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Abstract: In this paper, a tripled fractional differential system is introduced as three associated
impulsive equations. The existence investigation of the solution is based on contraction principle
and measures of noncompactness in terms of tripled fixed point and modulus of continuity. Our
results are valid for both Kuratowski and Hausdorff measures of noncompactness. As an application,
we apply the obtained results to a control problem.
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1. Introduction

Fractional differential equations are considered as the most appropriate models for
many applicable phenomena (see in [1,2] and references therein). This opens the research
gate to study analytic solutions and their behaviors in a theoretic sense such as existence,
uniqueness, stability, controllability, etc. [3–21].

The investigations of existence problems of fractional differential equations have di-
verse topics ranging from the shape of initial and boundary conditions including impulsive
conditions, throughout various types of the used fractional derivatives, and reaching to
different forms fixed point theorems.

The fixed point theorems are essential resources for solving many existence problems
of solutions of differential and integral equations. In the meantime, the standard Banach
principle for contractions can be used not only for establishing the existence of a solution,
but also to investigate the uniqueness of this solution. The main assumption for using Ba-
nach’s fixed point theorem [22] is the contraction principle applied to the operator equation.
Another famous theorem is the Schauder’s fixed point theorem [23], which mainly utilizes
the relative compactness of the image of the solution operator. The application of these
two important theorems can be observed in different fractional modeling problems such as
the investigation of existence-uniqueness criteria for the generalized Navier system [24],
the nonsingular 4D-memristor-based circuit model [25], the SARS-CoV-2 virus model [26],
the hearing loss model caused by mump virus [27], the Ebola model [28], the Langevin
problem [29], the fractional BVP of the hexasilinane graph [30], etc.

In connection with bounded relatively compact subsets, measures of noncompactness
are considered very applicable tools to investigate existence problems by imposing weaker
conditions [31–33]. Therefore, there exists a correlation between the measure of noncom-
pactness and the Schauder theorem. Darbo [34] used this idea to prove a generalization of
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Schauder fixed point theorem, and then many researchers presented extended results of
Darbo’s fixed point criterion [35].

Coupled systems are introduced as two associated differential equations that may be
solved simultaneously [36–38]. The main notion of the existence of coupled fixed points
to be a solution of coupled systems are considered recently by many researchers [39–43].
In [31], the authors considered coupled fractional systems using the idea of the measure
of compactness.

Recently, many researchers introduced a tripled system and a tripled fixed point [44–47]. In [45],
the authors used tripled fixed points and the measure of noncompactness to investigate
the existence of a solution in relation to a functional tripled system via fractional operators.

We design and discuss in this article a tripled impulsive nonlinear system formu-
lated as 

cDκm
a xm(t) = fm(t, x(t)), t ∈ J

′
,

xm(a) = Φmx, x′m(a) = Θmx,

∆xm
∣∣t=tk = Im,k(x(tk)), ∆x′m

∣∣t=tk = Īm,k(x(tk)),

(1)

where J = [a, b], J
′
= J − {t1, t2, ..., tp}, a = t0 < t1 < · · · < tp < tp+1 = b, cDκm

a ,
m = 1, 2, 3, are the Caputo fractional derivatives such that κm ∈ (1, 2], fm : J ×R3 → R,
x(t) = (x1(t), x2(t), x3(t)), Im,k, Īm,k : R3 → R, k = 1, 2, ..., p, are given functions, Φm, Θm
are given operators, ∆xm

∣∣t=tk = xm
(
t+k
)
− xm

(
t−k
)
, ∆x′m

∣∣t=tk = x′m
(
t+k
)
− x′m

(
t−k
)
, and

xm
(
t+k
)
= lim

h̄→0+
xm(tk + h̄), xm

(
t−k
)
= lim

h̄→0−
xm(tk + h̄),

represent the right and left limits of the function xm(t) at the given points t = tk, respectively.
The main contribution and novelty of the present manuscript are that we here discuss
the existence notion with the help of a combination of extended fixed point theorems for
tripled fixed points in relation to a tripled impulsive system for the first time. Darbo’s
criterion and measure of noncompactness are used for tripled fixed points. Note that our
findings will be valid for both Kuratowski and Hausdorff measures [33–35].

The structure of the present research is organized as follows. In Section 2, some useful
preliminaries and lemmas are recalled to facilitate the proof of main theorems. In Section 3,
we prove and verify the existence results via different fixed point theorems. To conclude,
we introduce an example to examine the results.

2. Basic Notions

For convenience, we present firstly some preliminaries concerning with fractional
calculus. For more details on this topic, see the monograph [48].

Definition 1 ([48]). A real-valued function f is said to be κth-fractional integrable at t in the sense
of Riemann–Liouville (RL) if the integral

∫ t

a

(t− s)κ−1 f (s)
Γ(κ)

ds,

exists for κ > 0. If f is κth-fractional RL-integrable for every t ∈ J, then it is said to be κth-fractional
RL-integrable. The κth-fractional RL-integral of f is denoted by Iκ

a f (t), and conventionally, we let
I0
a f = f , and Iκ

a f (a) = 0.

It is obvious that if f is κth-fractional integrable, then it is βth-fractional integrable
for any 0 < β ≤ κ. We also notice that if f is κth-fractional integrable on [a, b], then it
satisfies that Iκ

0 f
(
t+k
)
= Iκ

0 f
(
t−k
)
, k = 1, 2, ..., p. However, if f is continuous, then it is

κth-fractional integrable.
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Definition 2 ([48]). A real-valued function f is said to has a Caputo derivative on J of order
κ ∈ (n− 1, n), n ∈ N, if the nth derivative f (n) of f is (n− κ)th-fractional integrable on J. It is
denoted by cDκ

a f , and then we write cDκ
a f = In−κ

a f (n).

The continuity of the nth derivative f (n) ensures the continuity of cDκ
a f . We notice that

the nth derivative of any function of the form of ci(t− a)i, i ∈ {0, . . . , n− 1} is zero, then
the Caputo derivative on J of order κ ∈ (n− 1, n] for such functions is zero.

Lemma 1 ([48]). Assume that f has a Caputo derivative on [a, b] of order κ ∈ (n− 1, n]; then, Dκ
a

Iκ
a f = f and

Iκ c
a Dκ

a f (t) = f (t) +
n−1

∑
i=0

ci(t− a)i, (2)

in which ci ∈ R and t ≥ a.

Definition 3 ([44]). A triplet (κ1,κ2,κ3) ∈ Y for Y := X3 is termed as a tripled fixed
point of a mapping z : Y → X whenever z(κ1,κ2,κ3) = κ1, z(κ2,κ1,κ3) = κ2, and
z(κ3,κ2,κ1) = κ3.

Here, in our fundamental theorem, X is a Banach space. In general, Definition 3 can
be applied for any space X which has some primitive algebraic structures such as partially
ordered space [49].

Define Ψ : X3 → X3 so that

Ψ(κ1,κ2,κ3) = (z(κ1,κ2,κ3),z(κ2,κ1,κ3),z(κ3,κ2,κ1)).

Then, (κ1,κ2,κ3) is a tripled fixed point of z iff (κ1,κ2,κ3) is a fixed point of Ψ, i.e.,
Ψ(κ1,κ2,κ3) = (κ1,κ2,κ3).

Next, we recall some preliminaries about a measure of noncompactness.

Definition 4 ([34]). Let X be a Banach space and BX the collection of bounded sets in X. A
measure µ : BX → [0, ∞) is termed as the measure of noncompactness if for any V, V1, V2 ∈ BX , it
fulfills the following:

(M1) (Regularity)ker µ = {V ∈ BX : µ(V) = 0} is nonempty subset of the category of relatively
compact sets in BX ;

(M2) (Monotonicity) V1 ⊂ V2 implies µ(V1) ≤ µ(V2);

(M3) ( Invariance) µ(Conv V) = µ(V) = µ(V), where Conv V, and V are, respectively, the
closed convex hull and closure of V;

(M4) ( Semi-homogeneity)µ(cV) ≤ |c|µ(V), for c ∈ R;

(M5) (Sublinearity) µ(V1 + V2) ≤ µ(v1) + µ(V2);

(M6) µ(cV1 + (1− c)V2) ≤ cµ(V1) + (1− c)µ(V2);

(M7) If
(
V

)
is a decreasing sequence of subsets in BX with lim→∞ µ(V) = 0,

⋂∞
=1 V

is nonempty.

For more properties and details, the reader may refer to the works in [34,35]. Kura-
towski and Hausdorff measures of noncompactness are two famous measures of this type
which are defined, respectively, as

α(V) = inf{R > 0 : V can be covered by a finite number of sets of diameter ≤ R},

and

χ(V) = inf{R > 0 : V can be covered by a finite number of balls of radius ≤ R},
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which are equivalent to regular measures, since χ(V) ≤ α(V) ≤ 2χ(V). In fact all regular
measures are equivalent [34]. The diameter diam V = sup{‖a1 − a2‖, for all a1, a2 ∈ V}
and the norm ‖V‖ = {‖x‖ : x ∈ V} of a set A are nonregular measures with kernels of
singleton sets and {0}, respectively.

In the space of continuous mappings given on J, the modulus of continuity of x ∈ C(J)
is a function ω(x, ·) : [0, ∞)→ [0, ∞) such that

ω(x,R) = sup{|x(s)− x(t)| : s, t ∈ J, |s− t| ≤ R},

and the modulus of continuity of a set V ⊆ C(J) is defined as

ω(V,R) = sup{ω(x,R) : x ∈ V}.

Define a measure of noncompactness ω0 as

ω0(V) = lim
R→0

ω(V,R),

where it satisfies that ω0(V) = 2χ(V) [34].

Schauder fixed point theorem is one of the well-known applications on existence
problems but it focuses on compact operators.

Theorem 1 ([23]). Let Ω 6= ∅ be a convex closed set with boundedness property in a Banach space
X. Then ∃ x ∈ Ω for every continuous compact mapping z : Ω→ Ω so that x = zx.

Therefore, if Ω satisfies the hypotheses of Theorem 1, and z is continuous whose
image embedded in Ω and the set zΩ is equicontinuous, then by Arzela Ascoli theorem
z is compact, i.e., zΩ is relatively compact. This means that zΩ ∈ ker µ, or µ(zΩ) = 0,
where µ is an arbitrary regular measure.

A useful extension of Darbo’s fixed point criterion is given in the next step.

Theorem 2 ([35]). Let Ω 6= ∅ be a convex closed set with boundedness property in a Banach space
X and z : Ω→ Ω be continuous which satisfies

µ(z(V)) ≤ σ(µ(V)), (3)

∀V ⊆ Ω, in which σ : [0, ∞)→ [0, ∞) is increasing with lim→∞ σ(t) = 0, ∀ t ∈ [0, ∞), and µ
is an arbitrary measure of noncompactness. Then, ∃ x ∈ Ω so that x = zx.

Assuming σ(t) = kt for t ≥ 0, and k < 1,

lim
→∞

σ(t) = lim
→∞

kt = 0.

Moreover, the condition (3) becomes µ(z(V)) ≤ kµ(V) which is called Darbo’s con-
dition or µ-contraction and the theorem will be the same original Darbo’s fixed point
result [34].

The next result concerns with an integral solution of the corresponding linear system
of (1).
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Lemma 2. Let fm be κmth-fractional integrable with Iκ
0 fm

(
t+k
)
= Iκ

0 fm
(
t−k
)
, 0 < κ ≤ κm,

k = 1, 2, ..., p, and also xm be differentiable of the Caputo type on J of order κm where κm ∈ (1, 2],
m = 1, 2, 3. In this case, the solution of the impulsive fractional differential system

cDκm
0 xm(t) = fm(t), t ∈ J

′
,

xm(a) = am, x′m(a) = bm,

∆xm|t=tk
= Im,k(x(tk)), ∆x′m

∣∣t=tk = Īm,k(x(tk)),

(4)

is equivalent to

xm(t) =



am + bmt +
∫ t

0

(t− s)κm−1

Γ(κm)
fm(s)ds, t ∈ J0,

am + bmt +
∫ t

0

(t− s)κm−1

Γ(κm)
fm(s)ds

+
k

∑
i=1

Im,i(x(ti)) +
k

∑
i=1

(t− ti) Īm,i(x(ti)), t ∈ Jk.

(5)

Proof. The given conditions imply that Iκm
a Dκm

a xm exists and satisfies the identity (2).
Taking the fractional integral Iκm

a to both sides of the differential Equation (4), and using
Lemma 1, we obtain

xm(t) = ak,m + bk,mt + Iκm
a fm(t), t ∈ Jk, (6)

and
x
′
m(t) = bk,m + Iκm−1

a fm(t), t ∈ Jk,

where Iκm
a fm(t) =

k

∑
i=1

ti∫
ti−1

(t− s)κm−1

Γ(κm)
fm(s)ds +

t∫
tk

(t− s)κm−1

Γ(κm)
fm(s)ds, and ak,m, bk,m, k =

1, 2, ..., p, m = 1, 2, 3, are constants to be determined. Applying the boundary conditions in
(4), if t ∈ J0, we have a0,m = am, and b0,m = bm. Then, the solution (6) becomes

xm(t) = am + bmt + Iκm
a fm(t).

Next, if t ∈ Jk, k = 1, 2, ..., p, then

ak,m = ak−1,m − (bk,m − bk−1,m)tk + Im,k(x(tk)),

bk,m = bk−1,m + Īm,k(x(tk)).

Solving these recursions leads to

bk,m = bm +
k

∑
i=1

Īm,i(x(ti)),

and

ak,m = am −
k

∑
i=1

ti Īm,i(x(ti)) +
k

∑
i=1

Im,i(x(ti)).

Substituting these constants in (6), we obtain

xm(t) = am + bmt + Iκm
a fm(t)

+
k

∑
i=1

(t− ti) Īm,i(x(ti)) +
k

∑
i=1

Im,i(x(ti)).
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This is equivalent to the solution (5). On another side, as xm has κmth-Caputo deriva-
tive, using Lemma 1, it is easy to deduce (4). This finishes the proof.

If x has a continuous second derivative and f is continuous on J, then the result of
Lemma 2 are valid, as Iκm

a fm and Dκm
a xm are continuous.

3. Results on the Existence Criterion

In this place, we discuss the existence and uniqueness problems for the impulsive
tripled system (1).

A Banach space C(J) of all real-valued continuous mappings is endowed with the
supremum norm. Consider the space PC(J) defined by

PC(J) =
{

ζ : J → R|ζ ∈ C(J
′
), ζ
(
t+k
)

and ζ
(
t−k
)

exist with ζ
(
t−k
)
= ζ(tk)

}
,

endowed with the norm ‖ζ‖ = sup{|ζ(t)|, t ∈ J}, and k = 1, 2, ..., p. Let X = PC(J),
and Y := X3 be the usual tripled product which becomes a Banach space with ‖x‖ =
max{‖x1‖, ‖x2‖, ‖x3‖} for any x = (x1, x2, x3) ∈ Y. Define the operators Ψ : Y → Y, and
Ψm : Y → X, m = 1, 2, 3 such that

Ψ(x1, x2, x3) = (Ψ1(x1, x2, x3), Ψ2(x2, x1, x3), Ψ3(x3, x2, x1))

and Ψm satisfying Ψ1(x1, x2, x3) = x1, Ψ2(x2, x1, x3) = x2, and Ψ3(x3, x2, x1) = x3. Without
loss of generality we use a common notation x = (x1, x2, x3) for three cases of domain
Ψm. Using Lemma 2, Ψm satisfies the corresponding integral solution (5) of the system (1)
given by

Ψmx(t) =



Φmx + tΘmx +
∫ t

a

(t− s)κm−1

Γ(κm)
fm(s, x(s))ds, t ∈ J0,

Φmx + tΘmx +
∫ t

a

(t− s)κm−1

Γ(κm)
fm(s, x(s))ds

+
k

∑
i=1

Im,i(x(ti)) +
k

∑
i=1

(t− ti) Īm,i(x(ti)), t ∈ Jk, k = 1, 2, ..., p.

(7)

We need the following assumptions:

Hypothesis 1 (H1). fm is a Carathéodory function, that is (s, x) 7−→ fm(s, x) is continuous
in x and strongly measurable in s. There is a nondecreasing κmth-fractional integrable function
ψ fm : J → [0, ∞), and

| fm(t, x)− fm(t, y)| ≤ ψ fm(t)‖x− y‖,

∀ t ∈ J and x, y ∈ R3, m = 1, 2, 3. Moreover, let supt∈J Iκm
a ψ fm(t) ≤ Lψm , for m = 1, 2, 3, and

Lψ = max
{

Lψ1 , Lψ2 , Lψ3

}
.

Hypothesis 2 (H2). Im,i and Īm,i are continuous functions that maps zero vector into zero value,
and there exist constants LIm,i , L Īm,i

> 0, provided that ∀ x, y ∈ R3, i = 1, 2, ..., p,

|Im,i(x)− Im,i(y)| ≤ LIm,i‖x− y‖, | Īm,i(x)− Īm,i(y)| ≤ L Īm,i
‖x− y‖.

Moreover, let LIi = max{LI1,i , LI2,i , LI3,i}, and L Īi
= max{L Ī1,i

, L Ī2,i
, L Ī3,i
}.
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Hypothesis 3 (H3). For continuous maps Φm, Θm : R3 → R, ∃ LΦm , LΘm > 0 such that for all
x, y ∈ R3, m = 1, 2, 3, {

|Φm(x)−Φm(y)| ≤ LΦm‖x− y‖,

|Θm(x)−Θm(y)| ≤ LΘm‖x− y‖.

Moreover, let LΦ = max
{

LΦ1 , LΦ2 , LΦ3

}
, and LΘ = max

{
LΘ1 , LΘ2 , LΘ3

}
.

Theorem 3. Let (H1)–(H3) be held. Then, there is a unique solution for the impulsive tripled
system (1) whenever

LΦ + LΘb + Lψ +
p

∑
i=1

LIi +
p

∑
i=1

(ti+1 − ti)L Īi
< 1. (8)

Proof. Take X3 =: Y. Let ‖Φm0‖ = NΦm ≥ 0, ‖Θm0‖ = NΘm ≥ 0, and maxt∈J‖ fm(t, 0)‖ =
N fm ≥ 0. Define a subset Br = {x ∈ Y : ‖x‖ ≤ r} of Y via

r ≥
NΦ + NΘb + N f N0

1− LΦ + LΘb + Lψ +
p
∑

i=1
LIi +

p
∑

i=1
(ti+1 − ti)L Īi

, (9)

where NΦ = max
{

NΦ1 , NΦ2 , NΦ3

}
, NΘ = max

{
NΘ1 , NΘ2 , NΘ3

}
, and

N0 = max
{

(b− a)κm

Γ(κm + 1)
, m = 1, 2, 3

}
.

In this case, for t ∈ J0,

|Ψmx(t)| ≤ ‖Φmx‖+ t‖Θmx‖+
∫ t

a

(t− s)κm−1

Γ(κm)
‖ fm(s, x(s))‖ds

≤
(

LΦm + LΘm t + Iκm
a ψ fm(t)

)
‖x‖

+

(
NΦm + NΘm t +

N fm(t− a)κm

Γ(κm + 1)

)

≤
(

LΦm + LΘm tk+1 + Lψm

)
‖x‖

+

(
NΦm + NΘm tk+1 +

N fm(tk+1 − a)κm

Γ(κm + 1)

)
.

Similarly, for t ∈ Jk we write (k = 1, 2, ..., p),

|Ψmx(t)| ≤ ‖Φmx‖+ t‖Θmx‖+
∫ t

a

(t− s)κm−1

Γ(κm)
‖ fm(s, x(s))‖ds

+
k

∑
i=1
‖Im,i(x(ti))‖+

k

∑
i=1

(t− ti)‖ Īm,i(x(ti))‖

≤
(

LΦm + LΘm t + Iκm
a ψ fm(t) +

k

∑
i=1

LIm,i +
k

∑
i=1

(t− ti)L Īm,i

)
‖x‖

+

(
NΦm + NΘm t +

N fm(t− a)κm

Γ(κm + 1)

)
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≤
(

LΦm + LΘm tk+1 + Lψm +
k

∑
i=1

LIm,i +
k

∑
i=1

(ti+1 − ti)L Īm,i

)
‖x‖

+

(
NΦm + NΘm tk+1 +

N fm(tk+1 − a)κm

Γ(κm + 1)

)
.

As
k
∑

i=1
LIm,i +

k
∑

i=1
(t− ti)L Īm,i

≥ 0, then for x ∈ Br, we obtain

‖Ψx‖ ≤
(

LΦ + LΘb + Lψ +
p

∑
i=1

LIi +
p

∑
i=1

(ti+1 − ti)L Īi

)
r + NΦ + NΘb + N f N0.

In virtue of (9), we deduce that Ψx ∈ Br. Next, the contractivity of Ψ is checked. Let
x, y ∈ Y, we have

|Ψmx(t)−Ψmy(t)| ≤ ‖Φmx−Φmy‖+ t‖Θmx−Θmy‖

+
∫ t

a

(t− s)κm−1

Γ(κm)
‖ fm(s, x(s))− fm(s, y(s))‖ds

≤
(

LΦm + LΘm t + Iκm
a ψ fm(t)

)
‖x− y‖

≤
(

LΦm + LΘm t1 + Lψm

)
‖x− y‖, t ∈ J0,

and for t ∈ Jk, we get

|Ψmx(t)−Ψmy(t)| ≤ ‖Φmx−Φmy‖+ t‖Θmx−Θmy‖

+
∫ t

a

(t− s)κm−1

Γ(κm)
‖ fm(s, x(s))− fm(s, y(s))‖ds

+
k

∑
i=1
‖Im,i(x(ti))− Im,i(y(ti))‖

+
k

∑
i=1

(t− ti)‖ Īm,i(x(ti))− Īm,i(y(ti))‖

≤
(

LΦm + LΘm t + Iκm
a ψ fm(t) +

k

∑
i=1

LIm,i +
k

∑
i=1

(t− ti)L Īm,i

)
‖x− y‖

≤
(

LΦm + LΘm tk+1 + Lψm +
k

∑
i=1

LIm,i +
k

∑
i=1

(ti+1 − ti)L Īm,i

)
‖x− y‖.

In virtue of condition (8), and the estimate

‖Ψx−Ψy‖ ≤
(

LΦ + LΘb + Lψ +
p

∑
i=1

LIi +
p

∑
i=1

(ti+1 − ti)L Īi

)
‖x− y‖,

it is figured out that Ψ is a contraction. Therefore, by the Banach contraction criterion, a
unique fixed point and so a unique solution is found for Ψ, and the impulsive tripled
system (1), respectively. The uniqueness proof is ended here.
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The next result is an investigation of the existence of a tripled fixed point to the
operator Ψ : X3 → X3 that leads to a solution for the mentioned impulsive system (1) using
the Schauder Theorem 1. These hypotheses are needed to establish the result and are given
as follows:

(A1) fm : J × R3 → R is Carathéodory, and there exist nondecreasing κth-fractional
integrable function υ : J → [0, ∞) and nondecreasing continuous ϕ : R+ → R+

satisfying ϕ(s) < s for all s > 0 equipped with

| fm(t, x)− fm(t, y)| ≤ υ f (t)ϕ(‖x− y‖), t ∈ J,

∀ x, y ∈ R3, κ is chosen such that supt∈J Iκ
a υ f (t) ≤ Cυ. Moreover, let supt∈J | fm(t, 0)| ≤

C f for any m = 1, 2, 3.

(A2) Im,i and Īm,i are continuous functions, and ∃CI , CĪ > 0, such that for all x, y ∈ R3, i =
1, 2, ..., p, we have

|Im,i(x)− Im,i(y)| ≤ CI‖x− y‖, | Īm,i(x)− Īm,i(y)| ≤ CĪ‖x− y‖.

Moreover, let Im,i(0) = Īm,i(0) = 0.

(A3) Φm and Θm are continuous operators for m = 1, 2, 3, and there exist constants CΦ,
CΘ > 0 s.t. ∀ x, y ∈ X3, {

‖Φm(x)−Φm(y)‖ ≤ CΦ‖x− y‖,
‖Θm(x)−Θm(y)‖ ≤ CΘ‖x− y‖.

Moreover, let ‖Φm0‖ ≤ CΦ0 , and ‖Θm0‖ ≤ CΘ0 .

(A4) The inequality

CΦ0 + bCΘ0 +
Cυ(b− a)κ

Γ(κ + 1)
+ (CΦ + CΘb + pCI + CĪ(b− a))r + Cυ ϕ(r) ≤ r,

has a solution r0 > 0.

The function ϕ that is satisfying the condition in (A1) is equivalent to the corresponding
condition in Theorem 2 [35]. It is obvious by definition of Ψ = (Ψ1, Ψ2, Ψ3) that, the value
of its norm on J0 is less than or equal to the corresponding norm value on Jk. Therefore,
without loss of generality, we apply the norms on Jk, in the next result (k = 1, 2, ..., p).

Theorem 4. Let (A1)–(A4) be held. Then, the impulsive tripled system (1) involves at least
one solution.

Proof. Let Y = X3, and (xn) be a sequence in Y such that xn → x in Y. Let R > 0,

and choose δ = R
(

CΦ + CΘb + C f + pCI + CĪ(b− a)
)−1

such that ‖xn − x‖ < δ. Using
assumptions (A1)–(A3), we deuce that

|Ψmxn(t)−Ψmx(t)| ≤ ‖Φmxn −Φmx‖+ t‖Θmxn −Θmx‖

+
∫ t

a

(t− s)κm−1

Γ(κm)
‖ fm(s, xn(s))− fm(s, x(s))‖ds

+
k

∑
i=1
‖Im,i(xn(ti))− Im,i(x(ti))‖

+
k

∑
i=1

(t− ti)‖ Īm,i(xn(ti))− Īm,i(x(ti))‖
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≤
(

CΦ + CΘt + Iς
a υ f (t) + kCI + CĪ

k

∑
i=1

(t− ti)

)
‖xn − x‖.

Hence

‖Ψxn −Ψx‖ ≤ (CΦ + CΘb + Cυ + pCI + CĪ(b− a))‖xn − x‖ < R.

This shows that Ψ is a uniformly continuous operator on Y.
Let Br0 = {ζ ∈ X : ‖ζ‖ ≤ r0} 6= ∅, then Br0 is a closed, and convex set in X with

boundedness property. Further, the subset B3
r0
= Br0 × Br0 × Br0 inherits the properties of

Br0 but in Y. We estimate

|Ψmx(t)| ≤ ‖Φmx‖+ t‖Θmx‖+
∫ t

a

(t− s)κm−1

Γ(κm)
‖ fm(s, x(s))‖ds

+
k

∑
i=1
‖Im,i(x(ti))‖+

k

∑
i=1

(t− ti)‖ Īm,i(x(ti))‖

≤
(

CΦ + CΘt + kCI + CĪ

k

∑
i=1

(t− ti)

)
‖x‖

+Iκ
a υ f (t)ϕ(‖x‖) + ‖Φm0‖+ t‖Θm0‖+ Cυ(t− a)κ

Γ(κ + 1)
.

Therefore, if xm ∈ Br0 , m = 1, 2, 3, we deduce by (A4) that

‖Ψx‖ ≤ (CΦ + CΘb + pCI + CĪ(b− a))r0 + Cυ ϕ(r0)

+
Cυ(b− a)κ

Γ(κ + 1)
+ CΦ0 + bCΘ0

≤ r0.

This shows that Ψ maps B3
r0

into B3
r0

.
Let Am, m = 1, 2, 3 be a nonempty subset in Br0 ; then Am inherits the boundedness

and convexity properties from Br0 . Let ζ ∈ Ψm(A1 × A2 × A3), then there exists y =
(x1, x2, x3) ∈ A1 × A2 × A3 such that Ψmy = ζ, and xm ∈ Am, m = 1, 2, 3. The definition of
Ψm implies that

ζ(t) = Ψmy(t) =



Φmy + tΘmy +
∫ t

a

(t− s)κm−1

Γ(κm)
fm(s, y(s))ds, t ∈ J0,

Φmy + tΘmy +
∫ t

a

(t− s)κm−1

Γ(κm)
fm(s, y(s))ds

+
k
∑

i=1
Im,i(y(ti)) +

k
∑

i=1
(t− ti) Īm,i(y(ti)), t ∈ Jk, k = 1, 2, ..., p.

For any R > 0, let τ1, τ2 ∈ J be such that |τ2 − τ1| ≤ R, then, we have

|ζ(τ2)− ζ(τ1)|

≤ |τ2 − τ1|‖Θmy‖+ ϕ(‖y‖)
τ1∫

a

∣∣∣∣∣ (τ2 − s)κm−1

Γ(κm)
− (τ1 − s)κm−1

Γ(κm)

∣∣∣∣∣υ f (s)ds

+

τ1∫
a

∣∣∣∣∣ (τ2 − s)κm−1

Γ(κm)
− (τ1 − s)κm−1

Γ(κm)

∣∣∣∣∣| f (s, 0)|ds
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+ϕ(‖y‖)
τ2∫

τ1

∣∣∣∣∣ (τ2 − s)κm−1

Γ(κm)

∣∣∣∣∣υ f (s)ds +
τ2∫

τ1

∣∣∣∣∣ (τ2 − s)κm−1

Γ(κm)

∣∣∣∣∣| f (s, 0)|ds

+|τ2 − τ1|
k

∑
i=1
‖ Īm,i(x(ti))‖, a.e.onJ,

≤ |τ2 − τ1|‖Θmy‖

+ϕ(‖y‖)υ f (τ1)

(∣∣∣∣ (τ2 − a)κm

Γ(κm + 1)
− (τ1 − a)κm

Γ(κm + 1)

∣∣∣∣+ |τ2 − τ1|κm

Γ(κm + 1)

)

+C f

(∣∣∣∣ (τ2 − a)κm

Γ(κm + 1)
− (τ1 − a)κm

Γ(κm + 1)

∣∣∣∣+ |τ2 − τ1|κm

Γ(κm + 1)

)

+ϕ(‖y‖)υ f (τ2)
|τ2 − τ1|κm

Γ(κm + 1)
+ C f

|τ2 − τ1|κm

Γ(κm + 1)
+ p(τ2 − τ1)CĪ .

Without loss of generality, we take τ1 > a, and R < τ1 − a. Then,

ω(ζ,R) = sup{|ζ(τ2)− ζ(τ1)| : τ1, τ2 ∈ J, |τ2 − τ1| ≤ R}

≤ R
(
CΘ‖y‖+ CΘ0

)
+ ϕ(‖y‖)υ f (τ1)

×

 |τ1 − a|κm
∣∣∣O( R

τ1−a

)∣∣∣
Γ(κm + 1)

+
Rκm

Γ(κm + 1)



+C f

 |τ1 − a|κm
∣∣∣O( R

τ1−a

)∣∣∣
Γ(κm + 1)

+
Rκm

Γ(κm + 1)


+ϕ(‖y‖)υ f (τ2)

Rκm

Γ(κm + 1)
+

C fR
κm

Γ(κm + 1)
+RpCĪ ,

where O
(

R
τ1−a

)
is the big O function [50] that converges to 0 as R converges to zero. It

follows that

ω(Ψm(A1 × A2 × A3),R) = sup{ω(x, ζ) : ζ ∈ Ψm(A1 × A2 × A3)}

≤ R
(
CΘ0 + CΘr0

)
+ ϕ(r0)υ f (b)

×

 |τ1 − a|κm
∣∣∣O( R

τ1−a

)∣∣∣
Γ(κm + 1)

+
Rκm

Γ(κm + 1)



+C f

 |τ1 − a|κm
∣∣∣O( R

τ1−a

)∣∣∣
Γ(κm + 1)

+
Rκm

Γ(κm + 1)


+ϕ(r0)υ f (b)

Rκm

Γ(κm + 1)
+

C fR
κm

Γ(κm + 1)
+RpCĪ .

Therefore, passing the limit asR approaches to zero, we deduce then ω0(Ψ(A1 × A2 × A3))
approaches to zero for any A1× A2× A3 ⊆ B3

r0
. Applying Schauder fixed point Theorem 1,

the impulsive tripled system (1) has a solution in B3
r0
∈ ker ω0.
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The equivalent relations between the regular measures of noncompactness permit to
use Kuratowski α and Hausdorff χ measures of noncompactness in the previous theorem.

It is still possible to use a general measure µ together with general conditions to obtain
the existence result.

(A5) Assume that
µ( fm(t, A)) ≤ ρm(t)ψ(µ(A)),

for any bounded subset A ⊆ X, where ρm : J → R+ be so that

max
t∈J
{Iκ

a ρ1(t), Iκ
a ρ2(t), Iκ

a ρ3(t)} ≤ Lρ,

and ψ : [0, ∞) → [0, ∞) is increasing with limn→∞ ψn(t) = 0, ∀ t ∈ [0, ∞) and
ψ(ks) = kψ(s), k ≥ 0.

(A6) There exist constants LΦm , LΘm such that

µ(Φm A) ≤ LΦm ψ(µ(A)),

µ(Θm A) ≤ LΘm ψ(µ(A)).

Moreover, let LΦ = max
{

LΦ1 , LΦ2 , LΦ3

}
, and LΘ = max

{
LΘ1 , LΘ2 , LΘ3

}
.

(A7) There exist constants LIm,i , L Īm,i
such that

µ{Im,i(x(ti)), x ∈ A} ≤ LIm,i ψ(µ(A)), µ{ Īm,i(x(ti)), x ∈ A} ≤ L Īm,i
ψ(µ(A)).

Furthermore, let LIi = max
{

LI1,i , LI2,i , LI3,i

}
, and L Īi

= max
{

L Ī1,i
, L Ī2,i

, L Ī3,i

}
.

(A8) Assume that

LΦ + bLΘ +
p

∑
i=1

LIi + (b− a)
p

∑
i=1

L Īi
+ Lρ < 1.

The further lemma is needed for our goal.

Lemma 3 ([33]). Regard f : J × X → R satisfying (A5), and let K:J × J → R be a bounded
continuous mapping. If A is an equicontinuous set of functions, then

µ

({∫
I

K(t, s) f (s, x(s))ds : x ∈ A
})
≤
∫

I
|K(t, s)|ρ(s)ψ(µ({x(s) : s ∈ A})ds,

for any subset I of J and any t ∈ I.

Theorem 5. Let µ be any measure of noncompactness. If (A1)–(A8) are fulfilled, then the impulsive
tripled system (1) involves a solution.

Proof. Let Y = X3. The conditions (A1)–(A4) imply that the operator Ψ : B3
r0
→ B3

r0
is

continuous operator on the closed convex bounded subset B3
r0

of Y. Moreover, ΨB3
r0 is

compact subset in B3
r0

. If µ(B3
r0
) = 0, then by (M2), we have µ(A) = 0 for any A ⊆ B3

r0
,

hence we have the result as in Theorem 4. Otherwise, let µ(A) > 0, then, by (M4) and (M5),
we have

µ
(
(Ψm A)(t)

)
≤ µ

({
Φmx + tΘmx +

∫ t

a

(t− s)κm−1

Γ(κm)
fm(s, x(s))ds

+
k

∑
i=1

Im,i(x(ti)) +
k

∑
i=1

(t− ti) Īm,i(x(ti)) :

x ∈ A, t ∈ Jk, k = 0, 1, 2, ..., p
})
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≤ µ({Φmx : x ∈ A}) + tµ({Θmx : x ∈ A}) +

+
k

∑
i=1

µ({Im,i(x(ti)) : x ∈ A})

+
k

∑
i=1

(t− ti)µ({ Īm,i(x(ti)) : x ∈ A})

+µ

({∫ t

a

(t− s)κm−1

Γ(κm)
fm(s, x(s))ds : x ∈ A

})
.

Using Lemma 3,

µ((Ψm A)(t)) ≤ µ({Φmx : x ∈ A}) + tµ({Θmx : x ∈ A}) +

+
k

∑
i=1

µ({Im,i A : x ∈ A})

+
k

∑
i=1

(t− ti)µ({ Īm,i(x(ti)) : x ∈ A})

+
∫ t

a

(t− s)κm−1

Γ(κm)
µ({ fm(s, x(s)) : x ∈ A})ds.

In view of assumptions (A5)–(A7), we deduce

µ((Ψm A)(t)) ≤ LΦm ψ(µ(A)) + tLΘm ψ(µ(A)) +

+ψ(µ(A))
k

∑
i=1

LIm,i + ψ(µ(A))
k

∑
i=1

L Īm,,i
(t− ti)

+
∫ t

a

(t− s)κm−1

Γ(κm)
µ({ fm(s, x(s)) : x ∈ A})ds

≤
(

LΦm + tLΘm +
k

∑
i=1

LIm,i +
k

∑
i=1

L Īm,,i
(t− ti) + Iκ

a ρm(t)

)
ψ(µ(A)).

Taking the maximum over m = 1, 2, 3, we have

µ((ΨA)(t)) = sup{µ((Ψ1 A)(t)), µ((Ψ2 A)(t)), µ((Ψ3 A)(t))}

≤
(

LΦ + tLΘ +
k

∑
i=1

LIi +
k

∑
i=1

L Īi
(t− ti) + Lρ

)
ψ(µ(A)).

Taking the supremum over J, we have

µ((ΨA)) ≤
(

LΦ + bLΘ +
p

∑
i=1

LIi + (b− a)
p

∑
i=1

L Īi
+ Lρ

)
ψ(µ(A))

= φ(γ(A)), (10)
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where φ(s) =
(

LΦ + bLΘ +
p
∑

i=1
LIi + (b− a)

p
∑

i=1
L Īi

+ Iκ
a ρ(b)

)
ψ(s) which satisfies φn(s) =(

LΦ + bLΘ +
p
∑

i=1
LIi + (b− a)

p
∑

i=1
L Īi

+ Iκ
a ρ(b)

)n

ψn(s) by using (A5) and (A8). In accor-

dance with (A8), we get the required results by applying Theorem 2. This finishes
the proof.

4. Application

We give a general example to examine the obtained results.

Example 1. Consider the following impulsive tripled system:

cD
6
5
0 x1(t) =

1√
100 + t2

(
|x1(t)|

1 + |x1(t)|
+
|x2(t)|

1 + |x2(t)|
+
|x3(t)|

1 + |x3(t)|

)
,

cD
3
2
0 x2(t) =

t|x1(t)|
10

+
t|x2(t)|

10(t3 + 1)
+

t|x3(t)|
10(1 + t)

,

cD
9
8
0 x3(t) =

|x1(t)|√
100 + t2

+
|x2(t)|
10 + t

+
|x3(t)|

10
√

1 + t2
,

(11)

where t ∈ [0, 1], subject to boundary conditions
10mxm(0) =

1∫
0

|sin(xm(s))|ds, 10mx′m(0) =
|xm(1)|

1 +
(
x′0(0) + x′1(0) + x′3(0)

)2 ,

m∆xm|t=0.5 =
0.1|xm(0.5)|
1 + |xm(0.5)| , m∆x′m|t=0.5 =

0.1|xm(0.5)|
1 + 2

∣∣x′m(0.5)
∣∣ .

In view of the above data, we have (m = 1, 2, 3)

Φm(x) =
1

10m

1∫
0

|sin(xm(s))|ds,

Θm(x) =
1

10m
|xm(1)|

1 +
(
x′0(0) + x′1(0) + x′3(0)

)2 ,

Im,1(x) =
1
m

0.1|xm(0.5)|
1 + |xm(0.5)| ,

and

Īm,1(x) =
1
m

0.1|xm(0.5)|
1 + 2

∣∣x′m(0.5)
∣∣ ,

where κ1 =
6
5

, κ2 =
3
2

, κ3 =
9
8

, t0 = 0, t1 = 0.5, and t2 = 1. Furthermore, we notice that

ψ f1(t) =
1√

100 + t2
, ψ f2(t) =

t
10 , and ψ f3(t) =

1
10

. Therefore, by the assumptions (H1)–(H3),

we can find that LΦ = LΘ = Lψ = LIi = L Īi
≤ 1

10
. Hence

LΦ + LΘb + Lψ +
p

∑
i=1

LIi +
p

∑
i=1

(ti+1 − ti)L Īi
= 0.45 < 1.

Thus, all hypotheses of Theorem 3 are satisfied, then there exists a unique solution to the
impulsive tripled system (11).

On other hand, by referring to hypotheses (A1)–(A4), similar calculations can be performed
and so we find CΦ0 = CΘ0 = 0, a = 0, p = 1 = b, κ = 1.5 and CΦ = CΘ = CI = CĪ = 0.1,
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Cυ ≤ 0.1. Therefore, we solve the inequality given in (A4) and we find that r0 ≈ 0.23 satisfies
this inequality. Therefore using Theorem 4, there exists a solution to the supposed impulsive tripled
system (11).

5. Conclusions

In this paper, we designed a tripled system consisting of impulsive fractional equations
involving the generalized boundary conditions with some given operators. By introducing
two types of measure of noncompactness (Kuratowski and Hausdorff), we investigated
necessary hypotheses and conditions implying the existence of solutions with the help of
the tripled fixed point and modulus of continuity. Furthermore, the Banach principle was
applied to confirm the uniqueness property. In this research, we showed that our results
are valid for both Kuratowski and Hausdorff measures of noncompactness. To confirm
this correctness, we designed an example of the control problem. For future works, we can
generalize our results to such an impulsive problem with nonsingular operators.
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