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Abstract: The paper is devoted to a nonlocal reaction-diffusion equation describing the development
of viral infection in tissue, taking into account virus distribution in the space of genotypes, the
antiviral immune response, and natural genotype-dependent virus death. It is shown that infection
propagates as a reaction-diffusion wave. In some particular cases, the 2D problem can be reduced
to a 1D problem by separation of variables, allowing for proof of wave existence and stability. In
general, this reduction provides an approximation of the 2D problem by a 1D problem. The analysis
of the reduced problem allows us to determine how viral load and virulence depend on genotype
distribution, the strength of the immune response, and the level of immunity.
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1. Introduction

Viral infections are often accompanied by rapid virus mutations, leading to the emer-
gence of virus quasispecies [1–5] and their evolution [6–8]. Virus quasispecies are character-
ized by the presence of different but related genotypes [9–12], facilitating their adaptation to
the environment, facilitating more efficient infection of host cells and tissues [13–15], escap-
ing the immune system [16–19] and resisting antiviral drugs [20,21]. The genetic variation
of viruses (e.g., HIV type 1) can generate mutants that escape from CTL recognition [22–24].
Mutations that are not detrimental and still lead to escape are limited in number and math-
ematically can be described by a confined domain in the genotype space. For example, the
diversity of the HIV quasispecies observed during HIV infection increases at rate of about
1% per year (envelope gene) [25]. For a non-treated infection lasting on average 10 years, the
overall diversity will be about 10%. Immune system can also adapt to virus evolution [26],
resulting in the increase of target regions and in the shift in the immunodominance [27,28].

Mathematical models of virus evolution can be based on ODE systems [27,29] or
stochastic models [30,31], and they take into account the interactions in viral populations
and the disease pathogenesis [13,32]. Let us also mention some models that take into
account spatial virus distribution with diffusion and chemotaxis [33].

In this work, we will consider virus density distribution u(x, y, t) in some tissue of the
organisms as a function of the space variable x, of the genotype characteristics y considered
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as a continuous variable, and of time t. Taking into account random virus motion, its
mutations, multiplication and death, we obtain the following equation

∂u
∂t

= Dx
∂2u
∂x2 + Dy

∂2u
∂y2 + ku(1− bu)− f (I(u))u− σ(y)u (1)

considered in the space interval 0 ≤ x ≤ Lx and genotype interval |y| ≤ Ly with the no-flux
boundary conditions

x = 0, Lx :
∂u
∂x

= 0, y = ±Ly :
∂u
∂y

= 0. (2)

Diffusion coefficients Dx and Dy, and virus multiplication rate k, are positive constants;

inverse carrying capacity b is non-negative; and I(u) =
∫ Ly
−Ly

u(x, y, t)dy . In the mathe-
matical analysis of this problem, we will also consider it in the whole two-dimensional
space R2, assuming that both variables x and y can adopt all real values. This mathematical
approximation is applicable if the solution of this equation evolves sufficiently far from the
boundary of the domain.

The first term in the right-hand side of Equation (1) describes virus displacement in
the tissue, and the second term characterizes its random mutations. Virus multiplication
rate is determined by the logistic function with a normalized carrying capacity. Virus death
occurs due to its elimination by the immune cells or due to its natural genotype-dependent
mortality with the rate σ(y)u.

The concentration of immune cells C depends on the virus density since adaptive
immune response is stimulated by the antigen. Cytotoxic T-lymphocytes migrate towards
the infected tissue attracted by the inflammatory cytokines, and their local concentration
is proportional to the local concentration of the infected cells. Hence, in the simplest
formulation we set C = f (u), where f (u) is a non-negative function determined for u ≥ 0.
Two cases can be considered: this function can grow with saturation or it can grow for u
sufficiently small and decrease for u sufficiently large due to death of the immune cells
taking place at high virus densities. Assuming that immune response is independent of
virus genotype, we get its dependence on the total virus density, f = f (I(u)).

In our previous works, we have studied 1D problems with either spatial virus distri-
bution [34] or genotype distribution [35]. Systems of two equations for the virus density
and for the concentration of immune cells were considered in [36]. In this work, we will
consider the interaction of spatial virus distribution with its genotype characterization.

Let us consider the stationary 1D equation in the y-direction:

Dy
d2u
dy2 + ku(1− bu− f (I(u))− σ(y)u = 0 (3)

for y ∈ R. This equation describes virus distribution with respect to its genotype, taking
into account its reproduction and its elimination by the immune response and due to the
genotype-dependent mortality. A positive solution to this equation decaying at infinity
corresponds to a virus quasi-species concentrated around some of the most frequent
genotypes and decaying as the genotype goes away from this value [37].

The goal of this work is to study infection spread in the tissue or organ, taking into
account the virus distribution with respect to its genotype. Therefore, we introduce the
second variable x corresponding to the space coordinate in the tissue. Clearly, real biological
tissues should be considered in 3D. The 1D approximation is justified if the solution does
not depend on the other two variables. We study in this work how the virus quasi-species
spreads in the tissue. From the mathematical point of view, we study propagation of
travelling waves of Equation (1), that is, solutions of the form u(x, y, t) = U(x− ct, y) with
some limits U±(y) = U(±∞, y) at infinity. Here, U±(y) are some solutions of Equation (3).
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Figure 1 shows a typical structure of travelling wave propagating in the x-direction and
characterizing the quasi-species distribution with respect to the genotype variable y.

and decrease for u sufficiently large due to death of the immune cells taking place at high
virus densities. Assuming that immune response is independent of virus genotype, we get
its dependence on the total virus density, f = f(I(u)).

In our previous works we have studied 1D problems with either spatial virus distribution
[39] or genotype distribution [34]. Systems of two equations for the virus density and for
the concentration of immune cells were considered in [40]. In this work we will consider the
interaction of spatial virus distribution with its genotype characterization.

Figure 1: A snapshot of solution u(x, y, t) of equation (1.1) without immune response (f(u) =
0) and with a piece-wise constant genotype-dependent mortality σ(y). The cross section in
the y-direction (genetic variable) shows a stationary distribution describing virus quasi-
species. It has a maximum for some most frequent genotype, and it rapidly decays as the
genotype moves away. This virus quasi-species progresses in the tissue (variable x).

Let us consider the stationary 1D equation in the y-direction:

Dy
d2u

dy2
+ ku(1 − bu − f(I(u)) − σ(y)u = 0 (1.3)

for y ∈ R. This equation describes virus distribution with respect to its genotype taking
into account its reproduction and its elimination by the immune response and due to the
genotype-dependent mortality. A positive solutions of this equation decaying at infinity
corresponds to a virus quasi-species concentrated around some most frequent genotypes and
decaying as the genotype goes away from this value [41].

3

Figure 1. A snapshot of solution u(x, y, t) of Equation (1) without immune response ( f (u) = 0) and
with a piece-wise constant genotype-dependent mortality σ(y). The cross section in the y-direction
(genetic variable) shows a stationary distribution describing virus quasi-species. It has a maximum
for some most frequent genotype, and it rapidly decays as the genotype moves away. This virus
quasi-species progresses in the tissue (variable x).

We begin with a particular case where b = 0 and the 2D problem can be reduced to
some 1D problem depending on the x-variable (Section 2). It includes as a parameter the
principal eigenvalue of some eigenvalue problem in the y-direction. This reduction allows
us to carry out a detailed study of the dynamics of solutions. If b 6= 0, then the 1D problem
depending on parameter provides an approximation of the 2D problem (Sections 3 and 4).
We use it to investigate the main features of infection progression and to determine how
virus virulence and viral load depend on the width of genotype distribution, the strength
of immune response, and the level of immunity (Section 5).

2. Wave Existence and Stability

We begin with a particular case b = 0, for which Equation (1) writes

∂u
∂t

= Dx
∂2u
∂x2 + Dy

∂2u
∂y2 + ku(1− f (Iy(u)))− σ(y)u. (4)

We consider it in the whole R2, and we look for its solution in the form:

u(x, y, t) = v(x, t)φ(y),

assuming that the initial condition u(x, y, 0) satisfies a similar representation:

u(x, y, 0) = v0(x)φ(y). (5)

After the separation of variables(
−∂v

∂t
+ Dx

∂2v
∂x2 + kv(1− f (vI(φ)))

)
φ = −v

(
Dyφ′′ + σ(y)φ

)
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we obtain the equality

− ∂v
∂t + Dx

∂2v
∂x2 + kv(1− f (vI(φ)))

v
=
−Dyφ′′ + σ(y)φ

φ
= λ,

where λ is a constant. Hence,

∂v
∂t

= Dx
∂2v
∂x2 + kv(1− f (vI(φ)))− λv, (6)

Dyφ′′ − σ(y)φ + λφ = 0. (7)

Let λ0 < 0 be the principle eigenvalue of the operator

L0φ = Dφ′′ − σ(y)φ,

and φ0 the corresponding eigenfunction. Then, φ0(y) > 0 for all y ∈ R. Without loss of
generality, we suppose that I(φ) = 1. We set λ = −λ0 > 0. Then, φ0(y) satisfies this
equation. We can now write Equation (6) as follows:

∂v
∂t

= Dx
∂2v
∂x2 + kv(1− f (v))− λv. (8)

Thus, we have reduced 2D nonlocal Equation (4) to 1D local Equation (8). This
reduction allows us to formulate the results on wave existence and stability.

Theorem 1. Suppose that the function σ(y) is continuous, and it has the limits σ± = limy→±∞ σ(y)
at infinity, σ± < 0. Let λ0 be the principal eigenvalue of the operator L0φ = Dyφ′′ − σ(y)φ such
that max(σ+, σ−) < λ0 < 0. Then, solution u(x, y, t) of the Cauchy problem (4), (5) can be
represented in the form u(x, y, t) = v(x, t)φ0(y), where v(x, t) satisfies of Equation (8), where
λ = −λ0, v(x, 0) = v0(x), φ0(y) is the eigenfunction of the operator L0 corresponding to the
principal eigenvalue, and φ0(y) > 0 for all y ∈ R.

The proof of the theorem is a consequence of the consideration above. We take into
account that the principal eigenvalue of the operator L0 is real and simple, and that the
corresponding eigenfunction is positive if λ0 > max(σ+, σ−) [38]. The assumption that
the function σ(y) has limits at infinity allows for an explicit determination of the essential
spectrum, Se = {λ ∈ R, λ ≤ max(σ+, σ−). If the limits do not exist, the essential spectrum
cannot be explicitly determined but it can be estimated. The theorem remains applicable if
the principal eigenvalue of the operator L0 is greater than its upper bound. Let us also note
that solution of problem (4), (5) is unique.

Reduction of Equation (4) to the 1D equation provided by Theorem 1 leads to the
following result on the wave existence.

Theorem 2. Under conditions of the previous theorem, let the function Fλ(u) = ku(1− f (u))−
λu have a single positive zero u1, such that F′λ(u1) < 0. Then, Equation (4) has travelling wave
solutions u(x, y, t) = U(x− ct, y), monotonically decreasing as a function of x, with the limits

U(−∞, y) = u1φ0(y) , U(∞, y) = 0.

Such solutions exist for all c ≥ c0, where c0 > 0 is a minimal speed, and they do not exist for
c < c0.

The proof of the theorem follows from the corresponding results for the scalar reaction-
diffusion equation in the monostable case [39]. According to the construction, travelling
wave solutions of Equation (4) have the form Uc(ξ, y) = wc(ξ)φ(y), where wc(ξ), c ≥ c0 is
a monotonically decreasing solution of the problem
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Dxw′′ + cw′ + Fλ(w) = 0 , w(−∞) = u1 , w(∞) = 0. (9)

An example of an analytical solution is constructed in the Appendix A.

Theorem 3. Suppose that the function Fλ(u) is such that Fλ(0) = Fλ(u1) = 0, Fλ(u) > 0 for
0 < u < u1, and F′λ(0) > 0. If v0(x) = 0 for all x sufficiently large and limx→−∞ v0(x) > 0,
then solution u(x, y, t) of Equation (4) with initial condition (6) converges to the wave Uc0 with the
minimal speed c0.

As before, this theorem follows from the corresponding results for the 1D Equation [39]
(see [40] and the references therein). Convergence here occurs in form and in speed. More
general results and convergence to the waves with other speeds can be obtained.

3. 1D Problem Depending on the Eigenvalue

We consider the one-dimensional equation

∂v
∂t

= Dx
∂2v
∂x2 + kv(Kλ − bv− f (v)), (10)

where Kλ = 1− λ/k, and −λ = λ0 is the principal eigenvalue of the operator L0v =
Dyv′′ − σ(y)v. For b = 0, this equation is obtained from the 2D problem by separation of
variables. For b 6= 0, this reduction does not work, and we will use this equation as an
approximation of the 2D problem. We set here b = 1 and k = 1.

3.1. Properties of the Principal Eigenvalue

Consider the eigenvalue problem

Dyφ′′ − σ(y)φ = λφ , φ(±∞) = 0 (11)

on the whole real axis. In order to get a more complete information about the dependence
of the principal eigenvalue λ0 on parameters, we consider a piece-wise constant function
σ(y):

σ(y) =
{

0 , |y| ≤ y0
σ0 , |y| > y0

,

where y0 and σ0 are some positive numbers. We will assume that σ0 > 1 (for k = 1). Hence,
the essential spectrum of problem (3) belongs to the left-half plane.

This eigenvalue problem can be solved analytically. Let us note that the eigenvalue
with the maximal real part of this problem is negative. Set µ = −λ0/Dy, σ1 = σ0/Dy. Then,
µ satisfies the equation

tan(
√

µy0) =

√
σ1

µ
− 1 , µ < σ1. (12)

Consider the minimal positive solution of this equation located at the first growing
branch of tangent for 0 <

√
µ < π/(2y0). Since the right-hand side of Equation (12) is

a decreasing function of µ, such solution exists for any y0 and σ1. The corresponding
eigenfunction is given by the following expression:

φ0(y) =
{

k1 cos(
√

µy) , |y| ≤ y0
k1 cos(

√
µy0)e−

√
σ1−µ|y−y0| , |y| > y0

.

Assuming that I(φ0) = 1, we find k1:

k1 =
µ
√

σ1 − µ

2σ1 cos(
√

µy0)
=

√
µ(σ1 − µ)

σ1 sin(
√

µy0)
.
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Consider the limiting cases. If y0 → 0, then it follows from Equation (12) that µ→ σ1.
Hence λ0 → −σ0, k1 → 0. If y0 → ∞, then it follows from Equation (12) that µ → 0 and
tan
(√

µy0
)
→ ∞. From the second equality for k1, we conclude that k1 → 0. Hence, the

maximum of the eigenfunction increases for small y0 and decreases for large y0. Similar
properties hold for a smoothed function σ(y).

3.2. Dynamics of 1D Waves

Dynamics of solutions of Equation (10) are studied for a wide class of functions f (v)
(see [40] and the references therein). We will consider for certainty the function f (v) =
(a1v + a2)e−a3v qualitatively describing the properties of immune response as a function of
viral load. Here, a1, a2, a3 are some non-negative numbers. Set Fλ(v) = v(1− λ− v− f (v)),
where λ = −λ0 > 0, and λ0 is the principal eigenvalue of problem (11). The function Fλ(v)
vanishes at v0 = 0, and it has up to three positive zeros v1, v2, v3 denoted in the growing
order (Figure 2).

Figure 2. Function Fλ(v) = v(1− λ− v− f (v)) for λ = 0 (upper curve), λ = 0.1 (middle curve), and
λ = 0.2 (lower curve), f (v) = (a1v + a2)e−a3v, a1 = 13, a2 = 0, a3 = 6.

Equation (10) has a solution v(x, t) = V(x− ct), that is, travelling wave with a speed c.
For the function Fλ(v) shown in Figure 2 (middle curve), there are three positive zeros and
two different types of waves. The [v0, v1]-waves are the waves with the limits V(−∞) = v1
and V(∞) = v0(= 0) at infinity. This is so-called monostable case since the point v0 is
unstable with respect to the equation dv/dt = Fλ(v), and the point v1 is stable. Such waves
can be monotone as functions of x and non-monotone. The latter are unstable, and we will
not consider them here. The monotone waves exist for all c ≥ c0, where the minimal speed

c0 can be found by the formula c0 = 2
√

DxF′λ(0) = 2
√

Dx(1− λ) since F(v) ≤ F′(0)v [39].
These waves are stable in a properly chosen space [40].

Let us recall that λ is determined by the principal eigenvalue λ0 = −λ of problem (11).
It can be found from Equation (12) (µ = −λ0/Dy). Therefore, we can determine the minimal
speed of the monostable wave. Its dependence on y0 is shown in Figure 3 (dashed curve).

The second wave is the [v1, v3]-wave, which corresponds to the bistable case since
both points v1 and v3 are stable as stationary points of equation dv/dt = Fλ(v). Such wave
exists for a unique value of speed c1; it is monotone as a function of x, and it is globally
asymptotically stable. Its speed cannot be found analytically except for the case c1 = 0,
which is reached if and only if the integral J(v1, v3) =

∫ v3
v1

Fλ(v)dv equals 0. The case of
zero speed separates the cases where infection spreads in the tissue (positive speed) and
where it does not spread (negative speed). We will discuss this question below.

Behavior of solutions of Equation (11) depends on the relation between the speeds
c0 and c1, and on the initial condition. For the function Fλ(v) considered here, c0 > c1. In
this case, there are two consecutive waves propagating one after another. The monostable
[v0, v1]-wave is followed by the ]v1, v2]-wave.
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Denote the initial condition for Equation (11) by v0(x) (Cauchy problem). For simplic-
ity of presentation, suppose that it is a monotonically decreasing function with the limits
v0(−∞) = v∗, v(∞) = 0 at infinity. Then, for v∗ < v2, the solution v(x, t) converges to the
monostable [v0, v1]-wave. We will restrict ourselves here to the convergence to the wave
with the minimal speed that occurs, in particular, in the case where v0(x) ≡ 0 for all x
that are sufficiently large. This case is most appropriate for applications and numerical
simulations. If v∗ > v2, then the solution converges to the system of two waves, monostable
and bistable, propagating one after another with different speeds.

Figure 3. Wave speed for the 1D Equation (10) (dashed line) and for the 2D Equation (1) (solid lines).
Curves 1 and 3 correspond to the monostable and bistable waves, respectively, for the same values of
parameters, and curve 2 shows the transition from the bistable wave to the monostable wave. The
values of parameters are Dx = Dy = 0.005, k = 1, σ0 = 1.1, f (v) = a1ve−a3v, a3 = 6, a1 = 15 (curves
1, 3, and dashed curve), and a1 = 13 (curve 2).

3.3. Dependence on λ

We discussed above behavior of solutions of Equation (11) for a fixed value of λ for
which the function Fλ(v) has three positive zeros. Let us now analyze how this behavior
depends on the value of λ. Let us recall that λ depends on y0 and decreases from σ0 to 0 as
y0 increases.

There are four critical values of λ that determine the behaviour of solutions (Table 1).
The first one, λ1 = 1, is such that Fλ(v) < 0 for all v > 0 if 1 < λ < σ0. In this case, the
waves do not exist. For any v0(x) (initial condition), the solution v(x, t) converges to 0.
If λ < λ1(= 1), then the function Fλ(v) has a positive zero v1. There exist monostable
[v0, v1]-waves, as described above.

If λ becomes less than the next critical value λ2, then two more positive zeros v2 and
v3 of the function Fλ(v) appear. In this case, in addition to the monostable [v0, v1]-waves,
there is a bistable [v1, v3]-wave with a negative speed. It becomes positive for λ < λ3. This
critical value is determined by the equality J(v1, v3) = 0. Let us note that the minimal
speed increases with the decrease of λ for the monostable wave, similar to the single speed
of the bistable wave. If 0 < c1 < c0, there is a system of two waves. As we discussed
above, solution can converge either to the monostable wave or to the system of two waves
depending on the initial condition. Zeros v1 and v2 merge for λ = λ4 and disappear
(Figure 2, upper curve). We return to the monostable case with the [v0, v3]-waves.
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Table 1. Four critical values λ1, λ2, λ3, λ4, determine the intervals of λ with different stationary points,
waves, and their speeds.

No. λ Stationary Points Waves Speed

1 λ1 < λ < σ0 v0 = 0 - -
2 λ2 < λ < λ1 v0, v1 monostable [v0, v1]-waves c ≥ c0 = 2

√
Dx(1− λ)

3 λ3 < λ < λ2 v0, v1, v2, v3 monostable, bistable c ≥ c0, c1 < 0
4 λ4 < λ < λ3 v0, v1, v2, v3 monostable, bistable c ≥ c0, 0 < c1 < c0
5 0 < λ < λ4 v0, v3 monostable [v0, v3]-waves c ≥ c0

3.4. Dependence on f (v)

Parameter a1 characterizes the strength of immune response. Varying a1, we get the
types of function Fλ(v) similar to those considered above. Parameter a2 determines the
presence of immunity from the previous infection or vaccine. If a2 > 1, then v0 is a stable
stationary point. It is globally stable (for v > 0) if Fλ(v) < 0 for all positive v and locally
stable if Fλ(v) changes sign. In the latter case, there is a bistable [v0, v2]-wave with a positive
or negative depending on the sign of the integral

∫ v2
v0

Fλ(v)dv.

4. 2D Wave Dynamics

In this section, we study dynamics of solutions of Equation (1) with b 6= 0. We will
show that it correlates with the dynamics of solutions of 1D equation considered in the
previous section.

4.1. Influence of the Genotype Distribution

Virus density distribution with respect to the genotype is determined by the function
σ(y). We will vary the value of y0 characterizing the width of this distribution, keeping
σ0 constant. For sufficiently small values of y0, the trivial solution u = 0 of Equation (1) is
stable and wave propagation is not observed. For larger values of y0, the trivial solution
loses its stability. Equation

Dy
d2u
dy2 + ku(1− u− f (I(u)))− σ(y)u = 0 (13)

has a positive solution U1(y), and there is a wave propagating in the x-direction with the
limits u(−∞, y) = U1(y), u(∞, y) = U0(= 0) at infinity (Figure 4, right). These limits are
solutions of Equation (13). If we increase y0, the speed of this wave also increases (curves 1
in Figure 3).

For y0 > 0.42, another solution is observed for the same values of parameters. It
consists of two consecutive waves (Figure 4, left). A small amplitude wave is the same as
in Figure 4, right (the scaling in the figures is different). It is followed by a high amplitude
wave with a smaller speed. The presence of this second wave indicates the existence of
another positive stationary solution U3(y) of Equation (13), which is presumably stable.
Therefore, we can expect that they are separated by an unstable solution U2(y) that is not
observed in the simulations. Thus, there exists a monstable [U0, U1]-wave, and a bistable
[U1, U3]-wave. If the initial condition is small enough, the single small-amplitude wave
propagates. If the initial condition is sufficiently large, then we observe the system of two
waves. The speed of the bistable wave increases with y0 (curve 2 in Figure 3).
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Figure 4. Snapshots of solutions of Equation (1) with two different initial conditions and the same
values of parameters. Two waves with different speeds propagate one after another for a sufficiently
large initial condition (left). A faster monostable wave with a small amplitude is followed by a
slower bistable wave with a large amplitude. If the initial condition is small enough, then only
the fast monostable wave with a small amplitude is observed (right). The values of parameters:
Dx = Dy = 0.005, b = 1, k = 1, y0 = 0.5, f (u) = (a1u + a2)e−a3u, a1 = 15, a2 = 0, a3 = 6.

4.2. Comparison with 1D Problem

We will now compare the 2D problem with the 1D problem, depending on the eigen-
value for the same and fixed values of parameters and varying y0. If y0 is less than the
first critical value, 0 < y0 < y1

c , then both solutions converge to the trivial solution. In
both cases, we find y1

c = 0.02. Let us recall that we determine the principal eigenvalue of
problem (11) as a function of y0. These values of y0 correspond to the first line in Table 1.

The monostable wave is observed for both problems for y0 > y1
c . The speeds of such

waves are shown in Figure 3 (curve 1 and dashed curve). The wave speeds have a similar
dependence on y0. We recall that this is the minimal speed of the 1D wave. In the case
of 2D problem, we observe only one wave in numerical simulations. Therefore, strictly
speaking, we cannot affirm that there are also waves with larger speeds. We can conjecture
their existence by analogy with the 1D equation. This case corresponds to line 2 in Table 1.

In the next interval of values of y0, y2
c < y0 < y3

c , along with the monostable wave,
there exists a bistable wave with a negative speed. The speed becomes positive for y > y3

c
(lines 3 and 4 in Table 1). For the chosen values of parameters, y3

c ≈ 0.42 for the 2D problem
and 0.38 for the 1D problem. The latter is found analytically from the condition J(v1, v3) = 0
(Section 3). The speed of the bistable wave increases as a function of y0 (Figure 3, curve 3).

4.3. Parameter Dependence

For the values of parameters considered above (a1 = 15, a2 = 0, a3 = 6) and λ = 0,
the function Fλ(v) has three positive zeros, v1, v2, and v3. If we increase a1, then zeros v2
and v3 approach each other, merge, and disappear. In this case, there is the only positive
zero v1 and the monostable [v0, v1]-waves. This case is similar to the case of large λ
considered above.

If we decrease a1, then zeros v1 and v2 merge and disappear. In this case, there is
the only positive zero v3 and the monostable [v0, v3]-waves. This case was not considered
above. Set a0 = 13 and consider dynamics of 2D waves for different values of y0. The
difference in comparison with the previous case (a1 = 15) manifests itself in the behavior of
the bistable wave for y0 > 0.5. Its speed rapidly grows and approaches the minimal speed
of the monostable wave (Figure 3, curve 2). The bistable [v1, v3]-wave and the monostable
[v0, v1]-wave disappear for y0 ≈ 0.7, resulting in the emergence of the monostable [v0, v3]-
wave. In the 1D problem, this transition occurs for the same value of y0 (λ ≈ 0.02).
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Modelling and simulations presented above were carried out for a2 = 0. Function
Fλ(v) becomes qualitatively different if a2 > 1. The stationary solution v0 = 0 of the
equation dv/dt = Fλ(v) becomes stable, and the function Fλ(v) may not have positive
zeros or have two of them (the degenerate case of merged zeros is not considered). In
the first case, the trivial solution of the 1D problem is globally asymptotically stable. In
the second case, this problem has a bistable [v0, v2]-wave. The sign of its speed can be
positive or negative depending on the other parameters. The transition between them
is determined by the equality J(v0, v2) = 0. Numerical simulations of the 2D problem
also reveal the existence of a large amplitude [U0, U2]-wave where U0 = 0, U2(y) > 0 is
a solution of Equation (13). Its speed changes sign for y0 = 0.45, for which λ = 0.046
(a1 = 13, a2 = 1.1, a3 = 6, σ0 = 1.1, Dx = Dy = 0.005, and k = 1), and the speed of the 1D is
also close to zero.

Thus, dynamics of the 1D waves depending on the eigenvalue and of the 2D waves
are similar to each other. They show the existence of the monostable and bistable waves,
and of a monostable-bistable wave. Their parameter dependence is also analogous.

5. The Properties of Infection Progression

We will study in this section how infection spread in the tissue is influenced by the
genotype distribution, the initial viral load, the strength of immune response, and the
presence of immunity. We will characterize infection progression and immune response in
terms of the parameters of the model.

• Genotype distribution. Virus genotype distribution depends on parameter y0 charac-
terizing the interval where the virus reproduction rate exceeds its natural mortality
rate (without immune response), and on the mutation rate that determines the diffu-
sion coefficient Dy. These two parameters determine the principal eigenvalue λ0 of
problem (11). Let us note that proportional decrease of Dy and y0 does not change λ0,
so that the results presented above are appropriate in a wide range of mutation rates.

• Initial viral load. The initial viral load corresponds to the initial condition for
Equations (1) or (10). In 2D simulations, we set u0(x, y) = u∗0 for 0 ≤ x ≤ lx and
|y| ≤ ly with some positive numbers lx and ly, and u0(x, y) = 0 otherwise. In this
context, the initial viral load V0 is the integral of the initial condition, V0 = 2lxlyu∗0 .

• Strength of immune response. Adaptive immune response proceeds by clonal expan-
sion of lymphocytes due to the interaction with antigens-presenting cells (macrophages,
dendritic cells). For small viral loads, increase of the level of pathogens in the organism
intensifies the immune response. Some viral infections can affect the functioning of
lymphocytes by downregulating their proliferation and increasing their death (e.g.,
HIV, LCMV [41] but not coronavirus). Therefore, the function f (u) increases for small
u and decreases for large u. Stronger immune response corresponds to a larger func-
tion f (u). In modelling, we characterize the strength of immune response by the value
of parameter a1.

• Immunity. Vaccination and previous infections can lead to the appearance of antibod-
ies and memory cells responding to a new antigen. This response can be attenuated
by the reduced affinity to the antigen of the immunity mediators (antibodies, T cell
receptors). Immunity slows down infection progression and accelerates clonal ex-
pansion of immune cells. We model the presence of immunity by the coefficient a2.
If it is positive, then immune response starts from some positive value under the
introduction of antigen, f (0) > 0. Infection-free equilibrium v0 = 0 becomes stable
for sufficiently narrow genotype distribution y0, and infection is eliminated unless the
initial viral load is sufficiently large to cause its persistent progression.

• Viral load. The level of infection in the tissue determines the severity of symptoms and
the intensity of infection transmission to other individuals. Viral load is determined
by all factors presented in the previous paragraphs. In modelling, it corresponds to
the virus density distribution after the wave propagation.
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• Virus virulence. Virus virulence is characterized by its spreading rate. In modelling, it
is determined by the coefficient k in Equation (1). In the absence of immune response,
it is related to the minimal speed of the monostable wave c0 = 2

√
Dxk. Multiplicity of

infection tests in cell culture [42] characterize the virulence of infection by the speed of
viral plaque growth, that is, by the wave speed. We will also characterize the virulence
of infection by the wave speed in the presence of immune response.

We will determine how viral load and virulence depend on the strength of immune
response, the level of immunity, and the width of the genotype distribution. Since the 2D
problem can be approximate with the 1D problem depending on eigenvalue, we will use
the latter for the investigation of infection progression. It will allow us to obtain a relatively
simple analytical description of its main features.

If the disease-free equilibrium v0 = 0 is stable, then infection does not develop
for sufficiently small initial viral loads and solution uniformly converges to 0. If it is
unstable, then a positive disease equilibrium appears and there is a wave of infection
propagation. Figure 5 shows the stability region depending on the width of genotype
distribution (parameter y0) and on the level of immunity (coefficient a2 = f (0)). If the latter
is large enough, then the disease free equilibrium is stable. In the 1D problem, the stability
boundary is determined by the function a2 = 1 − λ(y0), where λ(y0) is the principal
eigenvalue of problem (11) (up to sign). The stability boundary for the 1D problem is
compared with the result of numerical simulation of the 2D problem. Let us note that the
disease-free equilibrium can be globally stable or stable only to small perturbations. In the
second case, there are two positive stationary points and a bistable wave describing disease
progression for a sufficiently large initial viral load. We will return to this question below.

Figure 5. The critical value of immunity (coefficient a2) is shown as a function of the width of
the genotype distribution (y0). If the value of immunity exceeds the critical value, then infection
is eliminated. Otherwise, it progresses. Solid line represents the results of 2D simulations, and
dashed line is given by the formula a2 = 1− λ(y0) for the 1D problem. The values of parameters:
Dx = Dy = 0.005, b = 1, k = 1, f (u) = (a1u + a2)e−a3u, a1 = 15, and a3 = 6.

Next, we study how the virulence of infection depends on the level of immunity. We de-
termine the virulence as the minimal speed of the monostable wave,
c0 = 2

√
Dx(1− λ(y0)− f (0)). For a fixed width of genotype distribution, it becomes

a function of a2 = f (0), that is, a function of immune memory protection in the absence of
pathogen. As it can be expected, the virulence of infection decreases with the increase of
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immunity level (Figure 6). Infection does not develop if immunity level exceeds the critical
value where the curve crosses the x-axis.

Figure 6. Dependence of virulence (wave speed) on immunity (a2). The minimal wave speed is found
by the formula c0 = 2

√
Dxk(1− λ(y0)− a2) for the 1D problem. The upper curve corresponds to

λ = 0 (limit of large y0), the middle curve to λ = 0.17 (y0 = 0.1), and the lower curve to λ = 0.41
(y0 = 0.2). The values of parameters: Dx = Dy = 0.005, b = 1, k = 1, f (v) = (a1v + a2)e−a3v, a1 = 15,
and a3 = 6.

Viral load is an independent characteristic with respect to virus virulence. We deter-
mine it as the maximal level of virus concentration during infection progression in the
tissue. Hence, in the 1D problem, it corresponds to positive zeros of the function Fλ(v).
There are two essentially different cases presented in Figure 7. Curve 1 corresponds to the
bistable case with two positive zeros v1 and v2; v1 < v2; and a bistable [v0, v2]-wave. The
value v1 is on the lower branch of this curve, and v2 on the upper branch. Let us recall that
the initial condition in the 1D problem considered on the whole axis is a function v0(x)
with the limits v0(−∞) = v∗, v0(∞) = 0. Here, v∗ is the initial viral load. If it exceeds
v1, then the solution converges to the bistable wave with the maximal value (viral load)
v2. If v∗ < v1, then the solution uniformly converges to 0 and infection is eliminated. If
the strength of immune response (parameter a1) is larger then some critical value, then
there are no positive zeros of the function Fλ(v). The disease-free equilibrium v0 is globally
stable, and infection is eliminated for any initial viral load.

The second curve corresponds to the case with up to three positive zeros of the function
Fλ(v) and the existence of either monostable or monostable-bistable waves. The lower
branch of the curve shows the value of v1, the middle branch v2, and the upper branch
v3. For a weak immune response, there is only one positive solution at the upper branch
and the corresponding large amplitude monostable [v0, v3]-wave. For a strong immune
response, there is the monostable [v0, v1]-wave with small amplitude. For the intermediate
values, there are three positive zeros and the monostable-bistable system of waves, where
the monostable [v0, v1]-wave is followed by the bistable [v1, v3]-wave with a smaller speed.
In this case, if the initial viral load is small enough, then the final viral load remains small.
If the initial viral load is sufficiently large, then the viral load proceeds in two consecutive
steps, first a small one, then a large one. In terms of disease progression, a mild form of the
disease is followed by a severe form.
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Figure 7. Dependence of the viral load (wave amplitude) on the strength of immune response (a1) for
the 1D problem. The wave amplitude is found as a solution of the equation Fλ(v) = 0. The values
of parameters: Dx = Dy = 0.005, b = 1, k = 1, f (v) = (a1v + a2)e−a3v, Curve 1: a2 = 0.7, a3 = 6,
λ = 0.41 (y0 = 0.1). Curve 2: a2 = 0, a3 = 6, λ = 0.17 (y0 = 0.2).

6. Discussion

Viral infection development in the tissues of the host organism depends on many
factors determined by the pathogen and by the immune response to the infection. In this
work, we study the influence of virus genotype distribution on spatial infection spreading.

6.1. Model

The model suggested in this work is a generalization of the 1D model introduced
in [34] for the infection spreading in the tissue. This 1D model describes spatiotemporal
virus distribution taking into account its random motion, reproduction, and elimination
due to the immune response.

In order to study virus density distribution with respect to its genotype, we need to
introduce its genotypical characteristic as a continuous variable. The simplest way to do
it is to consider a sequence of consecutive mutations and the corresponding genotypes
denoted by yi. Transition from the genotype yi to the genotype yi+1 occurs due to one of
the mutations of this sequence. Let ui be the virus density corresponding to the genotype yi.
Assuming that all mutations are reversible and have the same rate, we obtain the following
equations for ui:

dui
dt

= µ(ui+1 − 2ui + ui−1).

It is a discrete version of the diffusion equation. Diffusion coefficient Dy = µ(∆y)2

depends on the probability of mutations µ and on the characteristic space interval ∆y. The
half-length y0 of the admissible interval can be represented as y0 = k∆y, where k is the
number of mutations from the most frequent genotype to the end of viability interval.

The ratio Dy/y2
0 = µ/k2, independent of ∆y, determines the principle eigenvalue of

the operator L0. Therefore, solutions are characterized by the value µ/k2 and not by the
individual parameters Dy and y0.

The combination of the space variable x and the genotype variable y allows us to study
the influence of genotype distribution on infection spreading. The method developed in
this work is also applicable for the equation with time delay.

6.2. Method and Results

The method developed in this work implies the reduction of the 2D problem to a
1D problem in the x-direction and to some eigenvalue problem in the y-direction. In a
particular case, this reduction is exact. It allows us to study the existence and stability of
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travelling waves. The case with time delay, though not considered in this work, can be
studied by the same method. Dynamics of 1D solutions with time delay is investigated
in [34,43].

In the general case, the exact reduction of the 2D problem to the 1D problem is not
possible. We consider the 1D problem depending on the eigenvalue as an approximation
of the 2D problem. In some limiting cases, this approximation might be possible to justify
by more rigourous mathematical considerations but this question is beyond the scope of
this work. Numerical simulations of the 2D problem are in a good agreement with the
analytical results for the 1D problem.

We use the 1D problem depending on the eigenvalue in order to study the progres-
sion of viral infection. Virus virulence (wave speed) and viral load (wave amplitude) are
determined by the width of the genotype distribution (y0), strength of immune response
(a1), level of immunity ( f (0)), and the initial viral load (initial condition). Detailed charac-
terization of infection progression is presented in the previous section. Let us mention here
that the increase of the width of the genotype distribution increases virus virulence and
viral load.

6.3. Limitations and Perspectives

We consider a simplified model of infection development where immune response is
reduced to a function f (u) describing the immune cell concentration depending on virus
density. This model follows from a more detailed model due to a quasi-stationary approxi-
mation [36]. Time delay characterizing the duration of the clonal expansion of immune cells
is not taken into account in order to simplify the presentation and to concentrate on other
aspects of the problem. The dependence of the virus density distribution on the genotype
variable is considered in the simplest approximation of reversible consecutive mutations.
Finally, the developed model provides the tool for comprehensive analysis and evaluation
of the link between the viral evolution and immune escape from the immunodominant
CD8+ T cell responses [44]. More complex mutation patterns can be considered.

Author Contributions: Investigation, V.V.; Methodology, G.B.; Software, N.B. All authors have read
and agreed to the published version of the manuscript.

Funding: The research was funded by the Russian Science Foundation (Grant no. 18-11-00171). G.B.
was partly supported by Moscow Center of Fundamental and Applied Mathematics (agreement with
the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Analytical Solution for Nonlocal Equation

We will construct here the analytical solution of the equation

D
(

∂2u
∂x2 +

∂2u
∂y2

)
+ c

∂u
∂x

+ ku(1− Iy(u))− σ(y)u = 0, (A1)

where c is the speed of the wave, and

σ(y) =
{

0 , |y| ≤ 1
σ0 , |y| > 1

. (A2)
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In what follows we set D = 1. We look for the solution of Equation (A1) in the
form: u(x, y) = v(x)φ(y), where φ(y) = φ1(y) for |y| ≤ 1 and φ(y) = φ2(y) for |y| > 1.
Substituting these expressions into the equation, we obtain for |y| ≤ 1:

v′′φ + vφ′′ + cv′φ + kvφ(1− vI(φ)) = 0,

where v′ = dv/dx, φ′ = dφ/dy, Iy(u) = vI(φ). Separating the variables in the last equation,
we have

v′′ + cv′ + kv(1− vI)
v

= −φ′′

φ
= λ1.

The left-hand side of this equality depends only on x, the next expression depends
only on y. Therefore, both of them equal some constant λ1. Hence,{

v′′ + cv′ + kv(1− vI)− λ1v = 0
φ′′ + λ1φ = 0

, |y| ≤ 1. (A3)

Similarly, {
v′′ + cv′ + kv(1− vI)− σ0v− λ2v = 0

φ′′ + λ2φ = 0
, |y| > 1. (A4)

We set
λ1 = λ2 + σ0, (A5)

such that v(x) satisfies the same equation in (A3) and in (A4). Next, we suppose that λ1 > 0
and λ2 < 0. Then

φ1(y) = a1 cos(
√

λ1y) , φ2(y) = a2e−
√

µy ,

where µ = −λ2, a1 and a2 are arbitrary constants. From the conditions φ1(1) = φ2(1),
φ′1(1) = φ′2(1) (similar conditions at y = −1),{

a1 cos(
√

λ1) = a2e−
√

µ

−a1
√

λ1 sin(
√

λ1) = −
√

µa2e−
√

µ . (A6)

Dividing the second equation in (A6) by the first one and taking into account (A5), we
obtain the equation with respect to λ1:

tan
√

λ1 =

√
σ0 − λ1

λ1
, 0 < λ1 < σ0. (A7)

This equation has at least one solution for any σ0 > 0. It can have more than one
solution for σ0 sufficiently large. Thus,

φ(y) =


ae
√

µ cos(
√

λ1)e
√

µy , y ≤ −1
a cos(

√
λ1y) , −1 ≤ y ≤ 1

ae
√

µ cos(
√

λ1)e−
√

µy , y ≥ 1
, (A8)

where a is an arbitrary positive constant, λ1 is a solution of Equation (A7), µ = −λ2 =
σ0 − λ1,

I(φ) = 2a
(

1√
µ

cos(
√

λ1) +
1√
λ1

sin(
√

λ1)

)
. (A9)

In order to determine solutions of the first equation in (A5), consider the problem

w′′ + cw′ + kw(1− w)− λ1w = 0, (A10)

w(−∞) = (k− λ1)/k , w(∞) = 0. (A11)



Mathematics 2022, 10, 96 16 of 17

Equation (A10) is similar to the KPP equation. It has a monotonically decreasing
solution if λ1 < k for all c ≥ c0, where c0 = 2

√
k− λ1.

From the first equation in (A5) we obtain v = w/I. Hence, u(x, y) = w(x)φ(y)/I(φ).
This solution does not depend on the arbitrary constant a. The following theorem is proved.

Theorem A1. Suppose that λ1 is a solution of Equation (A7), 0 < λ1 < k. Then, Equation (A1)
has a solution u(x, y) = w(x)φ(y)/I(φ) for all c ≥ c0 = 2

√
k− λ1, where w(x) is a solution

of problem (A10), (A11), φ(y) and I(φ) are determined by expressions (A8), (A9). Its second
derivative with respect to x is continuous for all x ∈ R, its second derivative with respect to y is
continuous for all y ∈ R except for y = ±1.

This theorem affirms that for each solution λ1 of Equation (A7) there is a set of solutions
of Equation (A1). If σ0 < π2/4, then λ1 is unique. Increasing σ0 leads to the increase of the
number of solutions λ1.
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