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Abstract: The following two optimization problems on acyclic digraph analysis are solved. The
first of them consists of determining the minimum (in terms of volume) set of arcs, the removal of
which from an acyclic digraph breaks all paths passing through a subset of its vertices. The second
problem is to determine the smallest set of arcs, the introduction of which into an acyclic digraph
turns it into a strongly connected one. The first problem was solved by reduction to the problem
of the maximum flow and the minimum section. The second challenge was solved by calculating
the minimum number of input arcs and determining the smallest set of input arcs in terms of the
minimum arc coverage of an acyclic digraph. The solution of these problems extends to an arbitrary
digraph by isolating the components of cyclic equivalence in it and the arcs between them.

Keywords: acyclic digraph; maximal flow; minimal cut; minimal arc cover; bipartite digraph

1. Introduction

The monographs [1–3], which have become classic, are devoted to theoretical and
applied issues of digraph research. They are closely related to the Ford–Fulkerson theorem
on the equality of the maximum flow and the minimum cut [4,5]. At first glance, many
problems with digraphs look like NP-problems. However, with a special selection of
optimized indicators and graph transformation, these tasks can be reduced to the search
for Ford–Fulkerson algorithms. In this way, it becomes possible to avoid the appearance
of NP-problems when working with digraphs. Therefore, these studies can be attributed
to the intensively developing applications of digraph theory in system analysis and the
theory of optimization algorithms on graphs [6,7]. The papers closest to the subject of this
article can be considered [8,9].

In particular, the strong connectivity in digraphs is considered in the presence of arc
failures [10]. The paper [11] studies the use of digraphs in interferometry. The paper [12]
explores the issues of spectral complexity of digraphs and their application to structural
decomposition. In [13], using digraph models, the issues of signal processing and learning
from network data are analysed. In the work [14], the multilevel task of identifying
bottlenecks in the network is considered. In the works [15,16], minimal networks are built
in which the Ford–Fulkerson procedure may not be completed. The paper [17] explores
various ways of applying stochastic models on digraphs in computational biology. Due
to the intensive development of biotechnology, two new applied problems of digraph
theory are posed in this paper, which require both the development of the theory and
the construction of new optimization algorithms on digraphs. Both tasks were initiated
by biotechnological problems related to protein networks. Let us describe these tasks in
more detail.

The importance of analysing protein networks in plant bioengineering is due to the
fact that the growth and development of plants, as well as their protective functions, are
regulated by the interaction of various protein signalling modules. At the same time,
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fine-tuning of metabolic processes takes place, allowing the plant to adapt to changing
environmental conditions. Plant interactomes have not been worked out enough yet.
Therefore, it is necessary to develop mathematical modelling methods that describe the
natural functions of protein modules as accurately as possible.

Previously, we tried to link various cellular processes affecting the biosynthesis of
anthocyanins. In this work, we have identified the main signalling protein modules
that regulate the biosynthesis of anthocyanins. As far as we know, this was the first
reconstruction of a network of proteins involved in the secondary metabolism of plants [18].

It was further shown that the signalling systems of abscisic acid (ABA) and chap-
erones are integrated by chromatin remodelling proteins (CRC) into a single regulatory
network. CRC proteins “remember” the previous stressful effects and adjust the plant to
the perception of new ones, and memory is generated in the offspring. A new scientific
direction—“bioengineering of memory” was substantiated [19].

Fabregas et al. [20] reported that overexpression of the vascular brassinosteroid
receptor BRL 3 provides improved drought resistance without disrupting plant growth.
We have constructed a network of protein–protein interactions of ABA and brassinosteroid
signalling systems. It has been established that the phenomenon of drought resistance
mediated by BRL3 can be explained by the generation of stress memory (a process known
as “priming” or “acclimation”) [21]. Let us now turn to the mathematical formulation and
algorithmic solution of the protein network modelling.

In the first problem, we are talking about finding a smallest set of arcs, the removal
of which blocks all paths passing through an acyclic digraph with a set of W (corrupted)
vertices. To solve this problem, it is proposed to cut the pathways entering the set of affected
proteins or leaving this set, thus minimizing the number of cut paths. Such minimization
deforms the structure of the protein network in the least way. It should be noted that
isolation measures restricting the normal functioning of various communication networks,
such as transport, economic, educational, etc., have recently invaded our lives. Therefore,
the considered biotechnological problem acquires a more general meaning, which requires
the construction of economical algorithms for its solution.

In biotechnology there is a problem to decrease a number of blocking arcs. To solve this
problem it is possible to add to incoming and out coming arcs some arcs between corrupted
vertices (selected by the biotechnologists) and to choose among them minimal number
of blocking arcs. This procedure may be realized by implementing a large bandwidth to
chosen arcs. All its stages are well known, but together they make it possible to solve an
important and new problem in the field of biotechnology. Thus, it becomes possible to
structure both the formulation and the solution of this problem, taking into account the
choice of biotechnologists.

The solution of this problem is based on a special building of the integer bandwidths
of the arcs of an acyclic digraph, the minimum section in which contains only of arcs
entering from the inside into the subset W and/or exiting from the inside of the subset
W and some arcs between vertices from W. By choosing the integer bandwidths, the arcs
connecting the vertices of the subset U∗, are made unsaturated by the maximum flow.
In turn, saturated with the maximum flow (the maximum flow passing through them
coincides with their throughput) can only be arcs entering from the outside into a subset of
W and/or exiting from the outside of the subset W. Next, the minimal section is searched
using the well-known Ford–Fulkerson algorithm [4,5], which guaranteed to converge
only for integer throughput. This algorithm was developed in its modifications [22,23].
Minimizing the number of arcs satisfying certain properties creates a risk of encountering
an NP-problem as the problem of continuous brute force. The use of techniques that
lead the tasks to the modified Ford–Fulkerson algorithm allows us to avoid the risk of
NP-complex problems. Thus, in order to use the Ford–Fulkerson algorithm in solving this
problem, it is necessary to build a two-pole and select the integer throughputs of its arcs so
that the solution obtained in this algorithm determines the solution of the problem.
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An alternative and in some sense inverse second problem is connected with the
introduction into the digraph of a smallest set of new arcs that turn an acyclic digraph into
a strongly connected one (in which there is a path from any vertex to any other vertex).
This procedure is needed to include all the vertices of the acyclic digraph in the feedbacks
that stabilize the functioning of the network represented by the digraph.

To do this, we first consider a bipartite acyclic digraph, in which all arcs are directed
from the first lobe to the second. By removing the orientation of the arcs, we obtain an undi-
rected bipartite graph. Using the well-known generalizations of the Ford–Fulkerson [24]
algorithm, the maximum matching is searched for in it by a method of increasing alter-
nating paths [25], from which the minimum arc cover is constructed. It consists of an
incoherent collection of star-like sub graphs (in which arcs connect some vertices with the
base of the star) ([26] p. 318). Next, the orientation of the arcs is restored and additional
arcs are introduced in the resulting bipartite digraph by a special algorithm. This algorithm
is based on the sequential arrangement first of the stars of the first type-with roots in the
first lobe and then of the stars of the second type with roots in the second lobe. If all the
stars have the same type, then their vertices may be connected by a Hamiltonian cycle [27].

However, if there are stars of different types, then the stars of the first and then the
second type are located first. Then, additional arcs are introduced from the vertices of
the second lobe to the vertices of the first lobe so that their number equals the maximum
between the number of vertices of the first lobe and the second lobe. This number of
additional arcs is minimal for obtaining strongly connected digraph. When moving from
the minimum arc cover to the original bipartite digraph, the minimum number of additional
arcs cannot increase. At the same time, the set of additional arcs already found transforms
this bipartite digraph into a strongly connected one. The transition from an arbitrary acyclic
digraph to a bipartite one is based on the allocation in an arbitrary digraph of the first lobe,
including vertices from which only arcs come out, and the second lobe, including vertices
that only arcs enter. An arc between the vertex of the first lobe to the vertex of the second
lobe in a bipartite digraph is drawn if and only if there is a path between these vertices in
the original digraph.

When solving both problems, we have to deal with digraphs that are not initially
acyclic. The transformation of an arbitrary digraph into an acyclic one is based on the
procedure for allocating cyclic equivalence classes (in which there is a path from any vertex
to any other vertex) and arcs between them [28]. The paper presents an original algorithm
for solving the problem of allocating cyclic equivalence classes [29] basing on the sequential
inclusion in the digraph of a new vertex and arcs connecting it to the already specified ones.

2. Optimal Blocking of Selected Vertices of the Acyclic Digraph

Consider an acyclic digraph G, with a finite set of vertices U and a finite set of arcs V .
In the set U , a subset U ⊂ U of the so-called corrupted vertices is allocated. Let’s define an
acyclic digraph G ⊂ G, with a set of vertices U and a set of arcs V connecting these vertices.

We attach to the digraph G the arcs of the digraph G, walking to the set U from the
set U \U and the arcs coming out of U to U \U and some arcs from the set U , selected by
biotechnologists. The set of these arcs is denoted by W and we call the path passing through
the set U in the digraph G, if it starts at the vertex of the set U \U moves by an arc of W to
the set U, passes through the set U and then moves by an arc of the set W to the set U \U.
Our task is to determine in the set W the smallest subset of arcs whose removal from the
digraph G breaks all paths, passing through the set of vertices U.

To do this, we transform the digraph G together with the set of its incoming and out
coming arcs into the digraph G′ as follows. All vertices of the set U \U, from which arcs of
the set W move to U we combine into one vertex S and call it the source. All vertices of the
set U \U, to which arcs of the set W move from U we combine into one vertex T and call it
a drain. All arcs of the set W, going from the source S to the vertex P ∈ U, we combined
into one arc w∗ and determine its throughput equal to n(P), which is the number of arcs to
be combined. All arcs of the set W, going from the vertex P ∈ U to the drain T, we combine
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into one arc w∗ and determine its throughput equal to N(P). If there is not an arc from the
source S to vertex P, then n(P) = 0, if there is not an arc from the vertex P to the drain T,
then N(P) = 0 as well.

Note that to formulate the optimization problem, it is necessary to exclude from its
solution all arcs of the set V, which are not chosen by biotechnologists. To realize this

procedure denote L = min

(
∑

P∈U
n(P), ∑

P∈U
N(P)

)
and assign the bandwidth L + 1 to all

arcs of the digraph G′, which are not included in the set W. All arcs of the digraph G′,
which are chosen by biotechnologists, receive bandwidth 1. Therefore, the acyclic digraph
G′ becomes the bipolar, that is the digraph with the single vertex S, which has only out
coming arcs, and the single vertex T, which has only incoming arcs.

Proposition 1. The quantity of maximal flow in the bipolar G′ is not larger than L.

Proof of Proposition 1. Indeed, the quantity of maximal flow in the bipolar G′ is not larger
than a sum ∑

P∈U
n(P) of weights of arcs moving from the source S. The quantity of maximal

flow in the bipolar G′ is not larger than a sum ∑
P∈U

N(P) of weights of arcs moving from

the drain T. Consequently, the quantity of the maximal flow in the bipolar G′ is not larger

than L = min

(
∑

P∈U
n(P), ∑

P∈U
N(P)

)
.

Proposition 2. If in bipolar G′, some arc w has bandwidth L + 1, then it does not include into any
minimal cut.

Proof of Proposition 2. From the theorem of Ford–Falkerson [4,5], it is clear that any
minimal cut in the bipolar G′ consists only of arcs saturated by any maximal flow. Therefore,
the arcs which have bandwidths L + 1 cannot be included into any minimal cut.

Remark 1. It follows from Propositions 1 and 2 that the proposed method for setting the bandwidths
in the two-pole G′ allows determining the minimum cuts only from the arcs of the set W, as required
in the original formulation of the problem.

As all included bandwidths are integers, using the Ford–Fulkerson algorithm [4,5]
(or its modifications [22,23]) it is possible to calculate the maximum flow in the digraph
G′ and to obtain minimal cut W ′. Each of the arcs of the set W ′, going from S to P ∈ U is
defined as the union of n(P) arcs of the digraph G. Similarly, each of the arcs of the set W ′,
going from P ∈ U to T is defined as the union of N(P) arcs of the digraph G. Denote W ′′ a
set of arcs from the set W, included in the combined arcs of the set W ′. Consequently from
Propositions 1 and 2 and Remark 1 we have that W ′′ is the solution of the optimization
problem of selecting a smallest set of arcs from the set W whose removal breaks all paths
passing through the vertex set of U. Indeed, if the united arc w ∈ W ′, then to block all
paths passing through the vertex set U, we must delete all arcs, united in an arc w.

3. Optimal Algorithm for Converting an Acyclic Digraph into a Strongly Connected One

Problem statement. Suppose that a complex system, for example, a protein network,
is represented by an acyclic digraph G without loops and isolated vertices. Let’s denote
V1 the set of vertices from which the arcs only come out, and V2 the set of vertices into
which the arcs only enter. Now let’s construct a bipartite digraph G, in which the set of
vertices of the first lobe V1, and the set of vertices of the second lobe V2, the vertex v1 ∈ V1
is connected to the vertex v2 ∈ V2 by an arc, if there is a path between them in the acyclic
digraph G. As the digraph G is acyclic so there are not ways from vertices of the second
lobe V2 to vertices of the first lobe V1. We denote p(G) the smallest set (by a number of
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arcs) of additional arcs (call them “good arcs”), the introduction of which in G transforms
it into a strongly connected digraph and designate |p(G)| the number of good arcs in p(G).

Let us transform a bipartite digraph G into an undirected one by removing the
orientation of the arcs and find a minimal arc cover in it (see, for example, [6,24]). To do
this, using the algorithm of increasing alternating paths, we find the maximum matching
that can be transformed into a minimum arc cover, whose connected components are
star-like sub graphs (all arcs come from one vertex or enter one vertex, called the root). In
the minimal arc cover, we restore the direction of the arcs and denote the resulting bipartite
digraph Ĝ. It should also be noted that there are two types of star-like sub graphs. In the
star-like sub graph of the first type, the root is contained in the first lobe V1 (on the left in
Figure 1) and in the star-like sub graph of the second type, the root is contained in the
second lobe V2 (on the right in Figure 1).

The main result of the work is an algorithm for constructing a smallest set of good
arcs that turn Ĝ into a strongly connected digraph. It is proved that the number of good
arcs in a smallest set p(Ĝ) = max(|V1|, |V2|), where |Vi| the number of vertices in the set
Vi, i = 1, 2. This equation applies to a bipartite graph G with lobes V1, V2 and to acyclic
digraph G. This is due to the fact that “good arcs,” turning the bipartite digraph Ĝ into
strongly connected, also turn the bipartite digraph G and the original acyclic digraph G
into strongly connected.

Main results. Consider a bipartite digraph Ĝ, consisting of the set of unrelated M
stars G1

1 , . . . , GM
1 with the root in the first lobe and N stars G1

2 , . . . , GN
2 with the root in

the second lobe. Let m the number of leaves in the stars G1
1 , . . . , GM

1 and n the number of
leaves in the stars G1

2 , . . . , GN
2 . Then, it performs equality |V1| = M + n, |V2| = m + N.

Figure 1 shows an example of a digraph Ĝ, consisting of stars G1
1 , G2

1 , G1
2 , G2

2 in the case
of m = n = 6, M = N = 2. Here, the upper vertices make up the first lobe, and the lower
ones make up the second lobe.

Figure 1. Unrelated stars G1
1 , G2

1 , G1
2 , G2

2 , M = N = 2, m = n = 6.

Theorem 1. Equality |p(Ĝ)| = max(|V1|, |V2|) is true.

Proof of Theorem 1. When converting the digraph Ĝ, the number of good arcs, entering
the roots of stars G1

1 , . . . , GM
1 , must be no less than M, and entering the leaves of stars

G1
2 , . . . , GN

2 —no less than n. The number of good arcs, leaving the leaves of stars G1
1 , . . . , GM

1 ,
must be no less than m, and leaving the roots of the stars G1

2 , . . . , GN
2 are no less than N.

Therefore, the number of good arcs entering the vertices of the first lobe is no less than
M + n, and leaving the vertices of the second lobe is no less than m + N. Additional
incoming and outgoing arcs may coincide. Therefore, the minimum number of additional
arcs is |p(Ĝ)| ≥ max(m + N, n + M). Now, we prove that |p(Ĝ)| = max(M + n, m + N) =
max(|V1|, |V2|).

Let us first consider the case when the digraph Ĝ consists only of stars G1
1 , . . . , GM

1 or
only of stars G1

2 , . . . , GN
2 . Let us add stars G1

1 , . . . , GM
1 by good arcs.

In the stars G1
1 , . . . , GM

1 with good arcs, we indicate the Hamiltonian cycle. It starts at
the root of the star G1

1 , passes sequentially through all the leaves of this star, goes to the root
of the star G2

1 , etc., from the last leaf of the star GM
1 to the root of the star G1

1 . As a result,
we transform the stars G1

1 , . . . , GM
1 into a strongly connected digraph with the number of

additional arcs m = max(m + 0, 0 + M) (Figure 2). If M = 1, then the last leaf of the star
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G1
1 is connected by the good arc with its root.

Figure 2. A strongly connected digraph constructed from the stars G1
1 , G2

1 (right).

Similarly, in the digraph Ĝ, consisting only of stars G1
2 , . . . , GN

2 , let us add these stars
with good arcs sequentially connected by their leaves. In addition, from the root of the star
Gk

2, we will draw a good arc to the first leaf of the star Gk+1
2 , k = 1, . . . , N − 1, and from

the root of the star GN
2 to the first leaf of the star G1

2 . If N = 1, we connect the root of the
star G1

2 with its first leaf.
In the stars G1

2 , . . . , GN
2 with additional arcs, we indicate the Hamiltonian cycle. It

starts in the first leaf of the star G1
2 , passes sequentially through all its leaves, and goes to

its root, then goes to the first leaf of the star G2
2 , etc. From the root of the star GN

2 , the path
continues to the first leaf of the star G1

2 . As a result, we transform the stars G1
2 , . . . , GN

2 into
a strongly connected digraph with the number of additional arcs n = max(0 + N, n + 0)
(Figure 3). If N = 1, we connect the root of the star G1

2 by the good arc with its first leaf.

Figure 3. A strongly connected digraph constructed from the stars G1
2 , G2

2 (right).

Let us now consider the case when MN > 0, i.e., in the digraph Ĝ, there are stars of
both the first and the second types. Denote W1 the set of all vertices in the stars G1

1 , . . . , GM
1

and W2 the set of all vertices in the stars G1
2 , . . . , GN

2 . Let us introduce a good arc, coming
out of the root of the star GN

2 and entering some leaf of the star GN−1
2 , an arc coming out of

the root of the star GN−1
2 and entering some leaf of the star GN−2

2 , etc., good arc, coming
out of the root of the star G1

2 and entering the root of the star GM
1 , good arc, coming out

of some leaf of the star GM
1 and entering the root of the star GM−1

1 , coming out of any leaf
of the star GM−1

1 and entering the root of the star GM−2
1 , etc., good arc, coming out of any

leaf of the star G2
1 and entering the root of the star G1

1 . Let us call the introduced good arcs
and their incident vertices marked (see Figure 4, highlighted in grey). It is obvious that
from any labelled, and hence from any vertex of the star of the set G1

2 , . . . , GN
2 , there is a

path to any vertex of the star of the set G1
1 , . . . , GM

1 . We will denote this statement W2 ⇒W1.

Figure 4. Introduction of M + N − 1 additional arcs.

The number of labelled arcs connected the vertices of the star G1
1 , . . . , GM

1 , is M− 1,
and the arcs connected the vertices of the star G1

2 , . . . , GN
2 , is N − 1. Then, the total number
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of marked arcs taking into account the arc from the star G1
2 to the star GM

1 is M− 1 + N −
1 + 1 = M + N − 1.

The total number of unlabelled vertices in the stars G1
1 , . . . , GM

1 is m− (M− 1), the
number of unlabelled vertices in the stars G1

2 , . . . , GN
2 is n− (N − 1). From each unlabelled

vertex of the set W1 (see Figure 5), let us draw good arc to some unlabelled vertex of
the set W2 so that each unlabelled vertex of the set W2 includes an arc from some ver-
tex of the set W1. Thus, the number of additionally introduced good arcs is equal to
max(m− (M− 1), n− (N − 1)). Therefore, the total number of good arcs becomes equal
to max(m− (M− 1), n− (N − 1)) + M + N − 1 = max(m + N, n + M).

Figure 5. Introduction of max(m− (M− 1), n− (N − 1)) good arcs.

We prove that the introduction of all good arcs into the stars G1
1 , . . . , GM

1 , G1
2 , ..., GN

2
transforms these stars into a strongly connected digraph. Let us take an arbitrary unlabelled
vertices v1 ∈ W1, v2 ∈ W2 and draw the path through unlabelled vertices v1, v′2, v′1, v2,
where v′2 ∈ W2—the vertex connected with a vertex v1 by good arc, and v′1 ∈ W1—the
vertex connecting with the vertex v2 by good arc. Since from any labelled vertex of the set
W1 it is possible to draw a path to some unlabelled vertex of this set and from any unlabelled
vertex of the set W2 it is possible to draw good arc to some labelled vertex of this set, then
it is possible to draw a path from any vertex of the set W1 to any vertex of the set W2, i.e.,
W1 ⇒ W2. Then, from the relations W1 ⇒ W2, W2 ⇒ W1 we get W1

⋃
W2 ⇒ W1

⋃
W2.

Therefore, constructing from the stars G1
1 , . . . , GM

1 , G1
2 , . . . , GN

2 digraph with the entered
max(m + N, n + M) good arcs, is strongly connected. The statement of Theorem 1 is
fully proved.

Theorem 2. For a bipartite digraph G, the minimum number of good arcs, that turn it into a
strongly connected digraph is determined by the equality

|p(G)| = max(|V1|, |V2|). (1)

Proof of Theorem 2. From Theorem 1, the equalities

|V1| = n + M, |V2| = m + N, |p(Ĝ)| = max(|V1|, |V2|)

follow. From the definition of a minimal arc cover Ĝ, it follows that the set of its vertices
coincides with the set of vertices in the bipartite digraph G. And the set of arcs in Ĝ is
contained in the set of arcs in G, therefore max(|V1|, |V2|) = |p(Ĝ)| ≥ |p(G)|. However,
since |p(G)| ≥ max(|V1|, |V2|), the equality (1) is fulfilled. Theorem 2 is proved.

Remark 2. Using the algorithm for proving Theorem 1, it is possible to construct a smallest set
p(G) of good arcs that transform a bipartite digraph G into a strongly connected digraph G̃. Thus,
a constructive solution is given to the problem of determining the smallest set of good arcs in a
bipartite digraph G.
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Theorem 3. For an acyclic digraph G, the minimum number of good arcs that turn it into a
strongly connected one is determined by the equality

|p(G)| = max(|V1|, |V2|).

Proof of Theorem 3. By arcs from the smallest set p(G) of good arcs, we connect the
vertices of the sets V1, V2 into G. We obtain from the acyclic digraph G a strongly connected
digraph in which the minimum number of good arcs |p(G)| = max(|V1|, |V2|). Theorem 3
is proved.

Remark 3. Assume that the acyclic digraph G has an isolated vertex that no arcs enter into it or
exit from it. Then, we may fictitiously introduce this vertex into the first and second lobes and
connect these vertices with a fictitious arc. Then all further constructions are saved.

4. Recurrent Algorithm for Class Allocation Cyclic Equivalence

This section provides one of the algorithms for converting a digraph into an acyclic
digraph by allocating cyclic equivalence classes in it. There are different algorithms to solve
this problem, see for example [12,28], etc. In this section, we show sequential algorithm in
which at each step new vertex and arcs connecting it with previously introduced are added
to the digraph. This algorithm was convenient to deal with protein networks in numerical
examples [29,30].

Let us say that two vertices of a digraph are cyclically equivalent if they are included
in any cycle contained in it. On the set of cyclic equivalence classes (clusters), a partial
order relation is defined v � w, if there is a path from the cluster v to the cluster w. We
define a zero-one matrix ||a(v, w)|| by the condition a(v, w) = 1 ⇐⇒ v � w. Then, the
algorithm for determining the set of clusters and the matrix a, specifying the partial order
� on it, is based on the following recurrent procedure [29].

Let all vertices in the original digraph be numbered: 1, 2, . . . , n. At step 1, a single
cluster is constructed consisting of a vertex 1 and a partial order matrix a, consisting of
a single element a(1, 1) = 1. Suppose that at step t− 1, clusters and a matrix specifying
a partial order � between them are given. Then, at the step t, the vertex t and the good
arcs connecting this vertex to the already specified clusters are added. Then, in a digraph
consisting of clusters constructed at step t − 1 and paths between them, after adding
a vertex t and good arcs connecting it to already constructed clusters, sets of clusters
B1, B2, B are determined (see Figure 6, left). The set B1 contains clusters into which there
is a path from the vertex t. Similarly, the set B2 contains clusters from which there is a
path to the vertex t. All other clusters fall into the set B, and from them there can be paths
only to the clusters of the set B1 and paths can exist in them only from clusters of the set
B2 (see Figure 6, left). Then, at step t, a new cluster [t] is built, consisting of the vertex t
and the clusters of the set A = B1 ∩ B2, and the paths between the remaining clusters are
shown in Figure 6, on the right. Then, the matrix a of partial order � is defined by Table 1.
In this table, rectangular sub matrices 0 consist of only zeros, rectangular sub matrices 1
consist of only ones, and rectangular matrices denoted by values at step t− 1 repeat the
corresponding sub matrices of the matrix a at step t− 1 (see [29]).
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Figure 6. The algorithm of transition from step t− 1 to step t for clusters.

Table 1. Algorithm of transition from step t− 1 to step t for a matrix of partial order a.

Matrice Partial
Order Clusters Set A1 Clusters Set [t] Clusters Set A2 Clusters Set B

clusters of set A1
meanings on

step t− 1 0 0

clusters of set [t] 1
clusters of set A2 meanings on step t− 1

clusters of set B meanings on
step t− 1 0 meanings on

step t−1

As a result of such clustering, the original digraph is transformed into a digraph with
a set of cluster vertices. An arc is drawn between two clusters if at least one arc exists
between them in the original digraph.

5. Discussions

Thus, the tasks set in the paper are solved by reducing to the problem of the maximum
flow and the minimum section. This allows us to use Ford–Fulkerson algorithms [4,5] and
their modifications [22,23], which avoid the need to solve NP-problems. To do this, either
the arc throughput is determined in a special way, or good arcs are introduced not for
the entire acyclic digraph, but for its arcs coverage, which greatly simplifies the task. We
also note that the optimization tasks considered in the paper do not always have a single
solution. However, the proposed algorithms allow us to obtain some of these solutions.
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