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Abstract: The current article introduces the thermoelastic coupled response of an unbounded solid
with a cylindrical hole under a traveling heat source and harmonically altering heat. A refined
dual-phase-lag thermoelasticity theory is used for this purpose. A generalized thermoelastic coupled
solution is developed by using Laplace’s transforms technique. Field quantities are graphically
displayed and discussed to illustrate the effects of heat source, phase-lag parameters, and the angular
frequency of thermal vibration on the field quantities. Some comparisons are made with and without
the inclusion of a moving heat source. The outcomes described here using the refined dual-phase-lag
thermoelasticity theory are the most accurate and are provided as benchmarks for other researchers.

Keywords: G–N; L–S and CTE theories; cylindrical hole; dual-phase-lag; moving velocity

1. Introduction

The thermoelasticity theory is adopted in various applications to obtain interesting
formulations due to a variety of microphysical processes. The starting point of the clas-
sical coupled thermoelasticity (CTE) model was founded by Duhamel [1]. While Biot [2]
formulated the CTE theory by considering the second law of thermodynamics. One of
the first generalized theories is established by Lord and Shulman (L–S) [3] by including a
thermal relaxation parameter. While Green and Lindsay [4] developed another generalized
model by including two thermal relaxation parameters. Such generalized theories with
one or more thermal relaxation parameters are also stated as hyperbolic thermoelasticity
theories [5]. Green and Nagdhi (G–N) [6–8] formulated three various theories of thermoe-
lasticity in an unusual way. In addition, Tzou [9,10] presented a modern generalized one
which is called a dual-phase-lag (DPL) theory. A lot of research is presented to include and
modify Tzou’s model (see, e.g., [11–15]).

Many problems found in the literature are concerned with the thermoelastic response
of unbounded bodies with cylindrical cavities. Chandrasekharaiah and Srinath [16] applied
the G–N II model to analyze axisymmetric thermoelastic communications in an unbounded
solid including a cylindrical hole. Allam et al. [17] discussed thermal distribution field
quantities of a half-space containing a circular cylindrical cavity in the framework of a G–N
model. Ezzat and El-Bary [18,19] used a fractional-order of both thermo-viscoelasticity
and magneto-thermoelasticity theories to deal with an unbounded perfect conducting
media having a cylindrical hole in the existence of an axial uniform magnetic field. Sharma
et al. [20] tried to solve the dynamic formulation of an elasto-thermo-diffusion infinite cylin-
drical hole under various boundary conditions. Kumar and Mukhopadhyay [21] presented
the impacts of three-phase-lags (TPLs) on thermoelastic communications under step input
in temperature on a cylindrical hole in an infinite body. Mukhopadhyay and Kumar [22]
dealt with the thermoelastic communications in an infinite solid with a cylindrical hole
based on a two-temperature L–S model. Kumar et al. [23] described the thermoelastic
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communications based on a hyperbolic two-temperature L–S model in an unbounded body
including a cylindrical hole. Sarkar and Mondal [24] examined transient behavior in a
two-temperature model in an infinite body with a cylindrical hole under a time-dependent
moving heat source.

A lot of infinite bodies having cylindrical cavities may be exposed to either continuous
heat source, ramp-type heating effect, or thermal shock. Sharma et al. [25] considered
one-dimensional elasto-thermo-diffusive communications in an infinite solid containing
a cylindrical hole under the action of a continuous heat source utilizing the L–S the-
ory. Mukhopadhyay and Kumar [26] analyzed the thermoelastic communications in a
medium having a cylindrical hole under a ramp-type heating effect using various models.
Xia et al. [27] used the L–S model to develop a generalized thermoelastic diffusion theory
for the dynamic response of an unbounded body having a cylindrical hole and its surface
undergoing a thermal shock. In addition, Xiong and Tian [28] discussed the thermoelas-
tic analysis of an unbounded medium with a cylindrical hole whose surface undergoes
time-dependent thermal shock due to G–N II and III theories.

Some interesting problems are concerned with thermoelastic communications in elastic
infinite media with cylindrical holes and subjected to moving heat sources. Abouelregal [29]
obtained the induced fields in such an unbounded body having a cylindrical hole under a
traveling heat source and harmonically varying heat based on the dual-phase-lag theory.
Youssef [30] presented the analysis of thermoelastic communications in an elastic infinite
body with a cylindrical cavity a moving heat source with a uniform velocity that thermally
shocked at the bounding surface. Youssef [31] used the G–N II theory to develop a two-
temperature model for an infinite medium having constant elastic parameters. Shaw and
Mukhopadhyay [32] presented thermoelastic communications in a micro-stretched body in
the existence of a traveling heat source. Sarkar and Lahiri [33] solved a 1D problem for a
thermoelastic infinite medium under a moving plane of heat source. Youssef [34] presented
a two-temperature fractional-order theory for an infinite medium. Xia et al. [35] studied a
semi-infinite medium under a traveling heat source by utilizing the finite element method
in the time domain in the context of the L–S model. Abbas [36] solved the problem of
thermoelastic communication in a clamped microscale beam under a moving heat source
based on G–N III theory. Youssef [37] discussed the thermoelastic communications in an
unbounded solid having a cylindrical hole in the existence of moving heat sources utilizing
the L–S model.

In this paper, the problem of an unbounded solid containing a cylindrical cavity
is studied. The governing equations are carried out based on the refined dual-phase-
lag (RDPL) thermoelasticity theory. The general solution gained is utilized to a certain
problem once the bounding plane of the cavity is exposed to a traveling heat source. The
inverse Laplace transforms is calculated numerically to obtain the field quantities. Some
comparisons will be tabulated and shown graphically to study the benefit of different
theories and estimate the effect of different parameters.

2. Fundamental Equations

Let us discuss a thermoelastic coupling response of an unbounded solid containing a
cylindrical hole due to a traveling heat source using a unified dual-phase-lag theory. The
cylindrical coordinates system (r, ϕ, z) is selected to deal with such a problem in which
z-axis is sitting alongside the axis of the cylindrical cavity.

The displacement vector
⇀
u of the present, an axially symmetric cylindrical cavity is

summarized as
ur = u(r, t), uϕ = uz = 0. (1)

The strains can be expressed as

err =
∂u
∂r

, eϕϕ =
u
r

, e = err + eϕϕ =
1
r

∂

∂r
(ru). (2)
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The dynamic equation in the non-existence of body force is stated as

(2µ + λ)
(
∇2u− u

r2

)
− γ

∂θ

∂r
= ρ

∂2u
∂t2 , (3)

where ∇2 is the Laplacian operator. It satisfies the formula

∇2(∗) = 1
r

∂

∂r

(
r

∂(∗)
∂r

)
. (4)

The constitutive equations for the coupled thermoelastic solid with omitting the
volume forces can be stated as

σrr = 2µ ∂u
∂r + σzz,

σϕϕ = 2µ u
r + σzz,

σzz = λe− γθ,
σzr = σrϕ = σϕz = 0.

(5)

The heat conduction equation in the refined form is represented by

kLθ∇2θ = Lq

(
ρCe

∂θ

∂t
+ γT0

∂e
∂t
−Q

)
, (6)

where Lθ and Lq are higher-order time derivative operators given by

Lθ = 1 +
N

∑
n=1

τn
θ

n!
∂n

∂tn , Lq = $ +
N

∑
n=1

τn
q

n!
∂n

∂tn , (7)

which represents one of the modified coupled forms of the heat transport equation pre-
sented in [38–41]. The above equation represents the more general when N has some
+ve integers larger than zero. Different particular cases can be considered along with
Equation (6) as follows:

(i) Coupled dynamical thermoelasticity (CTE theory) [2]: τθ = τq = 0 and $ = 1

k∇2θ = ρCe
∂θ

∂t
+ γT0

∂e
∂t
−Q. (8)

(ii) Lord and Shulman generalized thermoelasticity theory (L–S theory) [3]: τθ = 0,
τq = τ0 and $ = 1

k∇2θ =

(
1 + τq

∂

∂t

)(
ρCe

∂θ

∂t
+ γT0

∂e
∂t
−Q

)
. (9)

(iii) Green and Naghdi generalized thermoelasticity theory (G–N theory) without energy
dissipation [6–8]: τθ = 0, τq = 1, N = 1, $ = 0, and k→ k∗

k∗∇2θ =
∂

∂t

(
ρCe

∂θ

∂t
+ γT0

∂e
∂t
−Q

)
. (10)

(iv) Simple generalized thermoelasticity theory with dual-phase-lag (SDPL theory) [12–15]:
τq ≥ τθ > 0, N = 1 and $ = 1

k
(

1 + τθ
∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t

)(
ρCe

∂θ

∂t
+ γT0

∂e
∂t
−Q

)
. (11)

(v) Refined generalized thermoelasticity theory with dual-phase-lag (RDPL theory) [12–15]:
τq ≥ τθ > 0, N > 1 and $ = 1,
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k

(
1 +

N

∑
n=1

τn
θ

n!
∂n

∂tn

)
∇2θ =

(
1 +

N

∑
n=1

τn
q

n!
∂n

∂tn

)(
ρCe

∂θ

∂t
+ γT0

∂e
∂t
−Q

)
. (12)

3. Problem Construction

It is appropriate to introduce the following non-dimensional variables in the next
sections:

{r′, u′} = c0η{r, u},
{

t′, τ′θ , τ′q

}
= ηc2

0
{

t, τθ , τq
}

,

σ′ii =
σii

γT0
, θ′ = θ

T0
, c2

0 = λ+2µ
ρ , η = ρCe

k ,
(13)

and setting Q′ = Q/
(
kT0c2

0η2). All governing equations, with the directions above dimen-
sionless variables, are lowered to (dropping the dashed for suitability)

σrr = c1
∂u
∂r

+ σzz, (14)

σϕϕ = c1
u
r
+ σzz, (15)

σzz = c2e− θ, (16)

∇2u− u
r2 −

1
c3

∂θ

∂r
=

∂2u
∂t2 , (17)(

∇2Lθ − Lq
∂

∂t

)
θ − εLq

(
∂e
∂t

)
= −LqQ, (18)

where
c1 =

2µ

γT0
, c2 =

λ

γT0
, c3 =

λ + 2µ

γT0
= c1 + c2, ε =

γ

ρCe
. (19)

The heat source is shifting along the radial direction with a uniform velocity ϑ, which
be able to be defined by the formula

Q = Q0δ(r− ϑt). (20)

4. Closed-Form Solution

The complete solutions will be given by solving Equations (17) and (18) to get firstly
the temperature θ and the dilatation e. Then, the corresponding displacement and stresses
can be given in terms of temperature and dilatation. For this purpose, we utilize the
following initial conditions:

u(r, 0) =
∂u
∂t

∣∣∣∣
t=0

= 0, θ(r, 0) =
∂θ

∂t

∣∣∣∣
t=0

= 0, R ≤ r < ∞. (21)

We supply the above homogenous initial conditions by additional boundary condi-
tions. The present medium will be considered as inactive and the surface of the cylindrical
cavity under harmonically varying heat and traction free. These conditions are defined as

• The surface of the cylindrical cavity is exposed to a harmonically varying heat

(R, t) = θ0H(t) cos(ωt), t > 0. (22)

• The mechanical boundary condition is considered as the surface of the cylindrical
cavity is traction free

σrr(R, t) = 0. (23)
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It is to be noted that when the angular frequency of thermal vibration ω → 0 , the
problem tends to be a thermal shock one. In addition to the above initial and boundary
conditions, we take into account the following regularity conditions

u(r, t) = 0, θ(r, t) = 0, r → ∞. (24)

Laplace transform is taken for Equations (20)–(23), under the homogeneous initial
conditions that appeared in Equation (28), one gets:

σrr = c1
du
dr

+ σzz, (25)

σϕϕ = c1
u
r
+ σzz, (26)

σzz = c2e− θ. (27)

Taking the discrepancy of both sides of Equation (24) then one gets

c3

(
∇2 − s2

)
e−∇2θ = 0, (28)

while the other governing equation of heat conduction became(
∇2 − sv0

)
θ − εsv0e = −v1e−(

s
ϑ )r, (29)

where

v0 =
Lq

Lθ

, v1 =
Q0

|ϑ|v0, Lθ = 1 +
N

∑
n=1

τn
θ

n!
sn, Lq = $ +

N

∑
n=1

τn
q

n!
sn. (30)

The equations occurred in Equations (36)–(38) be able to be identified in a fourth-order
ordinary non-homogenous differential equation in the dilatation e as in the form(

∇4 − β1∇2 + β0

)
e(r) = g(r), (31)

where

g(r) = −v2

(
s− ϑ

r

)
e−(

s
ϑ )r, (32)

and the coefficients βi are given by

β0 = s3v0, β1 = s(s + v3), v2 =
v1s

C3ϑ2 , v3 = v0

(
1 +

ε

c3

)
. (33)

Equation (31) is extremely complicated since it is done in a polar coordinate system. It
can be re-considered as (

∇2 − ζ2
1

)(
∇2 − ζ2

2

)
e(r) = g(r), (34)

where ζ2
j are the roots of the equation

ζ4 − β1ζ2 + β0 = 0. (35)

These roots ζ j are given respectively by

ζ2
1,2 =

1
2

(
β1 ±

√
β2

1 − 4β0

)
. (36)
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Equation (34) represents the next modified Bessel’s equation of zero-order[
1
r

∂

∂r

(
r

∂

∂r

)
− ζ2

1

][
1
r

∂

∂r

(
r

∂

∂r

)
− ζ2

2

]
e(r) = g(r), (37)

which gets a solution underneath the regularity conditions: u, θ → 0 as r → ∞ . So, the
general solution of e is represented by

e(r) =
2

∑
j=1

BjK0
(
ζ jr
)
+ ep, (38)

where Bj are integration parameters, K0
(
ζ jr
)

is modified Bessel’s function of the first kind,
and ep is a particular solution. It is provided by

ep = K0(ζ2r)
∫ g(r)K0(ζ1r)

W(r)
dr− K0(ζ1r)

∫ g(r)K0(ζ2r)
W(r)

dr, (39)

in which W(r) is the Wronskian

W(r) = ζ1K0(ζ2r)K1(ζ1r)− ζ2K0(ζ1r)K1(ζ2r). (40)

Using the solution of e in Equation (39), one gets the solution of θ as

θ = c3

[
2

∑
j=1

ζ̌ jBjK0
(
ζ jr
)
+ θp

]
, (41)

where

ζ̌ j = 1− s2

ζ2
j

, θp = ep − s2
∫

updr, up =
1
r

∫
repdr. (42)

The radial displacement be able to be stated for the regularity condition u→ 0 as
r → ∞ from the formula

e(r) = Du(r), D =
d
dr

+
1
r

, (43)

in the form

u(r) = −
2

∑
j=1

1
ζ j

BjK1
(
ζ jr
)
+ up, (44)

where up is already given in Equation (42).
At this point, the solution is finished. It is sufficient to decide the two parameters

Bj from the boundary conditions offered in Equations (22) and (23). Then, it is simple
to carry out the stresses in terms of radial displacement and temperature. According to
Equations (25)–(27), the stresses may be given in Laplace state as

σ1 =
2

∑
j=1

[
c3
(
1− ζ̌ j

)
K0
(
ζ jr
)
+

c1

ζ jr
K1
(
ζ jr
)]

Bj + c1
dup

dr
+ c2ep − c3θp, (45)

σ2 =
2

∑
j=1

[(
c2 − c3ζ̌ j

)
K0
(
ζ jr
)
− c1

ζ jr
K1
(
ζ jr
)]

Bj + c1
up

r
+ c2ep − c3θp, (46)

σ3 =
2

∑
j=1

(
c2 − c3ζ̌ j

)
K0
(
ζ jr
)

Bj + c2ep − c3θp. (47)
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So, the current analytical solution is previously given for the RDPL theory in the
Laplace domain. To complete the solution in the physical domain we should consider the
function f (t) as an inversion of the Laplace transform f (s) as

f (t) =
eqt

t

[
1
2

f (q) + Re

{
L

∑
l=1

(−1)l f
(

q +
ilπ

t

)} ]
, (48)

where q is a random constant, Re denotes the real part, i implies the imaginary quantity
unit and L implies a suitably huge integer. For quicker combination, numerous numerical
analyses have shown that the evaluation of q satisfies the connection qt ≈ 4.7 [35]. Utilizing
the numerical technique mentioned, to reverse the statements of temperature θ, radial
displacement u, dilatation e, radial stress σ1, hoop stress σ2, and axial stress σ3.

5. Validation of Results

Several presentations will be offered to put into recommendation the impact of nu-
merous models on the variable quantities. The material properties of the unbounded body
having a cylindrical hole due to a traveling heat source are identified according to the
following values of parameters:

λ = 7.76× 1010 N m−2, µ = 3.86× 1010 N m−2, k = 386 W m−1 K−1,

ρ = 8954 kg m−3, αt = 1.78× 10−5 K−1

Ce = 383.1 J kg−1 K−1, T0 = 293 K, k∗ = 1.2 W m−1 K−1.

Numerical results are obtained (except otherwise stated) for θ0 = 10, Q0 = 1, ϑ = 17,
ω = 20, τq = 0.02, τθ = 0.018, t = 0.03, and the inner radius R = 1.

5.1. First Validation Example

Results of the field quantities due to different thermoelasticity theories with dual-
phase-lag are reported in Tables 1 and 2 at the position r = 1.2. The impact of the velocity of
heat source ϑ on all field variables of different thermoelasticity theories with are presented
at dimensionless time t = 0.03, and for two values of the angular frequency of thermal
vibration ω = 0 (Table 1) and ω = 20 (Table 2). Additional outcomes of variable quantities
are outlined in Figures 1–24 across the radial direction of an unbounded body with a
cylindrical hole.

Table 1. Effect of the velocity of heat source ϑ on the field variables of different thermoelasticity
theories with t = 0.03, r = 1.2, ω = 0.

ϑ Variable CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

17

θ 3.5206798 0.0074277 4.5558651 3.4642684 3.6460648 3.9083885 4.2446350
e∗ −6.4643864 −0.7652114 −10.4814114 −6.5686154 −6.8240864 −7.0147188 −7.2539067
u∗ −50.6571091 0.0540479 0.0234225 −37.4998105 −4.5146261 5.7141745 11.3103719
σ1 16.5744843 −0.0362606 −4.6655407 11.3944541 −1.9149801 −6.2492888 −8.8146180
σ2 −23.7087643 0.0104058 −4.5968524 −18.4174099 −5.4752409 −1.6683198 0.2210782
σ3 −3.5517066 −0.0111005 −4.6061725 −3.4957955 −3.6788182 −3.9420569 −4.2794514

20

θ 4.1072506 −0.0029614 4.4306514 4.0800238 4.3206529 4.6090319 4.9665501
e∗ −6.5105278 0.3051538 −10.1923716 −6.6189071 −6.8807134 −7.0727326 −7.3110451
u∗ −0.2306539 0.0382336 0.0231236 2.4286536 2.5890897 1.9194700 1.3751839
σ1 −4.0778064 −0.0093305 −4.5374406 −5.1097870 −5.4167623 −5.4405303 −5.5837524
σ2 −4.2302789 0.0196396 −4.4703704 −3.1454027 −3.3234490 −3.8791992 −4.4544390
σ3 −4.1384990 0.0044260 −4.4795715 −4.1117924 −4.3536781 −4.6429788 −5.0016408

e∗ = 104e, u∗ = 102u.
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Table 2. Effect of the velocity of heat source ϑ on the field variables of different thermoelasticity
theories with t = 0.03, r = 1.2, ω = 20.

ϑ Variable CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

17

θ 3.2835398 0.0074277 4.5528182 3.2447447 3.4508927 3.7188299 4.0555735
e∗ −6.2860288 −0.7652114 −10.4740672 −6.3932523 −6.6542973 −6.8464693 −7.0855337
u∗ −50.6572509 0.0540479 0.0234210 −37.4999432 −4.5147434 5.7140628 11.3102642
σ1 16.8133885 −0.0362606 −4.6624229 11.6157097 −1.7181357 −6.0580749 −8.6239015
σ2 −23.4708247 0.0104058 −4.5937709 −18.1970973 −5.2793005 −1.4779982 0.4109050
σ3 −3.3137105 −0.0111005 −4.6030904 −3.2754301 −3.4828312 −3.7516908 −4.0895818

20

θ 3.8701106 −0.0029614 4.4276045 3.8605001 4.1254808 4.4194734 4.7774886
e∗ −6.3321702 0.3051538 −10.1850275 −6.4435440 −6.7109243 −6.9044831 −7.1426721
u∗ −0.2307957 0.0382336 0.0231221 2.4285209 2.5889724 1.9193583 1.3750762
σ1 −3.8389023 −0.0093305 −4.5343228 −4.8885315 −5.2199179 −5.2493164 −5.3930359
σ2 −3.9923393 0.0196396 −4.4672888 −2.9250901 −3.1275086 −3.6888775 −4.2646122
σ3 −3.9005030 0.0044260 −4.4764894 −3.8914270 −4.1576911 −4.4526127 −4.8117711

e∗ = 104e, u∗ = 102u.

Figure 1. The temperature θ across the radial direction of the cylindrical cavity conferring to all
theories.
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Figure 2. The dilatation e across the radial direction of the cylindrical cavity conferring to all theories.

Figure 3. The radial displacement u across the radial direction of the cylindrical cavity conferring to
all theories.
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Figure 4. The radial stress σ1 across the radial direction of the cylindrical cavity conferring to all
theories.

Figure 5. The hoop stress σ2 across the radial direction of the cylindrical cavity conferring to all
theories.
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Figure 6. The axial stress σ3 across the radial direction of the cylindrical cavity conferring to all
theories.

Figure 7. Effect of ω on temperature θ across the radial direction of the cylindrical cavity utilizing the
RDPL model.
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Figure 8. Effect of ω on dilatation e across the radial direction of the cylindrical cavity utilizing the
RDPL model.

Figure 9. Effect of ω on radial displacement u across the radial direction of the cylindrical cavity
utilizing the RDPL model.
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Figure 10. Effect of ω on radial stress σ1 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 11. Effect of ω on radial stress σ2 across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 12. Effect of ω on radial stress σ3 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 13. Effect of ϑ on temperature θ across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 14. Effect of ϑ on dilatation e across the radial direction of the cylindrical cavity utilizing the
RDPL model.

Figure 15. Effect of ϑ on radial displacement u across the radial direction of the cylindrical cavity
utilizing the RDPL model.
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Figure 16. Effect of ϑ on radial stress σ1 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 17. Effect of ϑ on radial stress σ2 across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 18. Effect of ϑ on radial stress σ3 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 19. Effect of t on temperature θ across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 20. Effect of t on dilatation e across the radial direction of the cylindrical cavity utilizing the
RDPL model.

Figure 21. Effect of t on radial displacement u across the radial direction of the cylindrical cavity
utilizing the RDPL model.
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Figure 22. Effect of t on radial stress σ1 across the radial direction of the cylindrical cavity utilizing
the RDPL model.

Figure 23. Effect of t on radial stress σ2 across the radial direction of the cylindrical cavity utilizing
the RDPL model.
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Figure 24. This is a figure. Schemes follow the same formatting Effect of t on radial stress σ3 across
the radial direction of the cylindrical cavity utilizing the RDPL model.

The outcomes described in Tables 1 and 2 will be provided as benchmarks for other
researchers. It is established from these tables that:

• The G–N theory gives the smallest absolute field of all field quantities.
• The other theories CTE and L–S give suitable results for the field quantities.
• Three values N = 3, 4, and 5 have been used for the RDPL theory while the simple

dual-phase-lag (SDPL) theory is described with N = 1.
• The most accurate results are given by using the RDPL theory.
• For the RDPL theory the temperature, displacement, and hoop stress are slightly

increasing with the increase in many terms N, while the dilatation, radial stress, and
axial stress are slightly decreasing. The increasing and decreasing amounts may be
un-sensitive when N ≥ 5.

5.2. Second Validation Example

Now, Figures 1–6 show the impact of all theories on the field quantities with fixed time
t = 0.03, velocity of heat source ϑ = 17, and angular frequency of thermal vibration ω = 20.
The rest of the figures are presented based on the refined dual-phase-lag (RDPL) theory
with N = 5 to investigate the influence of different parameters on the field quantities.

The variation of the temperature θ across the radial direction of the cylindrical cavity
according to all theories is presented in Figure 1. Similar graphs of the rest of the field
quantities are produced in Figures 2–6. Figure 1 shows that the temperature CTE, L–S, and
the SDPL theories vibrate around the path of the RDPL theory. In addition, the G–N theory
vibrates around the path of the RDPL theory, but in a small range. The temperature of the
G–N theory may early vanish than the other theories. Figure 2 shows that the dilatation e
of CTE, L–S, G–N, and SDPL theories vibrate around the path of the RDPL theory. Figure 3
shows that the radial displacements u of the L–S and G–N theories may vanish during
the radial direction. The radial displacements of the CTE theory are the lowest ones while
those of the RDPL theory are the biggest ones. The displacement of all theories may vanish
as r increases. Figure 4 shows that the radial stress σ1 of the L–S and G–N theories may
vanish during the radial direction when r > 1.2. The radial stresses of the RDPL theory are
the lowest ones while those of the CTE theory are the greatest ones. The radial stresses of
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all theories may vanish as r increases. Figure 5 shows that the hoop stress σ2 of the L–S and
G–N theories may vanish during the radial direction when r > 1.3. The hoop stresses of
the CTE theory are the smallest ones while those of the RDPL theory are the greatest ones.
The hoop stresses of all theories may vanish as r increases. Finally, Figure 6 shows that the
axial stress σ3 of CTE, L–S, and the SDPL theories vibrate around the path of the RDPL
theory. In addition, the G–N theory vibrates around the path of the RDPL theory, but in a
small range. The axial stress of the G–N theory may early vanish than the other theories. It
is concluded from Figures 1–6 that the outcomes of the RDPL theory are the most truthful.

5.3. Additional Applications
5.3.1. Effect of Angular Frequency of Thermal Vibration

Now, we discuss the impact of the angular frequency of thermal vibration ω on the
field quantities using the RDPL theory. Figure 7 shows the impact of ω on the temperature
θ along the radial direction of the cylindrical cavity. Similar graphs of the rest of the field
quantities are presented in Figures 8–12. It is clear in Figure 7 that the temperature increases
as ω decreases. The temperature vanishes as r increases irrespective of the value of ω.
Figure 8 shows that the dilatation e vibrates across the radial direction of the cylindrical
cavity. The wave magnitude increases as ω decreases. The radial displacement u directly
decreases along the radial directional of the cylindrical cavity in Figure 9. It is clear that at
a fixed position u increases as ω decreases.

The radial stress σ1 across the radial direction of the cylindrical cavity due to the
RDPL theory is drawn in Figure 10. The radial stress σ1 is rabidly vibrating across the
radial direction in a small range 1 ≤ r < 1.035. The radial stress σ1 is increasing with the
increase in ω when 1.035 ≤ r < 1.3. After that the values of σ1 are coincident to vanish
as r increases. Once again, the hoop σ2 and axial σ3 stresses along the radial direction of
the cylindrical using the RDPL theory are plotted in similar graphs of the radial stress σ1
in Figures 11 and 12. Both hoop and axial stresses are rabidly vibrating along the radial
direction in a small range 1 ≤ r < 1.03. The hoop and axial stresses increase as ω increases
when 1.03 ≤ r < 1.45. After that the values of σ2 and σ3 are coincident to vanish as
r increases.

5.3.2. Effect of Velocity of Heat Source

The effects of the velocity of heat source ϑ on all field variables based upon the RDPL
theory are presented in Figures 13–18. Figure 13 shows the effect of ϑ on the temperature θ
across the radial direction of the cylindrical cavity. Similar graphs of the rest of the field
quantities are presented in Figures 14–18. It is clear in Figure 13 that the temperature θ
vibrates across the radial direction for different values of the velocity of heat source ϑ. The
temperature vanishes as r increases and this irrespective of the value of ϑ. Figure 14 shows
that the dilatation e vibrates across the radial direction of the cylindrical cavity. The wave
magnitude increases as ϑ decreases. The radial displacement u directly decreases along the
radial directional of the cylindrical cavity in Figure 15. It is clear that at a fixed position u
increases as ϑ decreases.

The radial stress σ1 across the radial direction of the cylindrical cavity using the RDPL
theory is drawn in Figure 16 for distinct values of ϑ. The radial stress σ1 is rabidly vibrating
increases the radial direction in a small range 1 ≤ r < 1.05. The radial stress σ1 increases as
ϑ increases when r ≥ 1.05. The values of σ1 are coincident to vanish as r increases. Once
again, the hoop σ2 and axial σ3 stresses along the radial direction of the cylindrical using
the RDPL theory are plotted in similar graphs of the radial stress σ1 in Figures 11 and 12.
Both hoop and axial stresses are rabidly vibrating along the radial direction in a small range
1 ≤ r < 1.03. The hoop and radial stresses increase as ω increases when 1.03 ≤ r < 1.45.
After that the values of σ2 and σ3 are coincident to vanish as r increases. In addition, the
hoop stress σ3 across the radial direction of the cylindrical using the RDPL theory is plotted
for different ϑ in similar graphs of the radial stress σ1 in Figure 17. The hoop stress is
rabidly vibrating along the radial direction in a small range 1 ≤ r < 1.05. It increases as
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ϑ decreases when r ≥ 1.05. For large values of r the values of σ2 will be coincident and
maybe vanished. However, the axial stresses σ3 is drawn across the radial direction of the
cylindrical using the RDPL theory for distinct values of ϑ in Figure 18. The axial stress is
rabidly vibrating along the radial direction in a small range 1 ≤ r < 1.032 while it slowly
vibrating after that in a large range 1.032 ≤ r < 1.4. For large values of r the values of σ3
will be coincident and maybe vanished.

5.3.3. Effect of Dimensionless Time

The effects of dimensionless time t on all field variables based upon the RDPL theory
are presented in Figures 19–24. Figure 19 shows the effect of t on the temperature θ across
the radial direction of the cylindrical cavity. Similar graphs of the rest of field quantities are
presented in Figures 20–24. It is clear in Figure 19 that the temperature θ vibrates across
the radial direction for different values of t. The temperature θ is no longer increasing and
has its maximum values at r = 1.04. The temperature vanishes as r increases and this is
irrespective of the value of the dimensionless time. Figure 20 shows that the dilatation e
vibrates across the radial direction of the cylindrical cavity nicely. The wave magnitude
increases as t increases. In Figure 21, the radial displacement u is rapidly increasing along
the radial directional of the cylindrical cavity when t = 0.02 while u is slowly increasing
when t = 0.025. In addition, u is slowly decreasing when t = 0.03 It is clear that at a fixed
position u increases as t increases.

The radial stress σ1 across the radial direction of the cylindrical utilizing the RDPL
theory is plotted in Figure 22 for different values of t. The radial stress σ1 vibrates in a very
small range, then it increases for t = 0.025 and 0.03 while it decreases when t = 0.02. At
any fixed position, the radial stress σ1 increases as t decreases. The hoop stress σ2 is plotted
across the radial direction of the cylindrical using the RDPL theory in Figure 23 for distinct
values of t. It vibrates in a very small range, then it increases for t = 0.02 while it decreases
when t = 0.025 and 0.03. At any fixed position, the hoop stress σ2 increases as t increases.

Finally, the axial stress σ3 is plotted across the radial direction of the cylindrical using
the RDPL theory in Figure 24 for distinct values of t. It rabidly vibrates in a very small
range 1 ≤ r < 1.035, then it slowly vibrates and increases to vanish at large values of r.

6. Conclusions

The refined dual-phase-lag theory is presented to get novel and accurate outcomes
of the variable quantities such as temperature, dilatation, displacement, and stresses. The
multi-time derivatives heat equation is illustrated in the present formulation. The con-
stitutive equations for the stresses in cylindrical coordinates are added to discuss the
thermoelastic coupling response of an unbounded body with a cylindrical hole due to a
traveling heat source. From the unified model, one can construct other theories concerning
coupled dynamical thermoelasticity (CTE theory), Lord and Shulman generalized thermoe-
lasticity theory (L–S theory), Green and Naghdi generalized thermoelasticity theory (G–N
theory) without energy dissipation as well as a simple generalized thermoelasticity theory
with dual-phase-lag (SDPL theory). The system of two highly-time-derivatives differential
coupled equations is solved, and all field variables are gained for the thermoelastic coupling
response of an unbounded medium with a cylindrical cavity. Different validation examples
and applications are presented to compare all theories with the refined one. A sample set
of plots are illustrated along the radial direction of the cylindrical cavity. Two tables are
reported for a validation example to serve as benchmark results for future comparisons
with other investigators. The reported and illustrated results show various behaviors of all
field quantities and the effects of the velocity of heat source, angular frequency of thermal
vibration, and dimensionless time parameters. The G–N theory gives suitable results in a
small range. However, the RDPL theory yields modified and accurate results.
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Nomenclature
αt thermal expansion coefficient

(
K−1

)
Ce specific heat at uniform strain

(
J kg−1 K−1

)
δij Kronecker delta function
eϕϕ hoop strain
err radial strain
e dilatation
eij linear strain tensor
ϑ the velocity of heat source

(
m s−1)

γ ≡ (3λ + 2µ)αt thermal modulus
(

N m−2 K−1
)

H(t) Heaviside unit step function

k coefficient of heat conductivity
(

W m−1 K−1
)

k∗ rate of thermal conductivity of an isotropic material
(

W m−1 K−1
)

λ, µ Lame’s constants
(

N m−2
)

ρ material density
(

kg m−3
)

R The radius of the cylindrical cavity (m)

(r, ϕ, z) cylindrical coordinates system

σij stress tensor components
(

N m−2
)

σϕz, σzr, σrϕ shear stresses
(

N m−2
)

σϕϕ hoop stress
(

N m−2
)

σrr radial stress
(

N m−2
)

σzz axial stress
(

N m−2
)

s Laplace parameter
θ = T − T0 temperature change (K)
θ0 thermal constant (K)
T0 environment temperature (K)
τq phase-lag of heat flux (s)
τθ phase-lag of temperature gradient (s)
τ0 first relaxation time (s)
ω angular frequency of thermal vibration

(
rad s−1

)
Q0 strength of heat source

(
W m−3

)
δ delta function
⇀
q heat flux vector

(
W m−2

)
ur radial displacement (m)
uφ hoop displacement (m)
uz axial displacement (m)
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