a particular solution which is arbitrary close to origin and

tends to infinity when t is large enough. Dividing dy
dt = xz by dx

dt = −yz yields dy
dx = − x

y proving
that solutions lie on cyllinders x2 + y2 = r2.

Since dz
dt = x2 > 0, it is obvious that any solution to z(0) = ε > 0 is strictly increasing,

yielding instability of (x(t), y(t), z(t)) with initial condition (x(0), y(0), z(0)) = (r, 0, ε).
Since (r, 0, ε) is (for r � 1, ε � 1) arbitrarily close to (0, 0, 0) this yields instability of

the origin.
More precisely, the solution to dy

dx = − x
y with intitial condition x(0) = 0, y(0) = r is

x(t) = r cos(ω(t)), y(t) = r sin(ω(t))

where ω(0) = 0.
Either dx

dt = −yz or dy
dt = xz yields z(t) = ω′(t). The third equation dz

dt = x2, z(0) = ε
finally yields

ω′′(t) = r2 cos2(ω(t)), ω′(0) = ε, ω(0) = 0.

The series solution to this ODE is clearly

ω(t) = εt +
(

1
2

r2
)

t2 + h.o.t.,

yielding
z(t) = ω′(t) = ε + r2t + h.o.t.

Thus z(t)→ ∞, as t→ ∞, since r > 0. This clearly proves the instability of (0, 0, 0).

Example 2 (e(A =⇒ B)). Let us consider the system

dx
dt

= −z2,
dy
dt

= 0,
dz
dt

= 2xz

with corresponding multiplication rules

e2
1 = e2

2 = 0, e2
3 = −e1, e1 ∗ e2 = e2 ∗ e3 = 0, e1 ∗ e3 = e3.

The idempotents are determined by solutions of

x = −z2, y = 0, z = 2xz (15)

Obviously, any nontrivial solution must satisfy z 6= 0. Therefore, inserting x = −z2 into
z = 2xz yields 1 = −2z2 (after canceling by z), proving both solutions of (15) are complex.

A straigtforward computation shows that(
1
2

, 0,
i√
2

)
,
(

1
2

, 0,− i√
2

)
are the only two (nontrivial) linearly independent solutions to (15). This means there exists just two
nontrivial complex idempotents in this case.

Let us prove that the origin of (15) is stable.

• From dy
dt = 0, y(0) = ε we obtain y(t) = ε.
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• From dx
dt = −z2, dz

dt = 2xz (after dividing and cancelling the common factor) we get dz
dx =

−2 x
z , yielding

z2(t) + 2x2(t) = r2

for some (small enough) r.

Since
z2(t) + x2(t) < z2(t) + 2x2(t) = r2

and

y2(t) ≤ ε2

we obviously have

‖(x(t), y(t), z(t))‖2 = x2(t) + y2(t) + z2(t) ≤ r2 + ε2 f or all t > 0.

According to the (Lyapunov) definition of stability, for any ε > 0, there must exist δ > 0 such
that ‖(x(0), y(0), z(0))‖ < δ implies ‖(x(t), y(t), z(t))‖ < ε for all t ≥ t0.

Obviously, for ε >
√

r2 + ε2 one can choose δ :=
√

r2 + ε2 in order to prove the Lyapunov
stability of (0, 0, 0).

Both examples clearly show that the algebraic characterization of stability properties
of quadratic systems v̇(t) = Q(v(t)) is far from being simple even in R3 let alone in Rn for
n > 3. One attempt was to consider the relation between nilpotents and complex idempo-
tents and the spectral properties of the (corresponding left) multiplication of nilpotents
(see [15]), but in the sense of Example 1, this is clearly not the proper way towards the
adequate generalisation. It is well known that the existence of a subalgebra of the corre-
sponding algebra yields an invariant flow of the dynamical system v̇(t) = Q(v(t)) in Rn

(c.f. [11]). To successfully tackle the problem of stability in R3, one should have a classificia-
tion of all three-dimensional real algebras with a stable two-dimensional subalgebra. In [20],
such two-dimensional algebras were succesfully classified in terms of complex idempotent.
However, the (up to algebra isomorphism or up to linear equivalence) classification is
(at least for now) not feasible because of the complexity of the computations. The above
examples and some numerical experiments lead us to believe that one of the keys to solving
this difficult problem is connected with an additional condition: the (non)existence of a
two-dimensional subalgebra.

4. Possible Directions for Further Research

In the sequel, we will use the abreviation CMA for a complex Marcus algebra CQ
corresponding to a quadratic system of real ODEs v̇ = Q(v). The most important is

Problem 1. Classify all three-dimensional systems v̇ = Q(v) with a stable origin. In other words,
describe necessary and sufficient conditions for coefficients αi, βi, γi, δi, ζi, ηi (for i = 1, 2, 3) of
system of the type

x′ = Q1(x, y, z)

y′ = Q2(x, y, z)

z′ = Q3(x, y, z)

where
Qi(x, y, z) = αix2 + βiy2 + γiz2 + δixy ++ζiyz + ηizx

for O = (0, 0, 0) to be a stable singular point.



Mathematics 2022, 10, 1629 11 of 12

In the sequel, we will use the abreviation SSO for a system with a stable origin. The
idea of CMA as presented here is an attempt towards the final solution of the abovemen-
tioned problem.

This problem is not trivial, but we hope the full apparatus of complex analysis and
complex spectral theory of matrices can be fruitful. Direct calculations in R3 involve
18 coefficients and seem not to be the best possible approach. This is the reason why we
propose the introduction of CMA methods. Note also that the multiplication rules defined
in (10) involve only one real parameter.

The first obvious observation is that every invariant plane Π ⊂ R3 for a SSO generates
a 2-dimensional SSO in a natural way. If we translate this obvious remark in the laguage
of CMA, it is obvious that any two-dimensional subalgebra of a three-dimensional CMA
corresponding to a SSO must also correspond to the SSO of a two-dimensional CMA.
Precisely those algebras were classified in Theorem 2.

More precisely, if a three-dimensional CMA contains a two-dimensional subalgebra
which does not contain two complex idempotents p, p∗ with the properties defined in (10),
the original quadratic system is not a SSO. This implies that to classify all three-dimensional
SSOs, we propose to first solve

Problem 2. Classify all three- dimensional complex involutive algebras with at least one two-
dimensional subalgebra, whose two-dimensional subalgebras all satisfy properties in the formulation
of Theorem 2.

To fully solve Problem 1, our numerical experiments suggest that the following result
may be true.

Conjecture 1. If a three-dimensional CMA has no subalgebras of dimension 2, the original
quadratic system is not a SSO.

The simplest open problem which we intend to solve with the CMA method is

Problem 3. Let us consider a family of three-dimensional systems

ẋ = x2 − y2 + 2αxz + 2βyz
ẏ = −x2 − y2 − 2xy
z′ = 2γxz + 2δyz

(16)

where α, β , γ, δ are some real numbers. After change of time t 7→ 2τ, the corresponding CMA has
the following form

p2 = p, (p∗)2 = p∗, n2 = 0,
p · p∗ = i

2 (p− p∗), p · n = E, p∗ · n = E∗,

where E = 1
4 (α + iβ)(p + p∗) + 1

2 (γ + iδ)n.
Elements p and p∗ generate a two-dimensional subalgebra which is isomorphic to one of the

algebras from (11) when ψ = π
2 . Since the third dimension in this new basis is represented by a

nilpotent of rank two, we can deduce that the corresponding system (depending on α, β , γ, δ) has a
potentially stable origin. The problem is to describe precisely for which parameter values the origin
is stable.

We are currently working on its solution. The main idea is to find just one suitable
two-dimensional subalgebra which is not isomorphic to one of the algebras described in
Theorem 2, for most α, β, γ, δ and study the remaining cases.

Author Contributions: Conceptualization, B.Z. and M.M.; methodology, M.M and B.Z.; software,
M.M.; validation, B.Z.; investigation, M.M. and B.Z.; writing—original draft preparation, B.Z.;
writing—review and editing, M.M.; project administration, M.M.; funding acquisition, M.M. All
authors have read and agreed to the published version of the manuscript.



Mathematics 2022, 10, 1629 12 of 12

Funding: This work was supported by the Slovenian Research Agency: No. P1-0288 and N1-0063.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boujemaa, H.; El Qotbi, S. On unbounded polynomial dynamical systems. Glas. Mat. Ser. III 2018, 53, 343–357. [CrossRef]
2. Boujemaa, H.; El Qotbi, S.; Rouiouih, H. Stability of critical points of quadratic homogeneous dynamical systems. Glas. Mat. Ser.

III 2016, 51, 165–173. [CrossRef]
3. Boujemaa, H.; Rachidi, M.; Micali, A. On a class of nonassociative algebras: A reduction theorem for their associated quadratic

systems. Algebras Groups Geom. 2002, 19, 73–83.
4. Burdujan, I. Classification of a class of quadratic differential systems with derivations. Romai J. 2010, 6, 55–67.
5. Burdujan, I. Classification of quadratic differential systems on R3 having a nilpotent of order 3 derivation. Libertas Math. 2009, 29,

47–64.
6. Burdujan, I. A class of commutative algebras and their applications in Lie triple system theory. Romai J. 2007, 3, 15–39.
7. Burdujan, I. Automorphisms and derivations of homogeneous quadratic differential systems. Romai J. 2010, 6, 15–28.
8. Krasnov, Y.; Messika, I. Differential and integral equations in algebra. Funct. Differ. Equ. 2014, 21, 137–146.
9. Krasnov, Y. Properties of ODEs and PDEs in algebras. Complex Anal. Oper. Theory 2013, 7, 623–634. [CrossRef]
10. Kinyon, M.K.; Sagle, A.A. Quadratic Dynamical Systems and Algebras. J. Differ. Equ. 1995, 117, 67–126. [CrossRef]
11. Sagle, A.A.; Kinyon, M.K. Quadratic Systems, Blow-Up, and Algebras. In Non-Associative Algebra and Its Applications: Mathematics

and Its Applications; González, S., Ed.; Springer: Dordrecht, The Netherlands, 1994; Volume 303; pp. 367–371.
12. Sagle, A.; Schmitt, K. On second-order quadratic systems and algebras. Differ. Integr. Equ. 2011, 24, 877–894.
13. Mencinger, M.; Kutnjak, M. The dynamics of NQ-systems in the plane. Int. J. Bifur. Chaos Appl. Sci. Energy 2009, 19, 117–133.

[CrossRef]
14. Kutnjak, M.; Mencinger, M. A family of completely periodic quadratic discrete dynamical system. Int. J. Bifur. Chaos Appl. Sci.

Engrg. 2008, 18, 1425–1433. [CrossRef]
15. Mencinger, M. On stability of the origin in quadratic systems of ODEs via Markus approach. Nonlinearity 2003, 16, 201–218.

[CrossRef]
16. Markus, L. Quadratic Differential Equations and Nonassociative Algebras. Ann. Math. Stud. 1960, 45, 185–213.
17. Walcher, S. Algebras and Differential Equations; Hadronic Press Monographs in Mathematics; Hadronic Press, Inc.: Palm Harbor,

FL, USA, 1991.
18. Kaplan, J.L.; Yorke, J.A. Nonassociative, real algebras and quadratic differential equations. Nonlinear Anal. Theory Methods Appl.

1977, 3, 49–51. [CrossRef]
19. Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos; Elsevier AP: New York,

NY, USA, 2004; pp. 61–73.
20. Mencinger, M.; Zalar, B. Planar Lyapunov algebras. Algebra Colloq. 2020, 27, 433–446. [CrossRef]

http://doi.org/10.3336/gm.53.2.07
http://dx.doi.org/10.3336/gm.51.1.10
http://dx.doi.org/10.1007/s11785-012-0247-5
http://dx.doi.org/10.1006/jdeq.1995.1049
http://dx.doi.org/10.1142/S0218127409022786
http://dx.doi.org/10.1142/S0218127408021087
http://dx.doi.org/10.1088/0951-7715/16/1/313
http://dx.doi.org/10.1016/0362-546X(79)90033-6
http://dx.doi.org/10.1142/S1005386720000358

	Introduction
	Main Result
	Three-Dimensional Case
	Possible Directions for Further Research
	References

