
����������
�������

Citation: Li, Q.; Pham, H. Software

Reliability Modeling Incorporating

Fault Detection and Fault Correction

Processes with Testing Coverage and

Fault Amount Dependency.

Mathematics 2022, 10, 60. https://

doi.org/10.3390/math10010060

Academic Editor: Tadashi Dohi

Received: 3 December 2021

Accepted: 23 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Software Reliability Modeling Incorporating Fault Detection
and Fault Correction Processes with Testing Coverage and Fault
Amount Dependency
Qiuying Li 1,2,* and Hoang Pham 3

1 School of Reliability & Systems Engineering, Beihang University, Beijing 100191, China
2 National Key Laboratory of Science & Technology on Reliability & Environmental Engineering,

Beijing 100191, China
3 Department of Industrial & Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA;

hopham@rci.rutgers.edu
* Correspondence: li_qiuying@buaa.edu.cn

Abstract: This paper presents a general testing coverage software reliability modeling framework
that covers imperfect debugging and considers not only fault detection processes (FDP) but also
fault correction processes (FCP). Numerous software reliability growth models have evaluated the
reliability of software over the last few decades, but most of them attached importance to modeling the
fault detection process rather than modeling the fault correction process. Previous studies analyzed
the time dependency between the fault detection and correction processes and modeled the fault
correction process as a delayed detection process with a random or deterministic time delay. We
study the quantitative dependency between dual processes from the viewpoint of fault amount
dependency instead of time dependency, then propose a generalized modeling framework along with
imperfect debugging and testing coverage. New models are derived by adopting different testing
coverage functions. We compared the performance of these proposed models with existing models
under the context of two kinds of failure data, one of which only includes observations of faults
detected, and the other includes not only fault detection but also fault correction data. Different
parameter estimation methods and performance comparison criteria are presented according to the
characteristics of different kinds of datasets. No matter what kind of data, the comparison results
reveal that the proposed models generally give improved descriptive and predictive performance
than existing models.

Keywords: fault correction process; fault detection process; testing coverage; time dependency; fault
amount dependency; software reliability growth model

1. Introduction

Software reliability growth models (SRGMs) based on the nonhomogeneous Poisson
process (NHPP) have been provided to describe the software reliability in previous eras [1].
One common assumption of most models is that faults will be instantaneously removed
after the failure caused by the faults being observed. However, it does not always stand
in real software developing process because of the software’s complexity and the tester’s
limited ability, i.e., it needs nontrivial time and effort not only to report, diagnose, and
locate a fault but also to fix and verify a fault instead so that the time can be ignored.
Therefore, it is very important to model software reliability based on the perspective of
the fault correction process. Recently, great importance has been emphasized on modeling
fault correction processes.

It is Schneidewind who first modeled the fault correction process (FCP) along with
the fault detection process (FDP) by assuming a constant time delay between the two
processes [2]. Then Xie et al. gave an extension study on Schneidewind’s idea from an equal
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time lag to a time-varied lag function [3]. Schneidewind also extended his original model
by introducing a random time delay obeying exponential distribution [4]. Huang et al.
considered how to combine both fault dependency and a time-dependent debugging time
lag into reliability modeling, meanwhile they classified the faults into leading faults and
dependent faults [5]. Xie et al. provided a modeling framework of a fault correction process
by defining a random time delay model with different distributions, such as the gamma [6],
normal, Weibull, chi-square, and Erlang distribution [7]. New statistical distributions
continued to be presented in follow-up research, such as the hyper-Erlang distribution [8].
Improved joint likelihood functions for combined FDP and FCP were derived to replace the
single likelihood function [9]. Peng et al. integrated testing effort function and imperfect
debugging into the dual processes modeling, because they regarded the testing effort as
a considerable influencing factor, which affects not only the fault detection rate but also
the time to correct a detected fault [10]. Later, they introduced fault dependency into the
paired FDP and FCP models instead of neglecting the faults’ correlation [11]. Lo et al.
summarized a framework which could cover some existing models [12]. Recently, this
research was extended to a multi-release, open-source software failure process [13] together
with different kinds of failure data, such as masked data [14]. Pachauri et al. implemented
delay in fault correction after fault detection based on imperfect correction [15]. Tiwari et al.
considered inclusive modeling for investigating the detection and correction of faults under
an imperfect debugging scenario where new faults are involved throughout the correction
of a hard type of fault [16]. Choudhary et al. evaluated the optimum release and cost
by considering that either detection or correction does not provide adequate information
and proposed an effort-based optimized decision model taking into account the cost of
detection and correction separately using a multi-attribute utility theory [17]. Saraf et al.
presented a model of two-stage fault detection and fault correction in view of imperfect
debugging, error generation, and change point, where a combination of exponential and
gamma distribution is adopted [18]. Kumar et al. allocated the resources in an optimal
manner to minimize the cost during the testing phase using FDP and FCP under a dynamic
environment [19].

Although models proposed by the above studies can effectively evaluate software
reliability, they have the following two disadvantages: firstly, time-delay functions are
developed by assuming how the correction time lag will be, which may not be the case.
Since time-delay functions are not derived from actual testing process, it may not be very
realistic to use them to characterize the relationship between fault detection and correction
processes. Secondly, stochastic distribution of fault correction time brings more difficulties
in modeling and corresponding parameter estimation. Sometimes the calculations may not
yield any solutions. Moreover, in essence, they can be attributed to one category, models
based on the time dependency between these two processes, i.e., time delay. However,
we know that the time to remove faults depends on many factors, such as the complexity
of detected faults, the skills of testers, available resources, and the software development
environment. Therefore, it is fairly important to model fault detection and correction
processes with different software reliability models. To overcome this problem, the objective
of this paper is to provide a general framework for the combined modeling of software
detection and correction process from another perspective, which is different from the
above-mentioned one.

Shu et al. proposed modeling both fault detection and correction processes from the
viewpoint of the fault number concretely and in two ways, the ratio of corrected fault
number to detected fault number and the difference between these two numbers [20].
Compared to the time dependency models, they opened a new direction for modeling dual
processes, but they only presented models under the condition of perfect debugging, and
the fault detection rate follows a constant. Thus, a lot of questions affecting the model
accuracy remained unsolved, such as imperfect debugging and a more complicated fault
detection rate. In this paper, we aim to give a general framework from the viewpoint of
fault amount dependency, so that further studies can be motivated to utilize this framework
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along this way. In addition, we want to provide an extensive discussion on essential factors,
which may have a great effect on model accuracy. Recently, we provided a model on this
direction, but the limitation of this article is also that only one testing coverage function is
provided, and one single process parameter estimation method is discussed [21].

In addition, with the evolution of SRGMs, many factors have been incorporated into
the modeling framework to improve the evaluation accuracy [22]. Testing coverage is a
very promising metric during software development for both developers and users, which
can help developers assess testing progress and help users estimate confidence in accepting
software products [23]. Many time-dependent testing coverage functions (TCFs) following
different distributions have been proposed [24], such as the logarithmic–exponential [25],
S-shaped [26], Rayleigh [27], Weibull & Logistic [28], and lognormal [29], and many TCF-
based SRGMs have been proposed, such as the Rayleigh, logarithmic–exponential, Beta,
and Hyper-exponential model. Recently, Chatterjee et al. presented a unified approach
to model the reliability growth of software with imperfect debugging and three types of
testing coverage curves, such as the exponential, Weibull, and S-shaped [30]. They also
proposed a SRGM considering the effects of uncertain testing environment and testing
coverage of multi-release software in the presence of two different types of faults [31].
Obviously, incorporating coverage in the SRGM helps to enhance software reliability and
predict the faults in a more realistic and accurate way.

Furthermore, different parametric SRGMs are developed depending on failure data
gathered during software testing. There are two kinds of failure data, one of which includes
only detected faults observations, whereas the other includes not only detected fault num-
ber but also the corrected fault number. So, different parameter estimation methods have
been recommended aiming at these two conditions. Improved joint likelihood functions
for the combined FDP and FCP were derived to replace the single likelihood function [9],
meanwhile a combined least square error function is presented to replace a single least
square error function [6]. Different criteria are also given to reflect the characteristics of the
dual processes simultaneously, e.g., combined MSE and MRE instead of those criteria only
considering the characteristics of single process [7].

Besides, some other attempts have been made to model dual processes simultaneously.
One is the so-called parametric model based on the Markov chain rather than on NHPP [32].
Liu et al. extended the Markov model by focusing on the weighted least square estimation
method, which emphasizes the influence of later data on the prediction [33]. Conversely,
nonparametric models are proposed to model these two processes together, e.g., data-
driven models, such as robust recurrent neural networks [34], artificial neural networks
models [35], finite and infinite server queuing models [36], and quasi-renewal, time-delay
fault removal models [37]. The simulation rate-based method [38] was developed to
simulate software failure processes by queuing models [39]. Chatterjee et al. developed
a modeling framework to incorporate imperfect debugging and change-point with the
Weibull-type fault reduction factor considering fault removal as a two-step process [40].

The main contributions of our work are as follows.

• We develop a general framework for modeling both fault detection and correction
processes from the viewpoint of fault amount dependency instead of time dependency
in the context of different testing coverage and imperfect debugging.

• We consider testing coverage functions including the Weibull-type, delayed S-shaped,
and inflection S-shaped functions to verify their flexibility in modeling different
failure phenomena.

• We discuss the models under two kinds of failure datasets followed by two kinds of
parameter estimation methods and performance comparison criteria accordingly.

• We conduct case studies based on two kinds of failure datasets to verify the feasibility
of the proposed method.

The remainder of this paper is structured as follows. In Section 2, we analyze the
relationship between fault detection and fault correction processes on the basis of one
real dataset, then propose three testing coverage functions to build the proposed models.



Mathematics 2022, 10, 60 4 of 22

According to different kinds of failure datasets, we give parameter estimation methods and
performance comparison criteria for estimation and prediction accordingly in Section 3.
Then, we validate the performance of the proposed models with several existing SRGMs
on three real datasets in Section 4. Finally, we summarize the conclusions in Section 5.

2. Model Formulation
2.1. Assumptions

The assumptions are made to develop the proposed models as follows:

1. The software failure process follows an NHPP process.
2. The mean number of faults detected in the time interval (t + ∆t) is proportional to the

number of undetected faults at time t.
3. The fault detection rate is denoted by testing coverage, which is written as c′(t)

1−c(t) ,
where c(t) refers to one kind of testing coverage, e.g., code percentage that has been
examined up to time t, and c′(t) is the derivative of c(t).

4. The software debugging process is imperfect, and new faults could be introduced
during fault correction.

5. The detected faults cannot be corrected immediately, and the dependency between

fault detection and correction processes is represented by r(t), that is, r(t) = mc(t)
md(t)

,
where md(t) is the cumulative detected faults, and mc(t) represents the cumulative
corrected faults.

Under the above assumptions, we can obtain the following equations:

dmd(t)
dt

=
c′(t)

1− c(t)
[a(t)−md(t)] (1)

a(t) = a + αmd(t) (2)

mc(t) = r(t) ·md(t) (3)

Solving the value of md(t) from Equation (1) and using the initial condition that t = 0
and md(t) = 0, we can obtain the paired FDP and FCP models as follows:

md(t) =
a

1− α

[
1−

(
1− c(t)
1− c(0)

)1−α
]

(4)

mc(t) =
a

1− α

[
1−

(
1− c(t)
1− c(0)

)1−α
]
· r(t) (5)

where c(0) means c(t = 0).
We can obtain different paired mean value functions by substituting different testing

coverage functions c(t) and fault amount dependency function r(t) in Equations (4) and (5).

2.2. The Relationship between md(t) and mc(t)

Firstly, we study the relationship between the mean number of md(t) and mc(t). A
set of failure data collected from testing a real software program (Dataset 1, DS-1) [9] is
utilized here. Suppose r(t) = mc(t)

md(t)
, the points of cumulative detected and corrected faults

are plotted in Figure 1a, and the actual ratio values of r(t) are also drawn in Figure 1b.
From Figure 1, it can be noticed that md(t) and mc(t) are both increasing functions of

testing time t. At the beginning of software testing, there are many faults, most of which
are simple and easy to be detected. Therefore, the number of faults detected grows rapidly,
but the testers at this time are not familiar with the software, so they appear very slow
in locating and fixing the detected faults, thus the fault correction lags far behind fault
detection, that is, the ratio of corrected fault number to detected fault number is very low
and even decreases over time. Then, as the testing progresses, under the influence of the
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learning process, the testers gain more experience and master the software better than
before, they can remove the faults faster, so the number of faults corrected grows faster, and
the proportion of faults corrected number against faults detected number increases rapidly
over time. Then the faults become more complicated and difficult to locate and fix, so the
growth of the faults detected number becomes slow, and the difference between FCP and
FDP may decrease. At the end of testing, the faults are almost completely detected, and it
is more difficult to find more faults, so the number of detected faults becomes harder to
grow, and all the faults are almost completely corrected, hence the ratio of faults corrected
number against faults detected number tends to 1.
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Apparently, this phenomenon is better captured by an S-shaped function.
Here three S-shaped functions are used to compare their fitting performance on DS-1,

i.e., r(t) = 1
1+be−βt , r(t) = 1−e−βt

1+be−βt , and r(t) = 1− (1 + bt)e−bt. Table 1 gives their values of

MSE, R2, and Adjusted R2 on DS-1 separately. From Table 1, r(t) = 1
1+be−βt yields a better

fit for the actual ratio values and is finally decided to be taken as r(t). It can be noted that
r(t) = 1

1+be−βt is a nondecreasing function with an S-shaped curve, whose structure is very
flexible and may catch the features of the software testing’s learning process.

Table 1. The values of MSE, R2, and Adjusted R2 of r(t) for DS-1.

r(t) MSE R2 Adjusted R2

1
1+be−βt 0.0022 0.9765 0.9749
1−e−βt

1+be−βt 0.0029 0.9695 0.9675

1− (1 + bt)e−bt 0.0038 0.9567 0.9567

2.3. Framework and New Testing Coverage Models

Here time-variable testing coverage functions are chosen to obtain the following
specific models, and these testing coverage functions have been recommended in several
references with great flexibility [41].
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Model 1: Suppose the testing coverage is a Weibull-type function, that is

c(t) = 1− e−rtd
(6)

We can obtain  md(t) = a
1−α

(
1− e−r(1−α)td

)
mc(t) = a

1−α

(
1− e−r(1−α)td

)
1

1+be−βt

(7)

where r and d are constant parameters.
Because c′(t)

1−c(t) = rdtd−1, the derivative of c′(t)
1−c(t) equals to rd(d− 1)td−1. For d > 1,

the fault detection rate is increasing, and it is decreasing for d < 1, and it keeps a constant
for d = 1. In most actual testing processes, software failure intensity usually increases
initially and then decreases, so the flexibility of the Weibull-type function captures the
characteristics of the failure intensity.

Model 2: Suppose the testing coverage takes a delayed S-shaped function, that is

c(t) = 1− (1 + rt)e−rt (8)

Then  md(t) = a
1−α

(
1− (1 + rt)1−αe−r(1−α)t

)
mc(t) = a

1−α

(
1− (1 + rt)1−αe−r(1−α)t

)
· 1

1+be−βt

(9)

Because c′(t)
1−c(t) = r2t

1+rt , the derivative of c′(t)
1−c(t) equals to r2

(1+rt)2 . For any r > 0, the

fault detection rate keeps increasing.
Model 3: Suppose the testing coverage is an inflection S-shaped function, that is

c(t) =
1− e−rt

1 + ce−rt (10)

then 
md(t) = a

1−α

(
1−

(
(1+c)e−rt)

1+ce−rt

)1−α
)

mc(t) = a
1−α

(
1−

(
(1+c)e−rt)

1+ce−rt

)1−α
)
· 1

1+be−βt

(11)

because c′(t)
1−c(t) =

r
1+ce−rt , and the derivative of c′(t)

1−c(t) equals to cr2e−rt

(1+ce−rt)2 . For any c > 0, r > 0,

the fault detection rate keeps increasing.
It can be seen that fault detection and correction processes as well testing coverage

and imperfect debugging are all integrated into the proposed paired models.
In this paper, two kinds of failure data will be utilized. One kind of failure data

contains only the detected fault number, and the other contains not only the detected
fault number but also the corrected fault number. DS-I belongs to the second type, and
Datasets 2 and 3 belong to the first type, respectively. Table 2 lists 19 models, among which,
M1 to M5 are paired FDP and FCP models with a different time delay as comparison
models to depict both fault correction and detection processes [6,7]. M6 to M16 are taken as
comparison models for single process models. M17 to M19 are proposed models in this
paper. Accordingly, for DS-1, the paired models in M17 to M19 will be used to compare
the performance, and for DS-2 and DS-3, the FCP models in M17 to M19 will be used to
compare the performance.
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Table 2. Summary of models.

Models Model Names Mean Value Functions Remarks

M1
FDP: G-O model
FCP: G-O with constant time
delay [6]

md(t) = a(1− e−bt)

mc(t) = a(1− e−b(t−c))

Schneidewind model considers
FCP as a constant time delay from
FDP. Here taken as comparing
models for DS-1.

M2
FDP: G-O model
FCP: G-O with
time-dependent delay [6]

md(t) = a(1− e−bt)
mc(t) = a(1− (1 + ct)e−bt)

Xie et al. model considers FCP as
a time-dependent delay from FDP.
Here taken as comparing models
for DS-1.

M3
FDP: G-O model
FCP: G-O with exponential
distributed delay [6]

md(t) = a(1− e−bt)

mc(t) = a(1− c
c−b e−bt + b

c−b e−ct)

Assume FCP has an exponential
distributed delay from FDP. Taken
as comparing models for DS-1.

M4
FDP: G-O model
FCP: G-O with normally
distributed time delay [7]

md(t) = a(1− e−bt)

mc(t) = −ae−bt+µb+b2σ2/2(Φ(t, bσ2 + µ, σ
)
−Φ

(
0, bσ2 + µ, σ

))
+a(Φ(t, µ, σ)−Φ(0, µ, σ))

Assume FCP has a normally
distributed time delay from FDP.

f (x; µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2

Taken as comparing models for
DS-1.

M5
FDP: G-O model
FCP: G-O with gamma
distributed time delay [7]

md(t) = a(1− e−bt)

mc(t) = aΓ(t, α, β)− ae−bt

(1−bβ)α Γ(t, α, β
1−bβ )

Assume FCP has a gamma
distributed time delay from FDP.

f (x; α, β) = xα−1 βαe−βx

Γ(α) , x > 0
Taken as comparing models for
DS-1

M6 G-O model [42] m(t) = a(1− e−bt)
Taken as comparing model for
DS-2 and DS-3.

M7 Delayed S-shaped [42] m(t) = a(1− (1 + bt)e−bt)
Taken as comparing model for
DS-2 and DS-3.

M8 Inflection S-shaped [43] m(t) = a(1−e−bt)

1+βe−bt

Taken as comparing model for
DS-2 and DS-3.

M9 Yamada exponential [42] m(t) = a(1− e−rα(1−e−βt))
Taken as comparing model for
DS-2 and DS-3.

M10 Yamada Rayleigh [42] m(t) = a(1− e−rα(1−e−βt2/2))
Taken as comparing model for
DS-2 and DS-3.

M11 Yamada Weibull [42] m(t) = a(1− e−rα(1−e−βtr ))
Taken as comparing model for
DS-2 and DS-3.

M12 Yamada imperfect (1) [44] m(t) = ab
α+b (e

αt − e−bt)
Taken as comparing model for
DS-2 and DS-3.

M13 Yamada imperfect (2) [44] m(t) = a(1− e−bt)(1− α
b ) + αat

Taken as comparing model for
DS-2 and DS-3.

M14 P-Z (1997) model [45] m(t) = 1
(1+βe−bt)

(
(c + a)(1− e−bt)− ab

b−α (e
−αt − e−bt)

) Taken as comparing model for
DS-2 and DS-3.

M15 Fault removal model
(2003) [46] m(t) = a

p−β

{
1−

(
(1+α)e−bt

1+αe−bt

) c
b (p−β)

} Taken as comparing model for
DS-2 and DS-3.

M16 SRGM-3 model (2011) [47] m(t) = A
1−α

[
1−

((
1 + bt + b2t2

2

)
e−bt

)p(1−α)
] Taken as comparing model for

DS-2 and DS-3.

M17
FDP: Weibull-type testing
coverage
FCP: with logistic r(t)

md(t) = a
1−α

(
1− e−c(1−α)tr

)
mc(t) = a

1−α

(
1− e−c(1−α)tr

)
1

1+be−βt

Proposed model I.

M18
FDP: Delayed S-shaped
testing coverage
FCP: with logistic r(t)

md(t) = a
1−α

(
1− (1 + rt)1−αe−r(1−α)t

)
mc(t) = a

1−α

(
1− (1 + rt)1−αe−r(1−α)t

)
· 1

1+be−βt

Proposed model II.

M19
FDP: Inflection S-shaped
testing coverage
FCP: with logistic r(t)

md(t) = a
1−α

(
1−

(
(1+c)e−rt)

1+ce−rt

)1−α
)

mc(t) = a
1−α

(
1−

(
(1+c)e−rt)

1+ce−rt

)1−α
)
· 1

1+be−βt

Proposed model III.

3. Parameter Estimation Methods and Model Comparison Criteria

This section presents two kinds of parameter estimation methods and model com-
parison criteria for paired failure data and single process failure data, respectively. Paired
failure data refers to observations of both fault detection and correction, and single process
failure data refers to observations of only the detected fault number. This is because models
for bother fault detection and correction are described as paired models. In addition to
those parameters for fault detection, there are parameters for fault correction, therefore
all parameters should be estimated together. For a long time in the software reliability
modeling field, few published datasets were available, including both observations of fault
detection and correction; it is only in recent years that considerable efforts have been made
to collect more and more data including both observations of fault detection and correction
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in software projects, which greatly support the research of modeling and the analysis of
dual processes. Conversely, parametric SRGM research depends on failure data gathered
during software testing, that is, when different types of failure data are presented, one
needs to adopt the corresponding method in terms of their characteristics.

3.1. Parameter Estimation Methods
3.1.1. Parameter Estimation Method for Paired FDP and FCP Models

Against failure observations of both fault detection and correction, the sum of the
squared residuals for both detected and corrected faults is shown as follows:

LL =

[
n

∑
i=1

(ydi − m̂d(ti))
2 +

n

∑
i=1

(yci − m̂c(ti))
2

]
(12)

where ydi is the cumulative number of detected faults observed until time ti. m̂d(ti) is the
estimated cumulative number of detected faults until time ti obtained from the fitted mean
value function. yci is the cumulative number of corrected faults until time ti, and m̂c(ti) is
the estimated cumulative number of corrected faults until time ti obtained from the fitted
mean value function, i = 1, 2, . . . , n.

Obviously, the parameters of the model need to minimize the sum of squared devia-
tions of detected defects and corrected defects at the same time. Here we take the combined
least square estimation (LSE) method to estimate the models’ parameters. The solution of
simultaneous equations can be obtained by calculating the derivatives of each parameter in
Equation (12) and setting the result to be equal to zero. Taking Equation (7) as an example,
the following is

∂LL
∂a =

n
∑

i=1

(
∂m̂(tdi)

∂a (ydi − m̂(tdi)) +
∂m̂(tci)

∂a (yci − m̂(tci))
)
= 0

∂LL
∂b =

n
∑

i=1

(
∂m̂(tdi)

∂b (ydi − m̂(tdi)) +
∂m̂(tci)

∂b (yci − m̂(tci))
)
= 0

∂LL
∂α =

n
∑

i=1

(
∂m̂(tdi)

∂α (ydi − m̂(tdi)) +
∂m̂(tci)

∂α (yci − m̂(tci))
)
= 0

∂LL
∂d =

n
∑

i=1

(
∂m̂(tdi)

∂d (ydi − m̂(tdi)) +
∂m̂(tci)

∂d (yci − m̂(tci))
)
= 0

∂L
∂β =

n
∑

i=1

(
∂m̂(tdi)

∂β (ydi − m̂(tdi)) +
∂m̂(tci)

∂β (yci − m̂(tci))
)
= 0

∂L
∂r =

n
∑

i=1

(
∂m̂(tdi)

∂r (ydi − m̂(tdi)) +
∂m̂(tci)

∂r (yci − m̂(tci))
)
= 0

(13)

After solving these equations numerically, we can obtain the point estimates of all
parameters for the proposed model.

3.1.2. Parameter Estimation Method for Single Process Models

For observations with only detected faults, the sum of the squared distance is shown
as follows to obtain the least square estimates:

L =
n

∑
i=1

(yi − m̂(ti))
2 (14)

where yi denotes the cumulative detected fault number until time ti.
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Similarly, from Equation (14), we can obtain the corresponding equations to solve
estimators, taking FCP in Equation (7) for example:

∂L
∂a =

n
∑

i=1

∂m̂(ti)
∂a (yi − m̂(ti)) = 0

∂L
∂b =

n
∑

i=1

∂m̂(ti)
∂b (yi − m̂(ti)) = 0

∂L
∂α =

n
∑

i=1

∂m̂(ti)
∂α (yi − m̂(ti)) = 0

∂L
∂d =

n
∑

i=1

∂m̂(ti)
∂d (yi − m̂(ti)) = 0

∂L
∂β =

n
∑

i=1

∂m̂(ti)
∂β (yi − m̂(ti)) = 0

∂L
∂r =

n
∑

i=1

∂m̂(ti)
∂r (yi − m̂(ti)) = 0

(15)

After solving equations in (15) simultaneously, we can derive the least square estima-
tors of all model parameters.

3.2. Criteria for a Comparison of the Power of Models with Paired FDP and FCP Models
3.2.1. Criteria for a Comparison of the Descriptive Power of Models with Paired FDP and
FCP Models

Under the context of the LSE method to obtain the estimates of all parameters, the
combined mean squared errors for both fault detection and correction are taken as the
measurement to examine the fitting performance of paired models, which is defined as [6]

MSE =
1

2n

[
n

∑
i=1

(ydi − m̂d(ti))
2 +

n

∑
i=1

(yci − m̂c(ti))
2

]
(16)

Thus, the lower value of MSE indicates the better goodness-of-fit performance.

3.2.2. Criteria for a Comparison of the Predictive Power of Models with Paired FDP and
FCP Models

Mean relative errors (MREs) for both fault detection and correction processes are taken
as a criterion to examine the prediction performance of paired models. MRE is expressed
as follows:

MRE =
1

2(n− j + 1)

(
n

∑
i=j

∣∣∣∣ m̂d(ti)− ydi
ydi

∣∣∣∣+ n

∑
i=1

∣∣∣∣ m̂c(ti)− yci
yci

∣∣∣∣
)

(17)

Assume that by the end of testing time tn, totally paired data (ydn, ycn) are collected.
Firstly, we use the paired data up to time tj−1(tj−1 < tj < tn) to estimate the parameters of
m̂d(t) and m̂c(t), then substitute the estimated parameters into the mean value functions to
yield the prediction values of the cumulative fault numbers m̂d(tj) and m̂c(tj). Then the
procedure is repeated from tj to tn.

Therefore, the fewer MREs, the better the model’s prediction performance.

3.3. Criteria for a Comparison of the Power of Model with Single Process Models
3.3.1. Criteria for a Comparison of the Descriptive Power of Models with Single
Process Models

For single process models, we adopted the following seven goodness-of-fit criteria to
compare their fitting performance.

(1) Mean value of squared error (MSE)
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MSE =
1

n− N

n

∑
i=1

(yi − m̂(ti))
2 (18)

where N represents the number of parameters in the model. Thus, the lower MSE indicates
a better goodness-of-fit.

(2) Correlation index of the regression curve equation (R2)

R2 = 1−

n
∑

i=1
(yi − m̂(ti))

2

n
∑

i=1
(yi − y)2

(19)

where y = 1
n

n
∑

i=1
yi. Therefore, the larger R2 means the better model.

(3) Adjusted R2

Adjusted R2 = 1− (1− R2)(n− 1)
n− P− 1

(20)

where P represents the number of predictors in the model. The larger the Adjusted R2, the
smaller the fitting error.

(4) Predictive-ratio risk (PRR)

PRR =
n

∑
i=1

(
m̂(ti)− yi

m̂(ti)

)2

(21)

The lower the value of PRR, the better the goodness-of-fit.

(5) Predictive power (PP)

PP =
n

∑
i=1

(
m̂(ti)− yi

yi

)2

(22)

Less PP means a better fitting.

(6) Bias

Bias =
1
n

n

∑
i=1

(m̂(ti)− yi) (23)

The lower Bias indicates the preferred model.

(7) Variation

Variation =

√
1

n− 1

n

∑
i=1

(yi − m̂(ti)− Bias)2 (24)

The Variation with a lower value has a better goodness-of-fit.

3.3.2. Criteria for a Comparison of the Predictive Power of Models with Single
Process Models

For single process models, we used the SSE criterion to examine the predictive power
of SRGMs. SSE is expressed as follows:

SSE =
n

∑
i=m

(yi − m̂(ti))
2 (25)
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A lower SSE means a better prediction performance.

4. Numerical Examples

In the following experiments, we validate the proposed models on three real datasets
and compare their performance based on different comparison criteria.

4.1. Case Study 1

DS-1 is collected from testing a medium size software system [10] and has been widely
used in many papers, such as [7,11,23,48]. DS-1 includes observations of not only detected
faults but also corrected faults, in which there was a total of 144 faults observed and 143
faults corrected within 17 weeks. For simplicity and tractability, the detailed information
about this dataset can be referenced in [6]. We chose M1 to M5 (paired FDP and FCP
models) as comparing models, meanwhile the combined LSE method and combined MSE
and MRE values were chosen as the parameter estimation method and goodness-of-fit and
prediction performance criteria, respectively.

For the descriptive power comparison, all data points were used to fit the models and
estimate the model parameters. The results are listed in Table 3, together with the MSE
values used for a goodness-of-fit comparison.

Table 3. Estimates of parameters and performance values of paired models for DS-1.

Models
Parameter Estimation Values Estimation Prediction

a b c/µ α/σ β r MSE MRE

M1 157.6607 0.1353 1.5813 - - -
MSE = 52.6776

MSEd = 49.5562
MSEc = 55.7991

MRE = 0.2667
MREd = 0.3067
MREc = 0.2267

M2 168.3627 0.1193 0.0279 - - -
MSE = 104.8889
MSEd = 58.0583

MSEc = 151.7194

MRE = 0.3422
MREd = 0.4743
MREc = 0.2102

M3 156.3453 0.1404 0.5811 - - -
MSE = 55.1920

MSEd = 50.6615
MSEc = 59.7225

MRE = 0.2611
MREd = 0.3083
MREc = 0.2140

M4 152.6053 0.1501 1.9756 0.3050 - -
MSE = 40.8773

MSEd = 52.6564
MSEc = 29.0983

MRE = 0.2030
MREd = 0.2422
MREc = 0.1639

M5 152.2418 0.1466 - 1.7071 0.6081 -
MSE = 34.6214

MSEd = 49.4108
MSEc = 19.8320

MRE = 0.2018
MREd = 0.2171
MREc = 0.1865

M17 99.9970 27.8834 0.1601 0.2805 0.8266 1.2048
MSE = 27.9714

MSEd = 37.6473
MSEc = 18.2954

MRE = 0.0980
MREd = 0.1043
MREc = 0.0917

M18 99.9888 7.2904 - 0.2538 0.5268 0.4833
MSE = 27.5294

MSEd = 29.3943
MSEc = 25.6646

MRE = 0.0475
MREd = 0.0495
MREc = 0.0455

M19 15.7243 15.2734 5.9790 0.8871 0.6848 1.8583
MSE = 22.9948

MSEd = 26.6022
MSEc = 19.3873

MRE = 0.0921
MREd = 0.0981
MREc = 0.0861

Notes: The bold numbers mean the top 3 best results of models in this column.

For the predictive performance comparison, we used the first 80% of DS-1 to estimate
the parameters of all models, then we compared the prediction ability of all models accord-
ing to the remaining 20% of the data points. The results of the MRE values are listed in the
far right column of Table 3.

From Table 3, it can be noted that for the proposed models:

• M19 (the proposed model with inflection S-shaped testing coverage) has the smallest
MSE = 22.9948 and MSEd = 26.6022 among all models.
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• M18 (the proposed model with delayed S-shaped testing coverage) has the second
smallest MSE = 27.5294 and MSEd = 29.3943 among all models.

• M17 (the proposed model with Weibull-type testing coverage) has the third smallest
MSE = 27.9714 and MSEd = 37.6473 among all models.

According to the combined MSE criterion (16), all proposed models, that is, M17,
M18 and M19, have a better goodness-of-fit performance than existing models. We also
noticed that the proposed models’ MSE values belong to value interval of (22.9948, 27.9714),
whereas existing models’ MSE values belong to interval (34.6214, 104.8889), apparently
the proposed models’ MSE values are much smaller than the values of existing models,
e.g., other models’ MSE values can be 1.53 times (G-O with gamma distributed time delay
model (M5)’s 34.6214) and even 4.56 times (G-O with time-dependent delay model (M2)’s
104.8889) larger than the value of the proposed model of M19. So, we can deduce that for
DS-1, the descriptive power of our proposed models based on the fault amount dependency
between fault detection and fault correction processes is better than those of other models
based on the time dependency between these two processes.

Figure 2a–h shows the graph of the fitting comparison of existing paired models M1
to M5 with the proposed models M17 to M19 based on DS-1. From Figure 2, we can see
that the proposed models fit the dataset very well in both fault detection and correction
processes. Especially, Figure 2b–d shows that the fitting curves of the existing models M2,
M3, and M1 have a great deviation from the curves of the actual fault data, whose fitting
degree are far less than those of the models proposed in this paper.
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For the predictive power comparison, similarly, all proposed models, that is, M17,
M18, and M19, provide better predictive power than the existing models. M18 presents the
smallest MRE = 0.0475 followed by M19’s MRE = 0.0921, which is the second smallest value
of MRE and M17’s MRE = 0.0980, which is the third smallest value of MRE. Other existing
models’ MRE values belong to interval (0.2018, 0.3422), which is obviously much larger
than the value range of the proposed models, e.g., other MRE values can be 4.25 times (G-O
with gamma distributed time delay model (M5)’s 0.2018) and even 7.2 times (G-O with
time-dependent delay model (M2)’s 0.3422) larger than the value of the proposed model
M18.

Figure 3 shows the graph of the prediction comparison of all models based on DS-1,
which agrees with those in Table 3. Obviously, it shows that the proposed models have the
best predictive performance through the intuitive effect of the eyes. Overall, MRE values of
M1 to M5 are far greater than those of M17 to M19. Numerically, MRE values of M1 to M5
are almost two to three times that of M17 to M19. Among them, the MRE value of M2 is the
largest, which is close to 0.5, while that of M18 is the smallest, namely 0.05. In other words,
the prediction accuracy of M2 is almost one order of magnitude lower than that of M18.
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4.2. Case Study 2

Dataset 2 (DS-2) is collected from Tandem Computer Release #1 [49] and has been
used in papers, such as [46,50]. There was a total of 20 faults observed within about
20 weeks, which includes observations of only fault detection data. Therefore, we chose
M6 to M16 (single process models) as comparing models, meanwhile the traditional LSE
method (14) and seven criteria (18)–(24) were chosen as the parameter estimation method
and goodness-of-fit performance criteria.

For the descriptive power comparison, all data points were used to fit the models and
estimate model parameters. The estimates of model parameters and all seven estimation
criteria values are listed in Tables 4 and 5, respectively.
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Table 4. Parameter estimates of M6 to M19 for DS-2.

Models
Parameter Estimation Values

a(A) b c α β r(p)

M6 130.2 8.317× 10−2 - - - -
M7 104.0 0.2654 - - - -
M8 110.8 0.1721 1.205 - -
M9 999.5 - - 0.51 7.685× 10−2 0.279
M10 115.8 - - 0.6548 1.721× 10−2 3.03
M11 121.1 - - 245.2 3.542× 10−4 1.027
M12 130.2 8.317× 10−2 - 9.363× 10−10 - -
M13 130.2 8.317× 10−2 - 1.04× 10−9 - -
M14 1.589× 10−8 0.1721 110.8 3.68× 10−4 1.205 -
M15 103.6 8.193× 10−2 4.916 57.49 4.827× 10−5 0.9993
M16 83.46 37.1 - 0.3433 - 3.678× 10−3

M17 155.1 5.048 0.6796 6.488× 10−4 0.2798 0.1665
M18 98.05 6.62 - 0.05596 0.2849 32.76
M19 104.1 6.468 167.7 2.166× 10−6 0.2813 7.396

Table 5. Comparisons of descriptive and predictive power of M6 to M19 for DS-2.

Models
Descriptive Power Criteria Values Predictive Power

MSE R2 Adjusted R2 PRR PP Bias Variation SSE
(85% of DS-2)

M6 12.9056 0.9857 0.9849 0.3783 0.2028 −0.0895 3.5005 223.8406
M7 28.0611 0.9689 0.9672 19.5655 1.0809 −1.4056 5.7293 1.8720
M8 10.5647 0.9890 0.9877 0.8682 0.3049 −0.4480 3.1758 159.9882
M9 14.8438 0.9854 0.9827 0.3659 0.2002 −0.0972 3.5400 72.5264

M10 49.4188 0.9514 0.9422 57.1993 1.4971 −2.0420 7.4017 46.3688
M11 15.1750 0.9851 0.9823 0.8342 0.3007 −0.3531 3.4487 270.4970
M12 13.6647 0.9857 0.9849 0.3783 0.2028 −0.0895 3.5005 223.8409
M13 13.6647 0.9857 0.9849 0.3783 0.2028 −0.0895 3.5005 223.8407
M14 11.9733 0.9890 0.9860 0.8682 0.3049 −0.4480 3.1758 111.9241
M15 10.8786 0.9906 0.9873 0.8766 0.3036 −0.4914 2.9627 108.1806
M16 14.9250 0.9853 0.9826 0.7103 0.2787 −0.2323 3.5698 5.7293× 103

M17 3.3221 0.9971 0.9961 0.0242 0.0215 −0.0701 1.5696 19.3357
M18 2.1653 0.9980 0.9975 0.0224 0.0224 −0.0164 1.3077 19.6887
M19 2.0100 0.9981 0.9975 0.0135 0.0131 −0.0268 1.2607 19.6620

Notes: The bold numbers mean the top 3 best results of SRGMs in this column.

For the predictive performance comparison, we used the first 85% of DS-2 to estimate
the parameters of all models, and then we compared the prediction ability of all models
according to the remaining 15% of DS-2 data points. SSE criterion (25) is taken as the
predictive power criterion, and the prediction values are listed in the far right column of
Table 5.

Figure 4 graphically illustrates the fitting comparisons of all single process models M6
to M16 and FCPs of the proposed models M17 to M19 based on DS-2. In order to obtain a
clearer display effect, we divided these models into two groups, and each group included
the actual data and the proposed models. Figure 4 shows that the curves of the proposed
models M17 to M19 have less deviation from the curve of the actual data than existing
models, which confirms that the fitting performance of the proposed models are better than
existing models.
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From Table 5, it is clear that all FCPs of the proposed models provide the top three
best results of SRGMs according to these seven criteria values of MSE, R2, Adjusted R2,
PRR, PP, Bias, and Variation.

• M17 (the proposed model with Weibull-type testing coverage), M18 (the proposed
model with delayed S-shaped testing coverage), and M19 (the proposed model with
inflection S-shaped testing coverage) provide much smaller MSE values than existing
models, among which M19’s MSE = 2.0100 is the lowest value among all models
followed by M18’s MSE = 2.1653 and M17’s MSE = 3.3221.

• M17, M18, and M19 provide the largest R2 values of 0.9971, 0.9980, and 0.9981, respec-
tively, compared to existing models, where M19 provides the largest R2 = 0.9981.

• M17, M18, and M19 provide the largest Adjusted R2 values of 0.9960, 0.9975, and
0.9975, respectively, compared to existing models, where M18 and M19 provide the
largest R2 = 0.9975.

• M17, M18, and M19 provide the smallest PRR values of 0.0242, 0.0224, and 0.0135, re-
spectively, compared to existing models, where M19 provides the smallest PRR = 0.0135
followed by M18’s 0.0224 and M17’s 0.0242.

• M17, M18, and M19 provide the smallest PP values of 0.0215, 0.0224, and 0.013, re-
spectively, compared to existing models, where M19 provides the smallest PP = 0.0131
followed by M17’s 0.0215 and M18’s 0.0224.

• M17, M18, and M19 provide the smallest absolute values of Bias of 0.0701, 0.0164, and
0.02681, respectively, compared to existing models, where M18 provides the smallest
absolute value of Bias = 0.0164 followed by M19 and M17.

• M17, M18, and M19 provide the smallest Variation values of 1.5696, 1.3077, and
1.2607, respectively, compared to existing models, where M19 provides the smallest
Variation = 1.2607 followed by M18 and M17.
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To sum up, among these three proposed models, M19 affords the best results for
MSE, R2, Adjusted R2, PRR, PP, and Variation; and M18 provides the best result for Bias.
Therefore, according to the comparison results in this dataset, we can conclude that the
proposed models seem to have a better fitting performance overall.

For the predictive power comparison, though the SSE values given by the proposed
models are not the smallest results, they are the second, third, and fourth best results,
respectively, which are slightly bigger than the best value. That is, since the minimum
SSE value is 1.8720 (given by the delayed S-shaped model (M7)), and compared to other
models, we note that the SSE values given by the proposed models are far better than those
of other models. For example, the SSE values of other models can be 2.4 times (given by the
Yamada Rayleigh model (M10), whose value equals to 46.3688) or even 296.31 times (given
by the SRGM-3 model (M16), whose value equals to 5.7293× 103) that of the proposed
model M17, namely 19.3357. In addition, the delayed S-shaped model only affords the
best result for DS-2 but does not afford the best result for DS-3, meanwhile it does not give
the best goodness-of-fit result for DS-2. Among these three proposed models, M17 gives
the best prediction result followed by M19 and M18. Their SSE values belong to interval
(19.3357, 19.6887), which indicates that for DS-2, the proposed models show the same level
of prediction accuracy.

Figure 5 shows the graph of the cumulative number of detected faults for all models
using 85% of DS-2, which agrees with those in Table 5. Obviously, it shows that the
proposed models have a better predictive performance except M7, but far better than other
models; e.g., M16 has a large deviation from the curve of the actual data than all models.
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4.3. Case Study 3

Dataset 3 (DS-3) is from a networking component of the Linux Kernel project [51]
and has been widely used in many papers, such as [52]. Linux is a common open-source
operating system, which is popular and represents the actual situation of the current
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software system to a certain extent, and the failure dataset is collected from Bugzilla. There
was a total of 2251 faults observed within 193 months (5933 days) from 15 November 2002
to 28 January 2019. This dataset also has observations of only fault detection data, and
compared to DS-1 and DS-2 this dataset has a larger time series.

For the descriptive power comparison, we utilized all data points to fit the models
and estimate model parameters. Similarly, the estimated values of model parameters
are tabulated in Table 6. Seven criteria values for fitting performance comparisons are
summarized in Table 7, along with the prediction comparison results of SSE in the far right
column. The fitting of the models on DS-3 is graphically illustrated in Figure 6. As is clearly
shown, the curves of the proposed models M17 to M19 are much closer to the curve of
the actual data than existing models, which confirms that the fitting performance of the
proposed models is much better than existing models.

Table 6. Parameter estimates of M6 to M19 for DS-3.

Models Parameter Estimation Values

a(A) b c α β r(p)

M6 1.177× 106 9.361× 10−6 - - - -
M7 3.863× 103 1.004× 10−2 - - - -
M8 3.142× 103 1.619× 10−2 7.644 - - -
M9 5.479× 105 - - 0.9798 2.129× 10−5 0.9662
M10 4.684× 103 - - 0.9532 6.679× 10−5 0.9193
M11 7.692× 103 - - 0.8348 1.084× 10−4 1.519
M12 8.748× 103 9.186× 10−4 - 4.776× 10−3 - -
M13 2.2× 103 3.188× 10−3 - 1.239× 10−2 - -
M14 0.2537 1.618× 10−2 3.143× 103 35.02 7.637 -
M15 7.031× 103 3.903× 10−2 1.857× 10−3 0.9799 0.3611 0.6906
M16 6.262× 103 0.1255 - 0.7208 - 2.079× 10−2

M17 5.652× 103 32.29 0.00133 0.6152 9.54× 10−3 1.874
M18 194.7 1.729 - 1.005 0.05865 0.07327
M19 6.571× 103 4.546 3.642 0.3119 0.05695 6.152× 10−3

Table 7. Comparisons of descriptive and predictive power of M6 to M19 for DS-3.

Models
Descriptive Power Criteria Values Predictive Power

MSE R2 Adjusted R2 PRR PP Bias Variation SSE
(90% of DS-3)

M6 1.3628× 104 0.9728 0.9726 20.4143 1.6392× 103 50.5289 146.0383 6.4339× 105

M7 1500.0000 0.9970 0.9970 3.2748 1.9292 −5.5046 39.8940 1.1006× 105

M8 1.7321× 103 0.9966 0.9965 9.7466 428.2829 6.8714 43.1907 7.6730× 104

M9 1.3926× 104 0.9725 0.9720 20.4693 1.6471× 103 50.7397 146.7860 1.1939× 106

M10 3.1280× 103 0.9938 0.9937 13.3523 4.7410 −12.3131 59.6022 3.9461× 105

M11 1.0963× 103 0.9978 0.9978 4.1251 32.5139 0.4720 33.0260 6.2463× 104

M12 3.5326× 103 0.9930 0.9929 13.7110 831.6408 12.6471 63.2145 2.8999× 105

M13 2.5505× 103 0.9949 0.9949 12.1011 628.9523 11.0480 53.8978 1.5606× 105

M14 1.7505× 103 0.9965 0.9964 9.7538 428.8446 6.9531 43.2306 7.4894× 104

M15 4.6925× 103 0.9908 0.9906 13.0302 576.6723 18.5959 75.0555 4.2218× 104

M16 952.3810 0.9981 0.9981 10.1299 1.8643 0.1743 30.6975 5.3360× 103

M17 827.8075 0.9984 0.9983 3.9069 1.7518 −0.7217 3.2352 6.3205× 104

M18 901.0638 0.9982 0.9982 2.8199 1.5354 −1.6940 29.5908 6.0526× 103

M19 856.6845 0.9983 0.9983 3.1131 22.5339 −0.4106 28.9657 4.8129× 104

Notes: The bold numbers mean the top 3 best results of SRGMs in this column.

Table 7 shows that:

• The proposed models provide the top three best results over all models according to
the estimation criteria values of MSE, R2, Adjusted R2, and Variation, where M17 (the
proposed model with Weibull-type testing coverage) gives the best results of MSE,
R2, Adjusted R2, and Variation followed by M19 (the proposed model with inflection
S-shaped testing coverage).
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• M18 (the proposed model with delayed S-shaped testing coverage) gives the best
results of PRR and PP.

• Though M18 gives the second-best result of the absolute value of Bias, whereas the
SRGM-3 model gives the best result, there is a small difference between these two
results, that is, the lowest absolute value of Bias is 0.1743, and the absolute value of
Bias given by M18 is 0.4106.

Therefore, according to the above results, the proposed models generally provide a
better fitting performance.
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For the predictive performance comparison, we used the first 90% of DS-3 to estimate
the model parameters, and then we adopted the remaining 10% of the DS-3 data points to
compare the prediction ability of the models. Though the values provided by the proposed
models are not the best results, M18 presents the second-best result, which is slightly bigger
than the best result, for the smallest SSE value is 5.3360× 103 (given by SRGM-3 model),
and M18’s SSE value is 6.0526× 103. Since DS-3 has a larger time series, the prediction
accuracy of M18 is in the same order of magnitude as that of the SRGM-3 model, which
means that the prediction accuracy of the two models is almost the same. Compared to
other models, we find that the proposed models’ SSE values belong to interval (6.0526× 103,
6.3205× 104), whereas the existing models’ SSE values belong to interval (5.3360× 103,
1.1939× 106), and the proposed models’ SSE values are relatively smaller than the values
of existing models; e.g., the other models’ SSE values can be 6.98 times (Fault removal
model’s 4.2218× 104) and even 197.25 times (Yamada exponential model’s 1.1939× 106)
larger than the value of the proposed model of M18. In addition, for the SRGM-3 model, it
only provides the best prediction result for DS-3, but provides the worst prediction result
for DS-2. Overall, the proposed models give a better predictive performance.

Figure 7 shows the graph of the cumulative number of detected faults for all models
using 90% of DS-3, which agrees with those in Table 7. Obviously, it shows that the
proposed models have a better predictive performance in general.
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5. Conclusions

In this article, we integrated three testing coverage functions (Weibull-type, delayed
S-shaped, and inflection S-shaped) into software reliability modeling based on NHPP
with incorporation of both fault detection processes and fault correction processes. The
relationship between the mean value functions of detected faults and corrected faults is
introduced from the viewpoint of fault amount dependency instead of time dependency.
We compared the performance of three proposed models with several existing models on
three real failure datasets in which two kinds of failure data are employed. For one kind
of failure data that contained only the detected fault number, the traditional LSE method
was used to estimate the model parameters, and seven comparison criteria were adopted
to compare the fitting performance together with the SSE value to compare the prediction
performance of models. For another kind of failure data that contained failure observations
of both fault detection and correction, the combined LSE method was used for parameter
estimation, and the combined MSE and MRE values were used for model fitting and
prediction performance comparison. No matter the case, the proposed models provided
generally better goodness-of-fit and prediction results compared with other existing paired
models and single process models.

In addition, the results show that models with testing coverage can generally give a
better fit and prediction to the observed data, so we suggest that an extension study on
time variable testing coverage functions should be performed. Moreover, we will use the
maximum likelihood estimation method to estimate the parameters and their confidence
intervals of the proposed models to compare any difference between limitation on data
form or accuracy of model performance in the future. We will also discuss the release time
problem by use of the proposed models giving reliability function simulation under various
sample sizes.

Currently, we are considering more complicated circumstance, such as incorporating
more different functions to characterize the relationship between the fault amounts of the
two processes. We should have more failure datasets to verify such a software reliability
model and to support the conclusions we made. Further progress with respect to these
subjects will be proposed in the future paper.
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