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Abstract: The problem of finite-time boundedness for a class of linear switched positive time-
varying delay systems with interval uncertainties and exogenous disturbance is addressed. This
characteristic research is that the studied systems include the finite-time bounded subsystems and
finite-time unbounded subsystems. Both a slow mode-dependent average dwell time and a fast
mode-dependent average dwell time switching techniques are utilized reasonably. And by applying
a copositive Lyapunov-Krasovskii functional, novel delay-dependent sufficient criteria are derived to
guarantee such systems to be finite-time bounded concerning the given parameters and designed
switching signal. Furthermore, new finite-time boundedness criteria of the systems without interval
uncertainties are also obtained. Finally, the efficiency of the theoretical results is presented in two
illustrative examples.

Keywords: finite-time boundedness; interval uncertainties; switched positive systems; time-varying
delay; exogenous disturbance

1. Introduction

Several phenomena can be modeled such as switched systems that compose a family of
subsystems and a logical law called a switching signal that determines the switching man-
ner among the multiple subsystems [1–4]. When all subsystems of switched systems are
positive under the specific switching rules, the systems are well known as switched positive
systems (SPSs). Their applications can encounter in various areas, such as compartmental
model [5], water-quality model [6], formation flying [7], congestion control [8], wireless
power control [9], and network communication using transmission control protocol [10].
Furthermore, the system’s behavior that relies not only on the present state but also on the
past state is discovered in many situations, for example, fluid and mechanical transmissions,
metallurgical processes, and networked communications. An essential class of dynamical
systems with the behavior are referred to as time-delay systems [11–13]. Nevertheless,
the existence of the time delay in the systems may cause chaos and instability. Therefore,
several beneficial results on SPSs, including time delay as well as time-varying delay, have
been published, see [14–19].

Stability analysis of differential equations and dynamical systems has been extensively
studied in the literature [20–23]. Remarkably, the concept of classical Lyapunov stability has
been utilized to analyze the behavior of the systems over an infinite time interval. Nonethe-
less, there are some cases where the mentioned stability can not describe the mechanism of
studied systems, such as some constraints of operation time and requirements about the
transient performance of the systems [24–27]. Hence, a concept of finite-time stability (FTS),
which can keep state trajectories of the considered systems within a prescribed bound
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over a fixed time interval under some given constraints of the initial condition [28–30], has
been adopted to deal with those cases. In addition, FTS can be extended to the finite-time
boundedness (FTB) if exogenous disturbances or the influence of perturbing forces are
taken into account together [31]. However, it is well known that the Lyapunov stability and
FTS (FTB) are completely independent concepts. Namely, any dynamical system may be
the Lyapunov stability but not FTS (FTB), and vice versa [32,33].

Most of the existing researches for studying the Lyapunov stability, FTS, and FTB
of switched systems are based on the types of time-dependent switching signals. Exam-
ples of time-dependent switching signals are dwell time (DT), average dwell time (ADT),
and mode-dependent average dwell time (MDADT), comprising slow mode-dependent
average dwell time (SMDADT) and fast mode-dependent average dwell time (FMDADT).
The topic of FTS, FTB, and stability over the infinite time interval of SPSs with time delay
has been investigated and reviewed in the following. In [34], Liu and Dang analyzed
the stability of SPSs with delays. Later, Jian and Weiqun [35] studied the FTS and FTB
for the continuous-time and discrete-time SPSs with time-varying delay. Depending on
the ADT approach, the issue of FTB and L2-gain for SPSs with multiple time delays was
discussed in [36]; however, the problem of stability for SPSs with time delay was examined
in [37]. As mentioned in [38], Liu et al. used the MDADT method to derive some stability
conditions of SPSs with time delay. Reference [39] dealt with the static output-feedback L1
finite-time control problems for SPSs with time-varying delay by employing the MDADT
strategy. The researches mentioned above mainly concentrate on the only stable (bounded)
subsystems. Nevertheless, the switched systems composing both stable (bounded) sub-
systems and unstable (unbounded) subsystems can be implemented widely in practical
applications [40–44]. Among them, in [40], Pashaei and Hashemzadeh derived new FTS
and FTB conditions for linear switched delayed systems with finite-time unstable and
unbounded subsystems by using the ADT tactic. Meanwhile, in [41], Tan et al. investigated
FTS and FTB problems of switched systems consisting of both finite-time stable and un-
stable subsystems by employing the MDADT method. Based on Lyapunov-like functions,
FTS and FTB issues of nonlinear switched systems with subsystems that are not finite-time
stable or finite-time bounded were discussed by utilizing the ADT strategy in [42]. Still,
the time delay phenomena and the positivity of the systems were not considered in the
references [41,42]. For SPSs, in [43], Zhang et al. studied the stability problem of linear SPSs
with stable and unstable subsystems by adopting a multiple copositive Lyapunov function
combined with the ADT approach. Furthermore, the stability of nonlinear switched delayed
systems, including stable and unstable subsystems, was analyzed in [44].

For real-world applications, several systems can represent in the form of uncertain-
ties, which indicate the differences or errors between reality and simulation. Nonetheless,
the dynamical systems, including the slight uncertainties, may lead to the instability of
those systems. Consequently, many researchers have devoted themselves to studying the
FTS, FTB, and stability of the systems with uncertainties during the last decades [45–52].
However, to the best of our knowledge, there is no result on the FTB for a class of SPSs,
including time-varying delay, interval uncertainties, exogenous disturbance, and finite-
time unbounded subsystems in the literature. This practical idea is the motivation of
the present paper. The main contributions of this study are highlighted in the following.
(i) The FTB problem of the underlying systems with finite-time bounded subsystems and
finite-time unbounded subsystems is investigated by applying the SMDADT and FMDADT
techniques. (ii) New delay-dependent sufficient criteria (DDSC) for FTB of the systems
are derived. (iii) The corresponding result for SPSs, including time-varying delay and
exogenous disturbance without interval uncertainties, is also provided. (iv) Unlike the
existing results in [36,37,40,42–44], both the SMDADT and FMDADT methods that are less
conservative and more applicable in practice than the ADT switching law are employed for
studying the FTB of the systems.

The organization of this paper is arranged as follows. The next section, the system
descriptions and preliminaries are proposed. Then, in Section 3, the main results are pre-
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sented. Next, in Section 4, two numerical examples are shown to support and validate our
theoretical results. Lastly, the conclusions are reported in Section 5.

Notations: The following notations are exploited throughout this article. The sets of
non-negative integers and positive integers are denoted by N and N+, respectively. Rn and
Rn
+ refer to the vectors of n-tuples of real and positive real numbers, respectively. The set of

all m× n real matrices is represented by Rm×n. In and AT are the n× n dimensional identity
matrix and the transpose of matrix A, respectively. For given vector ν ∈ Rn, νi (1 ≤ i ≤ n)
is the ith component of ν. The notation ν � 0 (ν � 0) stands for non-negative (positive)
vector, namely, all components of ν are non-negative (positive) for vector ν ∈ Rn. Let
‖ν‖1 = ∑n

i=1 |νi| be the 1-norm of ν ∈ Rn. The matrix A is called non-negative matrix if all
entries are non-negative and defined by A � 0. In addition, ‖A‖1 = max1≤j≤n ∑m

i=1 |aij| is
the 1-norm of a matrix A ∈ Rm×n.

2. System Descriptions and Preliminaries

A class of linear switched time-varying delay system with interval uncertainties and
exogenous disturbance can be stated as{

ẋ(t) = Aσ(t)x(t) + Dσ(t)x(t− d(t)) + Gσ(t)ω(t), t ≥ 0,
x(t0 + θ) = ψ(θ), θ ∈ [−d̂, 0],

(1)

where x(t) ∈ Rn. σ(t) : [0,+∞) → N = {1, 2, ..., N} is the switching signal, which is a
piecewise constant function of time t. N is the number of subsystems or modes of the
switched system. Without loss of generality, we suppose that σ(t) is continuous from the
right everywhere: σ(t) = limχ→t+ σ(χ). Let 0 ≤ t0 < t1 < t2 < · · · < tm < tm+1 <
· · · < +∞ be a sequence of the switching instants, where t0 is the initial time and tm is
the mth switching instant, m ∈ N0. We impose that σ(t) = σ(tm) = i, i ∈ N and the ith
subsystem is activated when t ∈ [tm, tm+1). Based on the logical rule of the switching
signal σ(t) at the switching instant tm, system (1) switches from the jth subsystem to the ith
subsystem, where σ(tm−1) = j, j ∈ N. The time-varying delay d(t) satisfies 0 ≤ d(t) ≤ d̂
and ḋ(t) ≤ d < 1, where d̂ and d are known constants. For the interval uncertain of system
(1), Ai, Di and Gi satisfy

Ai � Ai � Ai,

Di � Di � Di,

and
Gi � Gi � Gi,

where Ai, Di, Gi, Ai, Di, Gi are the given constant system matrices with appropriate
dimensions for all i ∈ N. As shown in [39], the exogenous disturbance ω(t) ∈ Rg is
continuous satisfying the condition:∫ Tf

0
‖ω(t)‖1dt < ρ, (2)

where Tf ≥ 0 and ρ ≥ 0 are a time constant and a known constant, respectively. ψ(· ) is a
vector-valued initial state on [−d̂, 0] with the norm ‖ψ‖d̂ = sup−d̂≤θ≤0 ‖ψ(θ)‖1. Further-
more, let Ω be the set of switching signal which has only finite number of switching for
any finite-time interval.

Next, we will introduce some definitions, lemma, and assumption for studying system (1).

Definition 1 ([39]). System (1) is said to be positive if for any initial function ψ(θ) � 0, θ ∈ [−d̂, 0],
for any exogenous disturbance ω(t) � 0 and for any switching signal σ(t), the corresponding
trajectory x(t) � 0 holds for all t ≥ t0.
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Definition 2 ([39]). A matrix is said to be a Metzler matrix if all off-diagonal elements are
non-negative.

Lemma 1 ([39]). System (1) is positive if and only if Ai are Metzler matrices, Di � 0, and Gi � 0
for all i ∈ N.

In general, several real systems can be modeled by systems in the form of interval
uncertainties. Thus, the assumption of the interval uncertainties for studying the FTB of
system (1) with exogenous disturbance is stated as follows.

Assumption 1 ([10,48]). For each Ai, Di and Gi in system (1), there are the known Metzler matri-
ces Ai and the matrices Di � 0, Gi � 0 such that Ai ∈ [Ai, Ai], Di ∈ [Di, Di], and Gi ∈ [Gi, Gi],
where Ai, Di, Gi, Ai, Di, Gi are the given constant system matrices with appropriate dimensions
for all i ∈ N.

Definition 3 ([36] (Finite-Time Boundedness)). Given two constants c2 > c1 > 0, a time
constant Tf , two vectors l1 � l2 � 0, and a switching signal σ ∈ Ω. System (1) is said to be
finite-time bounded with respect to (c1, c2, Tf , l1, l2, ρ, σ) if the solution x(t) of the system satisfies
the condition:

sup
θ∈[−d̂,0] ψT(θ)l1 ≤ c1 =⇒ xT(t)l2 < c2, ∀t ∈ [0, Tf ],

where ω(t) satisfies inequality (2).

The finite set N is split into B and U; namely, N = B ∪ U where B = {1, 2, ..., B}
denotes the set of finite-time bounded subsystems with respect to the required parameters
(c1, c2, Tf , l1, l2, ρ, σ) and U = {B + 1, ..., N} represents the set of finite-time unbounded
subsystems with respect to the same required parameters (c1, c2, Tf , l1, l2, ρ, σ), respectively.

The definitions of both the SMDADT and FMDADT switching laws are stated as follows.

Definition 4 ([41]). For any T ≥ t ≥ 0 and a switching signal σ ∈ Ω, let Nσp(T, t) be the
numbers of the pth subsystem being activated and Tp(T, t) be the total running time of the pth
subsystem, p ∈ B. We say that σ has the SMDADT τap if there exist two constants N0p ≥ 0 and
τap > 0 such that

Nσp(T, t) ≤ N0p +
Tp(T, t)

τap
, ∀T ≥ t ≥ 0. (3)

Definition 5 ([41]). For any T ≥ t ≥ 0 and a switching signal σ ∈ Ω, let Nσq(T, t) be the
numbers of the qth subsystem being activated and Tq(T, t) be the total running time of the qth
subsystem, q ∈ U. We say that σ has the FMDADT τaq if there exist two constants N0q ≥ 0 and
τaq > 0 such that

Nσq(T, t) ≥ N0q +
Tq(T, t)

τaq
, ∀T ≥ t ≥ 0. (4)

3. Main Results

In this section, we investigate the problem of the FTB for system (1) with exogenous
disturbance and interval uncertainties. The subsystems of the studied system are both
finite-time bounded and finite-time unbounded. First, a class of quasi-alternative switching
signals (QASSs) for system (1) is designed by utilizing a similar approach studied in [33,41].

(a) If σ(tm) ∈ B, then σ(tm+1) ∈ N;
(b) If σ(tm) ∈ U, then σ(tm+1) ∈ B.
This implies that the considered system can switch from a finite-time bounded subsys-

tem to any other subsystems, but cannot switch from a finite-time unbounded subsystem
to another finite-time unbounded subsystem.
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For convenience, we first define important symbols used in our main theorem as
follows:

D̃ =
(

dkl

)
∈ Rn×n, dkl = max

i∈N

{
D(kl)

i

}
, (5)

where D(kl)
i represents the kth row and lth column entry of system matrices Di, i ∈ N. And

D = (dkl) ∈ Rn×n, dkl = max
i∈N

{
D(kl)

i

}
, (6)

where D(kl)
i denotes the kth row and lth column entry of system matrices Di, i ∈ N. Thus,

we are ready to derive new DDSC for the FTB of system (1) with finite-time bounded and
finite-time unbounded subsystems by designing QASSs above and using the MDADT
method in the following theorem. Without loss of generality, we can select the constants in
(3) and (4) satisfying N0p = 0 and N0q = 0, p ∈ B, q ∈ U.

Theorem 1. Consider system (1) with exogenous disturbance satisfying Assumption 1. Let
γp > 0, µp > 1, p ∈ B, γq > 0, 0 < µq < 1, q ∈ U, be given constants. For given two
constants c2 > c1 > 0, the time constant Tf > 0, and two vectors l1 � l2 � 0. Suppose that there
exist positive vectors νp � 0, νq � 0 and constants ξp > 0, ξq > 0, βp > 0, βq > 0 such that[

AT
p +

(
1

1− d

)
D̃T − γp In

]
νp ≺ 0, (7)

[
AT

q +

(
1

1− d

)
D̃T − γq In

]
νq ≺ 0, (8)

βpl2 ≺ νp ≺ ξpl1, (9)

βql2 ≺ νq ≺ ξql1, (10)

νp � µpνr, (11)

νq � µqνp, (12)

eTf Γ <
(1− d)βc2[

(1− d) + d̂‖D̃T‖1

]
ξc1 + ρ‖ω̃‖1

, (13)

hold for every p ∈ B, q ∈ U, r ∈ N, p 6= r. Then system (1) is positive and finite-time bounded
with respect to (c1, c2, Tf , l1, l2, ρ, σ) under the switching signals with SMDADT satisfying

τap ≥ τ∗ap =
Tf ln µp

ln (1−d)βc2

[(1−d)+d̂‖D̃T‖1]ξc1+ρ‖ω̃‖1
− Tf γp

, ∀p ∈ B, (14)

and FMDADT satisfying

τaq ≤ τ∗aq = −
ln µq

γq
, ∀q ∈ U, (15)

where

Γ = max
p∈B
{γp}, β = min

p∈B,q∈U
{βp, βq}, ξ = max

p∈B,q∈U
{ξp, ξq}, ω̃ =

[
W1 W2 ... Wg

]T ,

Wk = maxσ(t)∈Ω{ω
(k)
σ(t)}, ω

(k)
σ(t) is the kth element of the vector ωσ(t) = (1−d)GT

σ(t)ξl1,

for k ∈ {1, 2, ..., g}, and D̃ is defined as in (5).

Proof. We divide the proof process into the following two steps.
Step 1. We will prove that system (1) is positive.
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By Assumption 1, it is immediate that Ai are Metzler matrices and the matrices
Di � 0, Gi � 0 for all i ∈ N. However, the system matrices for system (1) are supposed
to be interval uncertain, namely, Ai � Ai � Ai, Di � Di � Di, and Gi � Gi � Gi, for all
i ∈ N. Thus, it is obvious that Ai are also Metzler matrices, Di � 0, and Gi � 0 for all i ∈ N.
According to Lemma 1, we can conclude that system (1) is positive.

Step 2. We will prove the FTB for system (1) under the switching signals with SM-
DADT satisfying condition (14) and FMDADT satisfying condition (15).

For any Tf > 0, let t1, t2, ..., tm, tm+1, ..., tNσ(Tf ,0) be the switching time instants over [0, Tf ]

where tNσ(Tf ,0) = t∑p∈B Nσp(Tf ,0)+∑q∈U Nσq(Tf ,0) and Tf = ∑p∈B Tp(Tf , 0) + ∑q∈U Tq(Tf , 0).
For t ∈ [tm, tm+1), m ∈ N, we construct the following copositive Lyapunov-Krasovskii
functional (CLKF) candidate for system (1):

Vσ(t)(t) ≡ Vσ(t)(t, x(t)) = (1− d)xT(t)νσ(t) +
∫ t

t−d(t)
xT(s)D̃Tνσ(t)ds, (16)

where νσ(t) � 0, σ(t) ∈ Ω. Along the trajectory of system (1), we have

V̇σ(tm)(t) = (1− d)ẋT(t)νσ(tm) + xT(t)D̃Tνσ(tm) − (1− ḋ(t))xT(t− d(t))D̃Tνσ(tm)

= (1− d)xT(t)AT
σ(tm)νσ(tm) + (1− d)xT(t− d(t))DT

σ(tm)νσ(tm) + (1− d)ωT(t)GT
σ(tm)νσ(tm)

+ xT(t)D̃Tνσ(tm) − (1− ḋ(t))xT(t− d(t))D̃Tνσ(tm)

≤ (1− d)xT(t)AT
σ(tm)νσ(tm) + (1− d)xT(t− d(t))DT

σ(tm)νσ(tm) + (1− d)ωT(t)GT
σ(tm)νσ(tm)

+ xT(t)D̃Tνσ(tm) − (1− ḋ(t))xT(t− d(t))D̃Tνσ(tm),

for t ∈ [tm, tm+1), m ∈ N. We observe that

V̇σ(tm)(t)− γσ(tm)Vσ(tm)(t) ≤ (1− d)xT(t)AT
σ(tm)νσ(tm) + (1− d)xT(t− d(t))DT

σ(tm)νσ(tm)

+ (1− d)ωT(t)GT
σ(tm)νσ(tm) + xT(t)D̃Tνσ(tm)

− (1− ḋ(t))xT(t− d(t))D̃Tνσ(tm) − γσ(tm)(1− d)xT(t)νσ(tm)

− γσ(tm)

∫ t

t−d(t)
xT(s)D̃Tνσ(tm)ds,

for t ∈ [tm, tm+1), m ∈ N. Together with ḋ(t) ≤ d, 0 < γσ(tm), and Dσ(tm) � D̃ for all
σ(tm) ∈ N, one has

V̇σ(tm)(t)− γσ(tm)Vσ(tm)(t) = xT(t)
[
(1− d)AT

σ(tm)νσ(tm) + D̃Tνσ(tm) − γσ(tm)(1− d)νσ(tm)

]
+ (1− d)ωT(t)GT

σ(tm)νσ(tm),

for t ∈ [tm, tm+1), m ∈ N. According to the conditions (7) and (8), we obtain

V̇σ(tm)(t)− γσ(tm)Vσ(tm)(t) ≤ (1− d)ωT(t)GT
σ(tm)νσ(tm), (17)

for t ∈ [tm, tm+1), m ∈ N. Substituting the conditions (9) and (10) into the inequality (17),
it yields

V̇σ(tm)(t)− γσ(tm)Vσ(tm)(t) ≤ (1− d)ωT(t)GT
σ(tm)ξl1, (18)

for t ∈ [tm, tm+1), m ∈ N, and ξ =maxp∈B,q∈U{ξp, ξq}. Setting ωσ(tm) = (1− d)GT
σ(tm)ξl1

and integrating both sides of the inequality (18) during the period [tm, t) for t ∈ [tm, tm+1),
m ∈ N, it leads to

Vσ(tm)(t) ≤ eγσ(tm)(t−tm)Vσ(tm)(tm) +
∫ t

tm
eγσ(tm)(t−s)ωT(s)ωσ(tm)ds. (19)
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Considering the change of the value of the CLKF (16) at the switching time instants
and the positivity of x(t) in system (1). According to the condition (11), we get

Vp(tm) = (1− d)xT(tm)νp +
∫ tm

tm−d(tm)
xT(s)D̃Tνpds

≤ (1− d)xT(t−m)µpνr +
∫ t−m

t−m−d(t−m)
xT(s)D̃Tµpνrds

= µpVr(t−m), (20)

for all p ∈ B, r ∈ N, and p 6= r. Similarly, using the condition (12), we have

Vq(tm) ≤ µqVp(t−m), (21)

for all q ∈ U, p ∈ B. Based on the relationship among the inequalities (19)–(21) for
t ∈ [tm, tm+1), m ∈ N, we can derive

Vσ(tm)(t) ≤ µσ(tm)e
γσ(tm)(t−tm)Vσ(tm−1)

(t−m) +
∫ t

tm
eγσ(tm)(t−s)ωT(s)ωσ(tm)ds

≤ µσ(tm)e
γσ(tm)(t−tm)

[
eγσ(tm−1)

(tm−tm−1)Vσ(tm−1)
(tm−1)+

∫ tm

tm−1

eγσ(tm−1)
(tm−s)

ωT(s)ωσ(tm−1)
ds
]

+
∫ t

tm
eγσ(tm)(t−s)ωT(s)ωσ(tm)ds

≤ · · ·

≤ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q eγσ(tm)(t−tm)e∑m

k=1 γσ(tk−1)
(tk−tk−1)Vσ(0)(0)

+ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q eγσ(tm)(t−tm)e∑m

k=2 γσ(tk−1)
(tk−tk−1)

∫ t1

0
eγσ(0)(t1−s)ωT(s)ωσ(0)ds

+ . . . + ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q

∫ t

tm
eγσ(tm)(t−s)ωT(s)ωσ(tm)ds

≤ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,0)+∑q∈U γqTq(t,0)]Vσ(0)(0)

+
∫ t1

0
∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,s)+∑q∈U γqTq(t,s)]ωT(s)ω̃ds

+ . . . +
∫ t

tm
∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,s)+∑q∈U γqTq(t,s)]ωT(s)ω̃ds,

where ω̃ =
[
W1 W2 ... Wg

]T , Wk = maxσ(t)∈Ω{ω
(k)
σ(t)}, and ω

(k)
σ(t) is the kth element of the

vector ωσ(t), k ∈ {1, 2, ..., g}. It yields that

Vσ(tm)(t) ≤ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,0)+∑q∈U γqTq(t,0)]Vσ(0)(0)

+ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,0)+∑q∈U γqTq(t,0)]

∫ Tf

0
ωT(s)ω̃ds.

By the property of the exogenous disturbance in (2), it is immediate that

Vσ(tm)(t) ≤ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,0)+∑q∈U γqTq(t,0)]Vσ(0)(0)

+ ∏
p∈B

µ
Nσp(t,0)
p ∏

q∈U
µ

Nσq(t,0)
q e[∑p∈B γpTp(t,0)+∑q∈U γqTq(t,0)]ρ‖ω̃‖1.
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By Definitions 4 and 5, and employing the inequalities (3) and (4), we obtain

Vσ(tm)(t) ≤ e∑p∈B

( ln µp
τap +γp

)
Tp(t,0)e∑q∈U

( ln µq
τaq +γq

)
Tq(t,0)Vσ(0)(0)

+ e∑p∈B

( ln µp
τap +γp

)
Tp(t,0)e∑q∈U

( ln µq
τaq +γq

)
Tq(t,0)

ρ‖ω̃‖1.

It can be derived from the inequality (15) that

e∑q∈U

( ln µq
τaq +γq

)
Tq(t,0) ≤ 1,

for all q ∈ U. Thus, we get

Vσ(tm)(t) ≤ e∑p∈B

( ln µp
τap +γp

)
Tp(t,0)

(
Vσ(0)(0) + ρ‖ω̃‖1

)
. (22)

Using the CLKF (16), the conditions (9) and (10), and Definition 3 for the following
estimations:

Vσ(0)(0) = (1− d)xT(0)νσ(0) +
∫ 0

−d(0)
xT(s)D̃Tνσ(0)ds

≤ (1− d)xT(0)ξl1 +
∫ 0

−d(0)
xT(s)D̃Tξl1ds

≤ (1− d)xT(0)ξl1 +
∫ 0

−d̂
dsξ‖D̃T‖1 sup

s∈[−d̂,0]

xT(s)l1

≤
[
(1− d) + d̂‖D̃T‖1

]
ξc1,

and

Vσ(tm)(t) ≥ (1− d)xT(t)νσ(tm)

≥ (1− d)xT(t)βl2,

where β = minp∈B,q∈U{βp, βq}. From the inequality (22), we have

xT(t)l2 ≤ e∑p∈B

( ln µp
τap +γp

)
Tp(t,0)


[
(1− d) + d̂‖D̃T‖1

]
ξc1 + ρ‖ω̃‖1

(1− d)β

. (23)

Let ε = maxp∈B

(
ln µp
τap

+ γp

)
. Hence,

xT(t)l2 ≤ e∑p∈B εTp(t,0)


[
(1− d) + d̂‖D̃T‖1

]
ξc1 + ρ‖ω̃‖1

(1− d)β


≤ eεTf


[
(1− d) + d̂‖D̃T‖1

]
ξc1 + ρ‖ω̃‖1

(1− d)β

, (24)

for all t ∈ [0, Tf ]. It follows from the condition (13) and the inequality (14) that

εTf = max
p∈B

(Tf ln µp

τap
+ Tf γp

)

≤ ln

 (1− d)βc2[
(1− d) + d̂‖D̃T‖1

]
ξc1 + ρ‖ω̃‖1

, (25)
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for all p ∈ B. Utilizing the inequalities (24) and (25), we arrive at

xT(t)l2 < c2,

for all t ∈ [0, Tf ]. It can be concluded by Definition 3 that system (1) is finite-time bounded
with respect to (c1, c2, Tf , l1, l2, ρ, σ) for the switching signal σ(t) with SMDADT (14) and
FMDADT (15).

Remark 1. As in [33,41], in our switching scheme, we design slow and fast switching for bounded
subsystems and unbounded subsystems, respectively. It gives the lower bounds that bounded
subsystems should dwell on and provides the upper bounds for unbounded subsystems. In addition,
one can note that if the bounded subsystem is activated, any subsystem can be activated at the next
switching time instance. Nevertheless, if an unbounded subsystem is activated, the next activated
system must be a bounded subsystem.

Another FTB result of system (1) without its interval uncertainty will be presented as
follows:

Corollary 1. Consider system (1) with exogenous disturbance. Let γp > 0, µp > 1, p ∈ B,
γq > 0, 0 < µq < 1, q ∈ U, be given constants. For given two constants c2 > c1 > 0,
the time constant Tf > 0, and two vectors l1 � l2 � 0. Suppose that there exist positive vectors
νp � 0, νq � 0 and constants ξp > 0, ξq > 0, βp > 0, βq > 0 such that[

AT
p +

(
1

1− d

)
DT − γp In

]
νp ≺ 0,

[
AT

q +

(
1

1− d

)
DT − γq In

]
νq ≺ 0,

βpl2 ≺ νp ≺ ξpl1,

βql2 ≺ νq ≺ ξql1,

νp � µpνr,

νq � µqνp,

eTf Γ <
(1− d)βc2[

(1− d) + d̂‖DT‖1

]
ξc1 + ρ‖ω̂‖1

,

hold for every p ∈ B, q ∈ U, r ∈ N, p 6= r. Then system (1) is positive and finite-time bounded
with respect to (c1, c2, Tf , l1, l2, ρ, σ) under the switching signals with SMDADT satisfying

τap ≥ τ∗ap =
Tf ln µp

ln (1−d)βc2

[(1−d)+d̂‖DT‖1]ξc1+ρ‖ω̂‖1
− Tf γp

, ∀p ∈ B,

and FMDADT satisfying

τaq ≤ τ∗aq = −
ln µq

γq
, ∀q ∈ U,

where

Γ = max
p∈B
{γp}, β = min

p∈B,q∈U
{βp, βq}, ξ = max

p∈B,q∈U
{ξp, ξq}, ω̂ =

[
W1 W2 ... Wg

]T ,

Wk = maxσ(t)∈Ω{ω
(k)
σ(t)}, ω

(k)
σ(t) is the kth element of the vector ωσ(t) = (1−d)GT

σ(t)ξl1, for
k ∈ {1, 2, ..., g}, and D is defined as in (6).
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Proof. With the same symbols in Theorem 1, this corollary can be proved by utilizing the
following CLKF candidate for system (1):

Vσ(t)(t) ≡ Vσ(t)(t, x(t)) = (1− d)xT(t)νσ(t) +
∫ t

t−d(t)
xT(s)DTνσ(t)ds,

where νσ(t) � 0, σ(t) ∈ Ω. The remainder of the proof is similar to that of Theorem 1.
Hence, the detail is omitted.

4. Numerical Simulations

In this section, we provide two numerical examples together with the simulation
results to demonstrate the correctness and effectiveness of our theoretical analysis presented
in the previous section.

Example 1. The FTB problem for system (1) comprising of two subsystems is studied in this
example. The system data are given as follows:

A1 =

[
−0.505 0.48

0.59 −0.205

]
, A1 =

[
−0.495 0.52

0.61 −0.195

]
,

D1 =

[
0.09 0

0.045 0.018

]
, D1 =

[
0.11 0
0.055 0.022

]
,

G1 =

[
0.08
0.09

]
, G1 =

[
0.12
0.11

]
,

A2 =

[
−2.7 0.49
0.58 −1.75

]
, A2 =

[
−2.3 0.51
0.62 −1.25

]
,

D2 =

[
0.078 0.019
0.008 0.045

]
, D2 =

[
0.082 0.021
0.012 0.055

]
,

G2 =

[
0.09
0.17

]
, G2 =

[
0.11
0.23

]
,

d(t) = 0.05 + 0.05 sin(t), and ω(t) = 0.5e−5t.

Under the given time-varying delay above, we select d̂ = 0.1 and d = 0.05. According to
Definition 2, one can see that A1 and A2 are Metzler matrices. Furthermore, it is obvious that
D1 � 0, D2 � 0, G1 � 0, and G2 � 0. By Lemma 1 and Assumption 1, the studied system is
positive. For the numerical simulations, we set the initial condition as ψ(θ) = [1 2]T , θ ∈ [−d̂, 0],
and let the system matrices be

A1 =
A1 + A1

2
=

[
−0.5 0.5
0.6 −0.2

]
, D1 =

D1 + D1

2
=

[
0.1 0

0.05 0.02

]
, G1 =

G1 + G1

2
=

[
0.1
0.1

]
,

and

A2 =
A2 + A2

2
=

[
−2.5 0.5
0.6 −1.5

]
, D2 =

D2 + D2

2
=

[
0.08 0.02
0.01 0.05

]
, G2 =

G2 + G2

2
=

[
0.1
0.2

]
.

Given two positive vectors l1 = [2 2]T and l2 = [1 1]T . Then, we assign the positive constants
c1 = 6, c2 = 50 and the time constant Tf = 15, which satisfies sup

θ∈[−d̂,0] ψT(θ)l1 ≤ c1.
From the condition of the exogenous disturbance defined as in (2), it is obvious that ρ = 0.1.
The value of xT(t)l2, t ∈ [0, Tf ] for the first subsystem and the second subsystem are shown
respectively in Figures 1 and 2. From two subsystems of the simulations, it is verified that the first
subsystem is not finite-time bounded and the second one is finite-time bounded.
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As defined in (5), it is obviously that

D̃ =

[
0.11 0.021

0.055 0.055

]
.

For given sclars γ1 = 0.5, µ1 = 0.58, γ2 = 0.01 and µ2 = 1.73, we can get a set of feasible
solution for Theorem 1:

ν1 = [0.975 0.975]T , ν2 = [1.683 1.683]T , ξ1 = 0.5, ξ2 = 0.85, β1 = 0.95, β2 = 1.

Thus, system (1) is finite-time bounded with respect to (6, 50, 15, [2 2]T , [1 1]T , 0.1, σ) under
the switching signal with SMDADT τ∗a2 = 3.9976 and FMDADT τ∗a1 = 1.0895, which satisfy the
conditions specified by (14) and (15), respectively. Let τa1 = 1 < 1.0895 and τa2 = 4 > 3.9976
for the first subsystem and the second subsystem, respectively. The value of xT(t)l2 of system (1)
under the corresponding switching signal is depicted in Figure 3. The plot indicates that the value
of xT(t)l2 at Tf = 15 does not exceed c2 = 50. Consequently, we can conclude that system (1) is
finite-time bounded with respect to (6, 50, 15, [2 2]T , [1 1]T , 0.1, σ).

0 5 10 15
Time (t)

0

50

100

150

200

250

x
T
(t

)l
2

Figure 1. The value of xT(t)l2 of the first subsystem in Example 1.

0 5 10 15
Time (t)
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1

2

3

4
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6

x
T
(t

)l
2

Figure 2. The value of xT(t)l2 of the second subsystem in Example 1.
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Figure 3. The value of xT(t)l2 of the system in Example 1 under the corresponding switching signal.

Example 2. We consider system (1) with two subsystems. The system data are given as follows:

A1 =

[
−0.305 0.48

0.59 −0.205

]
, A1 =

[
−0.295 0.52

0.61 −0.195

]
,

D1 =

[
0.098 0
0.045 0.01

]
, D1 =

[
0.102 0
0.055 0.03

]
,

G1 =

[
0.05
0.06

]
, G1 =

[
0.15
0.14

]
,

A2 =

[
−0.5 0.516
0.426 −0.5

]
, A2 =

[
−0.5 0.52
0.43 −0.5

]
,

D2 =

[
0.11 0.019

0.053 0.049

]
, D2 =

[
0.11 0.021
0.055 0.055

]
,

G2 =

[
0.09
0.17

]
, G2 =

[
0.11
0.23

]
,

d(t) = 0.05 + 0.05 sin(t), and ω(t) = 0.5e−5t.

The same two constants d̂ and d can be selected as in Example 1. The positivity of the system
in this example is also summarized as in Example 1. For the numerical simulations, we set the
initial condition as ψ(θ) = [1 2]T , θ ∈ [−d̂, 0], and let the system matrices be

A1 =
A1 + A1

2
=

[
−0.3 0.5
0.6 −0.2

]
, D1 =

D1 + D1

2
=

[
0.1 0

0.05 0.02

]
, G1 =

G1 + G1

2
=

[
0.1
0.1

]
,

and

A2 =
A2 + A2

2
=

[
−0.5 0.518
0.428 −0.5

]
, D2 =

D2 + D2

2
=

[
0.11 0.02
0.054 0.052

]
, G2 =

G2 + G2

2
=

[
0.1
0.2

]
.

Let l1 = [2 2]T and l2 = [1 1]T . Next, we choose the same positive constants c1 = 6, c2 = 50,
Tf = 15, and ρ = 0.1 which are given in Example 1. The value of xT(t)l2, t ∈ [0, Tf ] for the
first subsystem and the second subsystem are depicted respectively in Figures 4 and 5. From two
subsystems of the simulations, it is verified that the first subsystem is not finite-time bounded and
the second one is finite-time bounded.
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By (5), we can get the same D̃ proposed in Example 1. For given sclars γ1 = 0.5, µ1 = 0.58,
γ2 = 0.106 and µ2 = 1.728, we can get a set of feasible solution for Theorem 1:

ν1 = [0.975 0.975]T , ν2 = [1.684 1.684]T , ξ1 = 0.6, ξ2 = 0.85, β1 = 0.974, β2 = 1.2.

Hence, system (1) is finite-time bounded with respect to (6, 50, 15, [2 2]T , [1 1]T , 0.1, σ)
under the switching signal with SMDADT τ∗a2 = 12.7870 and FMDADT τ∗a1 = 1.0895. Let
τa1 = 1 < 1.0895 and τa2 = 13 > 12.7870 for the first subsystem and the second subsystem,
respectively. The value of xT(t)l2 of the system under the corresponding switching signal is
presented in Figure 6. It can be seen that the value of xT(t)l2 increases significantly, but does not
exceed the specified value of c2. Therefore, the studied system in this example is finite-time bounded
with respect to (6, 50, 15, [2 2]T , [1 1]T , 0.1, σ).
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Figure 4. The value of xT(t)l2 of the first subsystem in Example 2.
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Figure 5. The value of xT(t)l2 of the second subsystem in Example 2.
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Figure 6. The value of xT(t)l2 of the system in Example 2 under the corresponding switching signal.

5. Conclusions

In this paper, the FTB problem for a class of SPSs, including time-varying delay, in-
terval uncertainties, exogenous disturbance, and finite-time unbounded subsystems, has
been studied. The design of QASSs for the systems whose subsystems are bounded and
unbounded has been addressed. By taking advantage of the positivity of the considered
systems combined with the SMDADT and the FMDADT methods, the suitable CLKF has
been constructed, and some computable sufficient conditions for FTB have been formulated
in the main theorem. Furthermore, novel DDSC of systems without the interval uncertain-
ties have also been acquired in the corollary. Lastly, two numerical examples have been
presented to illustrate the validity of the theoretical analysis.
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