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Abstract: On the basis of Hamacher operations, in this manuscript, we interpret bipolar com-
plex fuzzy Hamacher weighted average (BCFHWA) operator, bipolar complex fuzzy Hamacher
ordered weighted average (BCFHOWA) operator, bipolar complex fuzzy Hamacher hybrid average
(BCFHHA) operator, bipolar complex fuzzy Hamacher weighted geometric (BCFHWG) operator,
bipolar complex fuzzy Hamacher ordered weighted geometric (BCFHOWG) operator, and bipolar
complex fuzzy Hamacher hybrid geometric (BCFHHG) operator. We present the features and partic-
ular cases of the above-mentioned operators. Subsequently, we use these operators for methods that
can resolve bipolar complex fuzzy multiple attribute decision making (MADM) issues. We provide a
numerical example to authenticate the interpreted methods. In the end, we compare our approach
with existing methods in order to show its effectiveness and practicality.

Keywords: bipolar complex fuzzy set; bipolar fuzzy set; Hamacher aggregation; multi-attribute
decision making

1. Introduction

In classical set theory (CST), we have only two possibilities, yes or no, i.e., an item
either belongs to a set or does not. This means that the characteristic function of an
item can give values 0 or 1. The CST fails in many situations such as age, intelligence,
and height. To overcome this issue, Zadeh [1] presented the idea of the fuzzy set (FS).
In FS theory, the membership degree (MD) belongs to the closed interval [0, 1] instead
of {0, 1}. Mardani et al. [2] presented decision-making (DM) methods based on fuzzy
aggregation operators. Merigó and Casanovas [3] described fuzzy generalized hybrid
aggregation operators and their application in fuzzy DM. FS theory only considers MD,
but in various circumstances, we need a non-membership degree (NMD). To handle such
problems, Atanassov [4] provided the notion of intuitionistic FS (IFS) denoted by an
MD and NMD with the condition that the sum of MD and NMD belongs to the closed
interval [0, 1]. Xu [5] introduced intuitionistic fuzzy (IF) aggregation operators. The
generalized IF aggregation operators are based on confidence levels for group DM given by
Rahman et al. [6]. Verma and Merigó [7] presented multiple-attribute group DM (MAGDM)
based on two-dimensional linguistic IF aggregation operators. Huang [8] defined the IF
Hamacher aggregation operators and their application to MADM. Garg [9] presented IF
Hamacher aggregation operators’ entropy weight and their applications to multi-criteria
DM (MCDM) issues.

Subsequently, the bipolar fuzzy set (BFS) [10,11] has risen as another technique that
illustrates vagueness in MADM issues. The BFS is denoted by the pair of positive de-
gree PD, whose range is [0, 1], and by negative degree (ND), whose range is the [−1, 0].
Lee [12] presented a comparison of interval-valued FS, IFSs, and bipolar valued FSs. BFSs
have been applied in several research zones such as bipolar logical cognitive and set the-
ory [13,14], graph theory [15,16], quantum computing [17,18], traditional Chinese medicine
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notions [19,20], physics and philosophy [21], and biosystem regulation [22]. Gul [23] pre-
sented the bipolar fuzzy (BF) aggregation operators. Wei et al. [24] presented BF Hamacher
aggregation operators in MADM. BF Dombi aggregation operators and their application
in MADM are given by Jana et al. [25]. Jana et al. [26] described BF Dombi prioritized
aggregation operators in MADM. Riaz and Tehrim [27] presented a robust extension of
VIKOR method for BFSs in which they use connection numbers of SPA theory-based metric
spaces. Sarwar et al. [28] defined the DM approach on the basis of competition graphs and
extended the TOPSIS method under the BF environment. A new notion of the bipolar soft
set was presented by Mahmood [29]. Abdullah et al. [30] described the BF soft sets and
their applications in DM issues.

Motivated by the extension of a real number to a complex number, Ramot et al. [31]
extended the range of FS from the closed interval [0, 1] to the unit disc in a complex plane.
They named this extension complex FS (CFS), which can be represented in a polar structure,
i.e., FJ(τ) = rJ(τ)ei θJ(τ), where rJ(τ) ∈ [0, 1] and 0 ≤ θJ(τ) ≤ 2π. Complex fuzzy infor-
mation can be visualized with the assistance of hypergraphs [32]. Later, Tamir et al. [33]
described CFS by changing the range from a unit disc (polar structure) to a unit square
with a cartesian structure, i.e., FJ(τ) = ηJ(τ) + i σJ(τ), where ηJ(τ), σJ(τ) ∈ [0, 1]. Yaz-
danbakhsh and Dick [34] described a systematic review of CFSs. Tamir et al. [35] presented
CFSs and complex fuzzy (CF) logic as an overview of the theory. Dagher [36] presented
a complex fuzzy c-means algorithm. Bi et al. [37] interpreted CF geometric aggregation
operators. The CF power aggregation operators were given by Hu et al. [38]. Bi et al. [39]
described CF arithmetic aggregation operators. Garg and Rani [40] described innovative ag-
gregation operators and ranking methods for complex IFSs. Mahmood et al. [41] presented
the idea of complex hesitant FSs. Behera and Chakraverty [42] produced a novel procedure
for solving real and CF systems. The notion of complex dual hesitant FS was presented by
Ur Rehman et al. [43]. Ma et al. [44] interpreted CFS with applications in signals.

Mahmood and Ur Rehman [45] presented a bipolar complex fuzzy set (BCFS). The
theory of BCFS has a powerful structure in the shape of complex numbers whose real
and unreal terms are belonging to unit intervals. The BCFS is used in many real-life
situations: for example, consider that a mayor considers whether he should start a new
public transport program in a city. For this purpose, he hires an expert who assesses the
given possibilities. The expert must have considered four important aspects of this program,
that is, the positive aspects or effects (i.e., people’s benefits), the negative aspects or side
effects (i.e., the city’s extra economic costs), and society’s positive and negative responses
to the project. For example, an expert rates 0.6 points to the positive aspect, −0.4 to the
negative aspect, 0.7 to society’s positive response, and −0.5 to society’s negative response.
To handle this type of data, the expert must use BCFS, since no other existing structure can
manage this kind of information. The principle of FSs, BFSs, and CFSs are the particular
cases of the novel BCFS, and many individuals have employed it in the region of different
circumstances. However, to date, the theory of BCFS has had no implementation in the
region of decision-making, medical diagnosis, pattern recognition, image segmentation,
and analysis of carcinoma. Additionally, Hamacher t-norm and t-conorm are the most
important techniques to be employed in the region of FS, BFS, and CFS. The particularities
of this analysis consist of implementing Hamacher t-norm and t-conorm in the environment
of BCFS and discussing their important cases. Hamacher aggregation operator generalizes
the ordinary t-norm and t-conorm through the parameter. For example, if we take the
parameter equal to 1, then the Hamacher t-norm and t-conorm will be narrowed to the
ordinary t-norm and t-conorm, respectively. On the other hand, if we take the parameter
equal to 2, the Hamacher t-norm and t-conorm will be narrowed to the Einstein t-norm and
t-conorm, respectively.

In this manuscript, we invented BCFHWA, BCFHOWA, BCFHHA BCFHWG, BCFHOWG,
and BCFHHG operators and discuss their particular cases. The benefits of implementation
of Hamacher aggregation operators in the setting of BCFSs comprise the prevailing theories
such as FS, BFS, and CFS. We can obtain particular cases such as bipolar fuzzy averaging
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and bipolar fuzzy geometric aggregation operator by taking the parameter 1 in the bipolar
complex Hamacher aggregation operator. Similarly, we obtain Einstein averaging and Einstein
geometric aggregation operators by taking the parameter equal to 2. This shows that the
Hamacher t-norm and t-conorm are powerful due to parameters involved in the operation of
Hamacher t-norm and t-conorm.

The remaining article is organized in the following way: In Section 2, we review the
elementary definitions such as FS, BFS, CFS, and BCFS. In Section 3 of this article, the basic
operations, score function, and accuracy function of the BCFS are given. In Section 4, we
have three subsections: in the first subsection, we introduce the Hamacher operations of
BCFSs; in the second subsection, we present bipolar complex fuzzy Hamacher arithmetic
aggregation (BCFHAA) operators; and in the third subsection, we present bipolar complex
fuzzy Hamacher geometric aggregation (BCFHGA) operators. In Section 5 of this article,
we present the MADM technique based on the interpreted bipolar complex Hamacher
aggregation operators in Section 4 under the BCFS setting. In Section 6, we develop a
practical MADM case to explain the application of the interpreted operators. In Section 7,
we make a comparative study of our method and of the existing methods so as to show the
authenticity and superiority of our approach. In Section 8, we draw our final conclusions.

2. Preliminaries

In this section, we shortly analyze several basic results linked to FSs, BFSs, CFSs, and
BCFS. Let T be universal set throughout in this article.

Definition 1 ([1]). A FS has the structure J = {(τ, ηJ) | τ ∈ T} on T, where ηJ : T → [0, 1]
implies the membership degree (MD) of every element τ ∈ T. Let FS be the identification of the set
of all fuzzy numbers (FNs), and if J ∈ FS, then J = ηJ.

Definition 2 ([10,11]). A BFS has the structure J =
{(

τ, η+
J , η−J

) ∣∣∣ τ ∈ T
}

on T, where

η+
J : T → [0, 1] implies the PD, and η−J : T → [−1, 0] implies the ND. Let BFS be the identifi-

cation of the set of all bipolar FNs (BFNs), and if J ∈ BFN, then J =
(

η+
J , η−J

)
.

Definition 3 ([33]). A CFS has the structure J = {(τ, FJ) | τ ∈ T} = {(τ, ηJ + i σJ) | τ ∈ T}
on a T, where FJ(τ) is a complex MD, which gives the values in a unit square of a complex plane,
ηJ, σJ ∈ [0, 1], and i =

√
−1. Let CFS be the identification of the set of all complex FNs (CFNs),

and if J ∈ CFN, then J = (ηJ + i σJ).

Definition 4 ([45]). A BCFS J is denoted by a positive degree (PD) F+
J and a negative degree

(ND)F−J , which are assigned to every elemen τ of T. The values of F+
J andF−J may obtain all

values that lie within the unit square in a complex plane and are of the shape F+
J = η+

J + i σ+
J and

F−J = η−J + i σ−J , where η+
J , σ+

J ∈ [0, 1] and η−J , σ−J ∈ [−1, 0]. A BCFS is of the form

J =
{(

τ, F+
J , F−J

) ∣∣∣ τ ∈ T
}

(1)

where F+
J : T → {x+ i y | x, y ∈ [0, 1]} and F−J : T → {x+ i y | x, y ∈ [−1, 0]} .

Let BCFS be the identification of the set of all bipolar CFNs (BCFNs), and if J ∈ BCFN, then
J =

(
F+

J , F−J
)
=
(

η+
J + i σ+

J , η−J + i σ−J

)
.

Definition 5 ([46]). Hamacher product ⊗H and Hamacher sum ⊕H are t-norm and t-conorm
respectively, given as

For any τ1, τ2 ∈ [0, 1], α > 0

τ1 ⊗H τ2 =
τ1τ2

α + (1− α)(τ1 + τ2 − τ1τ2)
(2)
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τ1 ⊕H τ2 =
(τ1 + τ2 − τ1τ2)− (1− α)τ1τ2

1− (1− α)τ1τ2
(3)

3. Elementary Operations Based on BCFS

This section introduces the basic operations, the scoring function, and the accuracy
function of the BCFS.

Definition 6. The score function SB(J) : T → [0, 1]of a BCFN J =
(
F+

J , F−J
)

=(
η+
J + i σ+

J , η−J + iσ−J

)
is defined as

SB(J) =
1
4

(
2 + η+

J + σ+
J + η−J + σ−J

)
(4)

Definition 7. The accuracy function HB(J) : T → [0, 1] of a BCFN J =
(
F+

J , F−J
)

=(
η+
J + i σ+

J , η−J + iσ−J

)
is defined as

HB(J) =
η+
J + σ+

J − η−J − σ−J
4

(5)

It is obvious that SB(J) ∈ [0, 1] and HB(J) ∈ [0, 1]. Observe that HB(J) evaluates the accuracy
degree of J. The greatest value of HB(J) implies the greatest accuracy degree of the BCFN J.

Definition 8. For two BCFNs J =
(
F+

J , F−J
)

and K =
((
F+

K , F−K
))

, we introduce the order
relation � as J � K if and only if

1. SB(J) > SB(K) or
2. SB(J) = SB(K) and HB(J) > HB(K) or
3. SB(J) = SB(K) and HB(J) = HB(K)

Definition 9. In BCFN notation, let be any two BCFS J =
(
F+

J , F−J
)
=
(

η+
J + i σ+

J , η−J + i σ−J

)
and K =

(
F+

K , F−K
)
=
(
η+
K + i σ+

K , η−K + iσ−K
)
. Then, operations on BCFSs J, K are described

as follows:

1. J⊕ K =
((

η+
J ⊕H η+

K

)
+ i
(

σ+
J ⊕H σ+

K

)
,−
(∣∣∣η−J ∣∣∣⊗H

∣∣η−K ∣∣)− i
(∣∣∣σ−J ∣∣∣⊗H

∣∣σ−K ∣∣))
2. J⊗ K =

((
η+
J ⊗H η+

K

)
+ i
(

σ+
J ⊗H σ+

K

)
,−
(∣∣∣η−J ∣∣∣⊕H

∣∣η−K ∣∣)− i
(∣∣∣σ−J ∣∣∣⊕H

∣∣σ−K ∣∣))
3. λJ =

(
⊕λ

H

(
η+
J

)
+ i ⊕λ

H

(
σ+
J

)
,−⊗λ

H

(∣∣∣η−J ∣∣∣)− i ⊕λ
H

(∣∣∣σ−J ∣∣∣))
4. Jλ =

(
⊗λ

H

(
η+
J

)
+ i ⊗λ

H

(
σ+
J

)
,−⊗λ

H

(∣∣∣η−J ∣∣∣)− i⊕λ
H

(∣∣∣σ−J ∣∣∣))
For α = 1, Definition 9, after substituting formulas from Definition 5, takes the of the form of

the following Definition 10.
Definition 10. For two BCFNs =

(
F+

J , F−J
)
=
(

η+
J + i σ+

J , η−J + i σ−J

)
K =

(
F+

K , F−K
)
=(

η+
K + i σ+

K , η−K + iσ−K
)
, and for any real number λ > 0, we introduce the following operations:

1. J⊕ K =

 η+
J + η+

K − η+
J η+

K + i
(

σ+
J + σ+

K − σ+
J σ+

K

)
,

−
(

η−J η−K

)
+ i
(
−
(

σ−J σ−K

)) ;

2. J⊗ K =

(
η+
J η+

K + i σ+
J σ+

K ,

η−J + η−K + η−J η−K + i
(

σ−J + σ−K + σ−J σ−K

) );

3. λJ =

(
1−

(
1− η+

J

)λ
+ i

(
1−

(
1− σ+

J

)λ
)

,−
∣∣∣η−J ∣∣∣λ + i

(
−
∣∣∣σ−J ∣∣∣λ) );

4. Jλ =

(
η+
J

λ + i σ+
J

λ,−1 +
(

1 + η−J

)λ
+ i

(
−1 +

(
1 + σ−J

)λ
))

;
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Theorem 1. For BCFNs J =
(
F+

J , F−J
)
=
(

η+
J + i σ+

J , η−J + i σ−J

)
, K =

(
F+

K , F−K
)
=(

η+
K + i σ+

K , η−K + iσ−K
)
, and L =

(
F+

L , F−L
)
=
(
η+
L + i σ+

L , η−L + iσ−L
)
, and for real num-

bers λ, λ1, λ2 > 0, the following holds:

1. J⊕ K = K⊕ J

2. J⊗ K = K⊗ J

3. λ(J⊕ K) = λJ⊕ λK

4. (J⊗ K)λ = Jλ ⊗ Kλ

5. λ1J⊕ λ2J = (λ1 + λ2)J

6. Jλ1 ⊗ Jλ2 = Jλ1+λ2

7.
(
Jλ1
)λ2 = Jλ1λ2 .

8. J⊕ (K⊕ L) = (J⊕ K)⊕ L

9. J⊗ (K⊗ L) = (J⊗ K)⊗ L

10. λ1(λ2J) = (λ1λ2)J

Proof. Trivial. �

4. Bipolar Complex Fuzzy Hamacher Aggregation Operators

In this section, we have two subsections. We present BCFHAA operators in the first
subsection and BCFHGA operators in the second subsection.

4.1. Bipolar Complex Fuzzy Hamacher Arithmetic Aggregation Operators

In this subsection, we present the bipolar complex fuzzy Hamacher weighted average
(BCFHWA) operator and bipolar complex fuzzy Hamacher ordered weighted average
(BCFHOWA) operator. Consider K to be the collection of all BCFNs in this article.

In Definition 11, we invent the BCFHWA operator.

Definition 11. The BCFHWA operator is a function from Kn to K , i.e., BCFHWA : Kn → K
presented as

BCFHWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJp

)
(6)

where v = (v1, v2, v3, . . . , vn)
T signifies the weight vector linked with Jp(p = 1, 2, . . . , n)

and vp ∈ [0, 1], ∑n
p=1 vp = 1.

Theorem 2. The BCFHWA operator gives a BCFN and

BCFHWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJp

)

=



 ∏n
p=1

(
1 + (α− 1)η+

Jp

)vp

−∏n
p=1

(
1− η+

Jp

)vp


 ∏n

p=1

(
1 + (α− 1)η+

Jp

)vp
+

(α− 1)∏n
p=1

(
1− η+

Jp

)vp


+i

 ∏n
p=1

(
1 + (α− 1)σ+

Jp

)vp

−∏n
p=1

(
1− σ+

Jp

)vp


 ∏n

p=1

(
1 + (α− 1)σ+

Jp

)vp
+

(α− 1)∏n
p=1

(
1− σ+

Jp

)vp


,

−α ∏n
p=1

∣∣∣η−Jp

∣∣∣vp ∏n
p=1

(
1 + (α− 1)

(
1 + η−Jp

))vp

+(α− 1)∏n
p=1

∣∣∣η−Jp

∣∣∣vp


+i

−α ∏n
p=1

∣∣∣σ−Jp

∣∣∣vp ∏n
p=1

(
1 + (α− 1)

(
1 + σ−Jp

))vp

+(α− 1)∏n
p=1

∣∣∣σ−Jp

∣∣∣vp





(7)

The proof of this theorem is presented in Appendix A.

It can be easily demonstrated that the BCFHWA operator satisfies the following
three properties.
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Idempotency is an extremely helpful property in various circumstances, as it im-
plies that an operation can be rehashed or revised as frequently as vital without initi-
ating accidental impacts. In the following theorem, we invent the idempotency for the
BCFHWA operator.

Theorem 3. (Idempotency) If all Jp(p = 1, 2, 3, . . . , n) are identical, that is, Jp = J ∀ p , then

BCFHWAv(J1, J2, J3, . . . , Jm) = J (8)

The proof of this theorem is presented in Appendix A.
The invented BCFHWA operator satisfies the boundedness property, which is inter-

preted as below.

Theorem 4. (Boundedness) Let J− = minJp
p

, J+ = maxJp
p

. Then

J− 4 BCFHWAv(J1, J2, J3, . . . , Jm) 4 J+ (9)

Monotonicity is a significant trademark in numerous applications. The term comes
from monotonic mathematical operations, also called non-decreasing function. In the
following theorem, we invent monotonicity for the BCFHWA operator.

Theorem 5. (Monotonicity) Let Jp =
(
F+

Jp
, F−Jp

)
=

(
η+
Jp

+ i σ+
Jp
(τ), η−Jp

+ i σ−Jp

)
(p = 1, 2, 3, . . . , n) and Kp =

(
F+

Kp
, F−Kp

)
=

(
η+
Kp

+ i σ+
Kp

(τ), η−Kp
+ i σ−Kp

)
(p = 1, 2, 3, . . . , n) be two collection of BCFNs. If η+

Jp
≤ η+

Kp
, σ+

Jp
≤ σ+

Kp
η−Jp
≤ η−Kp

and σ−Jp
≤ σ−Kp

for all p. Then

BCFHWAv(J1, J2, J3, . . . , Jn) 4 BCFHWAv(K1, K2, K3, . . . , Kn) (10)

Particular Cases 1. We examine two particular cases of the BCFHWA operators as follows:

1. When we take α = 1, then the BCFHWA operator transforms into the bipolar complex fuzzy
weighted average (BCFWA) operator

BCFWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJp

)

=


1−

n
∏

p=1

(
1− η+

Jp

)vp
+ i 1−

n
∏

p=1

(
1− σ+

Jp

)vp
,

−
n
∏

p=1

∣∣∣η−Jp

∣∣∣vp
+ i

(
−

n
∏

p=1

∣∣∣σ−Jp

∣∣∣vp

)


(11)
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2. When we take α = 2 , then the BCFHWA operator transforms into the bipolar complex fuzzy
Einstein weighted average (BCFEWA) operator

BCFEWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJp

)

=



 ∏n
p=1

(
1 + η+

Jp

)vp

−∏n
p=1

(
1− η+

Jp

)vp


 ∏n

p=1

(
1 + η+

Jp

)vp
+

∏n
p=1

(
1− η+

Jp

)vp


+ i

 ∏n
p=1

(
1 + σ+

Jp

)vp

−∏n
p=1

(
1− σ+

Jp

)vp


 ∏n

p=1

(
1 + σ+

Jp

)vp
+

∏n
p=1

(
1− σ+

Jp

)vp


,

−2 ∏n
p=1

∣∣∣η−Jp

∣∣∣vp ∏n
p=1

(
2 + η−Jp

)vp

+∏n
p=1

∣∣∣η−Jp

∣∣∣vp


+ i

−2 ∏n
p=1

∣∣∣σ−Jp

∣∣∣vp ∏n
p=1

(
2 + σ−Jp

)vp

+∏n
p=1

∣∣∣σ−Jp

∣∣∣vp





(12)

In the following Definition 12, we invent the BCFHOWA operator.

Definition 12. The bipolar complex fuzzy Hamacher ordered weighted average (BCFHOWA)
operator is given as

BCFHOWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJφ(p)

)
(13)

where (φ(1), φ(2), . . . , φ(n)) is a permutation of (1, 2, 3, . . . , n), such that Jφ(p−1) ≥ Jφ(p)

∀ p = 1, 2, 3, . . . , n, and v = (v1, v2, v3, . . . , vn)
T signifies the weight vector linked with

Jp(p = 1, 2, . . . , n) and vp ∈ [0, 1], ∑n
p=1 vp = 1.

Theorem 6. The BCFHOWA operator gives a BCFN and

BCFHOWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJφ(p)

)

=



 ∏n
p=1

(
1 + (α− 1)η+

Jφ(p)

)vp

−∏n
p=1

(
1− η+

Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)η+

Jφ(p)

)vp
+

(α− 1)∏n
p=1

(
1− η+

Jφ(p)

)vp


+ i

 ∏n
p=1

(
1 + (α− 1)σ+

Jφ(p)

)vp

−∏n
p=1

(
1− σ+

Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)σ+

Jφ(p)

)vp
+

(α− 1)∏n
p=1

(
1− σ+

Jφ(p)

)vp


−α ∏n

p=1

∣∣∣∣η−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
1 + (α− 1)

(
1 + η−Jφ(p)

)vp

+(α− 1)∏n
p=1

∣∣∣η−Jφ(p)

∣∣∣vp


+ i

−α ∏n
p=1

∣∣∣∣σ−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
1 + (α− 1)

(
1 + σ−Jφ(p)

)vp

+(α− 1)∏n
p=1

∣∣∣σ−Jφ(p)

∣∣∣vp





(14)

Proof. The proof is similar to that of Theorem 2. �

One can easily prove that the BCFHOWA operator satisfies the following three prop-
erties. Idempotency is an extremely helpful property in various circumstances, since it
implies that an operation can be rehashed or revised as frequently as vital without initi-
ating accidental impacts. In the following theorem, we invent the idempotency for the
BCFHOWA operator.
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Theorem 7. (Idempotency) If all Jp(p = 1, 2, 3, . . . , n) are identical, that is, Jp = J ∀ p , then

BCFHOWAv(J1, J2, J3, . . . , Jm) = J (15)

The invented BCFHOWA operator satisfies the boundedness property, which is inter-
preted as below.

Theorem 8. (Boundedness) Let J− = minJp
p

, J+ = maxJp
p

. Then

J− 4 BCFHOWAv(J1, J2, J3, . . . , Jm) 4 J+ (16)

Monotonicity is a significant trademark in numerous applications. The term comes
from monotonic mathematical operations, also called the non-decreasing function. In the
following theorem, we invent monotonicity for the BCFHWA operator.

Theorem 9. (Monotonicity) Let Jp =
(
F+

Jp
, F−Jp

)
=

(
η+
Jp

+ i σ+
Jp
(τ), η−Jp

+ i σ−Jp

)
(p = 1, 2, 3, . . . , n)and Kp =

(
F+

Kp
, F−Kp

)
=

(
η+
Kp

+ i σ+
Kp

(τ), η−Kp
+ i σ−Kp

)
(p = 1, 2, 3, . . . , n)
be two collection of BCFNs. If η+

Jp
≤ η+

Kp
, σ+

Jp
≤ σ+

Kp
, η−Jp

≤ η−Kp
, and σ−Jp

≤ σ−Kp
for all

p . Then

BCFHOWAv(J1, J2, J3, . . . , Jn) 4 BCFHOWAv(K1, K2, K3, . . . , Kn) (17)

Particular Cases 2. We examine two particular cases of the BCFHOWA operator as follows:

1. When we take α = 1 , then the BCFHOWA operator transforms into the bipolar complex
fuzzy ordered weighted average (BCFOWA) operator

BCFWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJφ(p)

)

=


1−

n
∏

p=1

(
1− η+

Jφ(p)

)vp
+ i 1−

n
∏

p=1

(
1− σ+

Jφ(p)

)vp
,

−
n
∏

p=1

∣∣∣η−Jφ(p)

∣∣∣vp
+ i

(
−

n
∏

p=1

∣∣∣σ−Jφ(p)

∣∣∣vp

)


(18)

2. When we take α = 2 , then the BCFHOWA operator transforms into the bipolar complex
fuzzy Einstein ordered weighted average (BCFEOWA) operator

BCFEWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJφ(p)

)

=



 ∏n
p=1

(
1 + η+

Jφ(p)

)vp

−∏n
p=1

(
1− η+

Jφ(p)

)vp


 ∏n

p=1

(
1 + η+

Jφ(p)

)vp
+

∏n
p=1

(
1− η+

Jφ(p)

)vp


+ i

 ∏n
p=1

(
1 + σ+

Jφ(p)

)vp

−∏n
p=1

(
1− σ+

Jφ(p)

)vp


 ∏n

p=1

(
1 + σ+

Jφ(p)

)vp
+

∏n
p=1

(
1− σ+

Jφ(p)

)vp


−2 ∏n

p=1

∣∣∣∣η−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
2 + η−Jφ(p)

)vp

+∏n
p=1

∣∣∣η−Jφ(p)

∣∣∣vp


+ i

−2 ∏n
p=1

∣∣∣∣σ−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
2 + σ−Jφ(p)

)vp

+ ∏n
p=1

∣∣∣σ−Jφ(p)

∣∣∣vp





(19)
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In the following Definition 13, we invent the BCFHHA operator.

Definition 13. The bipolar complex fuzzy Hamacher hybrid average (BCFHHA) operator is
given as

BCFHHAw, v(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
wpJ

′
φ(p)

)
(20)

where w = (w1, w2, w3, . . . , wn) , such that wp ∈ [0, 1] ; ∑n
p=1 wp = 1 is the linked weighting

vector, J′
φ(p)is the p− th biggest element of the bipolar complex fuzzy arguments J′p

(
J′p = (nv)Jp

)
, p = (1, 2, 3, . . . , n); v = (v1, v2, v3, . . . , vn)

Tsignifies the weight vector linked with
Jp(p = 1, 2, . . . , n)with v ∈ [0, 1] ; ∑n

p=1 vp = 1 and nis the balancing coefficient.

If we take w =
(

1
n , 1

n , . . . , 1
n

)
,then the BCFHHA operator transforms into the BCFHWA

operator, and if we take v =
(

1
n , 1

n , . . . , 1
n

)
, then the BCFHHA operator transforms into the

BCFHOWA operator.

Theorem 10. The BCFHHA operator gives a BCFN and

BCFHOWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJ

′
φ(p)

)

=



 ∏n
p=1

(
1 + (α− 1)η′+Jφ(p)

)vp

−∏n
p=1

(
1− η′+Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)η′+Jφ(p)

)vp
+

(α− 1)∏n
p=1

(
1− η′+Jφ(p)

)vp


+i

 ∏n
p=1

(
1 + (α− 1)σ′+Jφ(p)

)vp

−∏n
p=1

(
1− σ′+Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)σ′+Jφ(p)

)vp
+

(α− 1)∏n
p=1

(
1− σ′+Jφ(p)

)vp


,

−α ∏n
p=1

∣∣∣∣η′−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
1 + (α− 1)

(
1 + η′−Jφ(p)

))vp

+(α− 1)∏n
p=1

∣∣∣η′−Jφ(p)

∣∣∣vp


+i

−α ∏n
p=1

∣∣∣∣σ′−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
1 + (α− 1)

(
1 + σ′−Jφ(p)

))vp

+(α− 1)∏n
p=1

∣∣∣σ′−Jφ(p)

∣∣∣vp





(21)

where w = (w1, w2, w3, . . . , wn), such that w ∈ [0, 1]; ∑n
p=1 wp = 1 is the linked weighting

vector; J′
φ(p) is the p− th biggest element of the bipolar complex fuzzy arguments J′p

(
J′p = (nv)Jp

)
,

p = (1, 2, 3, . . . , n); v = (v1, v2, v3, . . . , vn)
T signifies the weight vector linked with

Jp(p = 1, 2, . . . , n) with vp ∈ [0, 1]; ∑n
p=1 vp = 1; and n is the balancing coefficient, α > 0.

Proof. It is similar to the proof of Theorem 2. �

Particular Cases 3. We examine two particular cases of the BCFHHA operator as follows:

1. When we take α = 1 , then the BCFHHA operator transforms into the bipolar complex fuzzy
hybrid average (BCFHA) operator

BCFHAw, v(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
wpJ

′
φ(p)

)

=


1−

n
∏

p=1

(
1− η′+Jφ(p)

)vp
+ i 1−

n
∏

p=1

(
1− σ′+Jφ(p)

)vp
,

−
n
∏

p=1

∣∣∣η′−Jφ(p)

∣∣∣vp
+ i

(
−

n
∏

p=1

∣∣∣σ′−Jφ(p)

∣∣∣vp

)


(22)
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2. When we take α = 2 , then the BCFHHA operator transforms into the bipolar complex fuzzy
Einstein hybrid average (BCFEHA) operator

BCFHOWAv(J1, J2, J3, . . . , Jn) =
n
⊕

p = 1

(
vpJ

′
φ(p)

)

=



 ∏n
p=1

(
1 + η′+Jφ(p)

)vp

−∏n
p=1

(
1− η′+Jφ(p)

)vp


 ∏n

p=1

(
1 + η′+Jφ(p)

)vp
+

∏n
p=1

(
1− η′+Jφ(p)

)vp


+i

 ∏n
p=1

(
1 + σ′+Jφ(p)

)vp

−∏n
p=1

(
1− σ′+Jφ(p)

)vp


 ∏n

p=1

(
1 + σ′+Jφ(p)

)vp
+

∏n
p=1

(
1− σ′+Jφ(p)

)vp


,

−2 ∏n
p=1

∣∣∣∣η′−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
2 + η′−Jφ(p)

)vp

+∏n
p=1

∣∣∣η′−Jφ(p)

∣∣∣vp


+i

−2 ∏n
p=1

∣∣∣∣σ′−Jφ(p)

∣∣∣∣vp

 ∏n
p=1

(
2 + σ′−Jφ(p)

)vp

+∏n
p=1

∣∣∣σ′−Jφ(p)

∣∣∣vp





(23)

4.2. Bipolar Complex Fuzzy Hamacher Geometric Aggregation Operators

In this subsection, we interpret the bipolar complex fuzzy Hamacher weighted ge-
ometric (BCFHWG) operator and bipolar complex fuzzy Hamacher ordered weighted
geometric (BCFHOWG) operator.

In the following Definition 14, we invent the BCFHWG operator.

Definition 14. The BCFHWG operator is a function from Kn to K , i.e., BCFHWG : Kn → K ,
presented as

BCFHWGv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jp
)vp (24)

where v = (v1, v2, v3, . . . , vn)
T signifies the weight vector linked with Jp(p = 1, 2, . . . , n)

and vp ∈ [0, 1], ∑n
p=1 vp = 1.

Theorem 11. The BCFHWG operator gives a BCFN and

BCFHWGv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jp
)vp

=



α ∏n
p=1

(
η+Jp

)vp ∏n
p=1

(
1 + (α− 1)

(
1− η+

Jp

))vp

+(α− 1)∏n
p=1

(
η+
Jp

)vp


+ i

α ∏n
p=1

(
σ+
Jp

)vp ∏n
p=1

(
1 + (α− 1)

(
1− σ+

Jp

))vp

+(α− 1)∏n
p=1

(
σ+
Jp

)vp


,

−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣η−Jp

∣∣∣)vp

−∏n
p=1

(
1 + η−Jp

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣η−Jp

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + η−Jp

)vp


+ i


−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣σ−Jp

∣∣∣)vp

−∏n
p=1

(
1 + σ−Jp

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣σ−Jp

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + σ−Jp

)vp







(25)

The proof of this theorem is presented in Appendix A.
One can easily prove that the BCFHWG operator satisfies the following three properties.
Idempotency is an extremely helpful property in various circumstances, as it im-

plies that an operation can be rehashed or revised as frequently as vital without initi-
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ating accidental impacts. In the following theorem, we invent the idempotency for the
BCFHWA operator.

Theorem 12. (Idempotency) If all Jp(p = 1, 2, 3, . . . , n) are identical, that is, Jp = J ∀ p , then

BCFHWGv(J1, J2, J3, . . . , Jm) = J (26)

The proof is presented in Appendix A.
The invented BCFHWG operator satisfies the boundedness property, which is inter-

preted as below.

Theorem 13. (Boundedness) Let J− = minJp
p

, J+ = maxJp
p

. Then

J− 4 BCFHWGv(J1, J2, J3, . . . , Jm) 4 J+ (27)

Monotonicity is a significant trademark in numerous applications. The term comes
from monotonic mathematical operations, also called the non-decreasing function. In the
following theorem, we invent monotonicity for the BCFHWA operator.

Theorem 14. (Monotonicity) Let Jp =
(
F+

Jp
, F−Jp

)
=

(
η+
Jp

+ i σ+
Jp
(τ), η−Jp

+ i σ−Jp

)
(p = 1, 2, 3, . . . , n) and Kp =

(
F+

Kp
, F−Kp

)
=

(
η+
Kp

+ i σ+
Kp

(τ), η−Kp
+ i σ−Kp

)
(p = 1, 2, 3, . . . , n) be two collection of BCFNs. If η+

Jp
≤ η+

Kp
, σ+

Jp
≤ σ+

Kp
, η−Jp

≤ η−Kp

, and σ−Jp
≤ σ−Kp

for all p . Then

BCFHWGv(J1, J2, J3, . . . , Jn) 4 BCFHWGv(K1, K2, K3, . . . , Kn) (28)

Particular Cases 4. Now, we interpret two particular cases of the BCFHWG operator as follows:

1. When we take α = 1 , then the BCFHWG operator transforms into the bipolar complex fuzzy
weighted geometric (BCFWG) operator

BCFWGv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jp
)vp

=


n
∏

p=1

(
η+
Jp

)vp
+ i

n
∏

p=1

(
σ+
Jp

)vp
,

−1 +
n
∏

p=1

(
1 + η−Jp

)vp
+ i

(
−1 +

n
∏

p=1

(
1 + σ−Jp

)vp

)


(29)
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2. When we take α = 2 , then the BCFHWG operator transforms into the bipolar complex fuzzy
Einstein weighted geometric (BCFEWG) operator

BCFEWAv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jp
)vp

=



2 ∏n
p=1

(
η+Jp

)vp ∏n
p=1

(
2− η+

Jp

)vp

+∏n
p=1

(
η+
Jp

)vp


+ i

2 ∏n
p=1

(
σ+
Jp

)vp ∏n
p=1

(
2− σ+

Jp

)vp

+∏n
p=1

(
σ+
Jp

)vp


,

−

 ∏n
p=1

(
1 +

∣∣∣η−Jp

∣∣∣)vp

−∏n
p=1

(
1 + η−Jp

)vp


 ∏n

p=1

(
1 +

∣∣∣η−Jp

∣∣∣)vp

+∏n
p=1

(
1 + η−Jp

)vp


+ i


−

 ∏n
p=1

(
1 +

∣∣∣σ−Jp

∣∣∣)vp

−∏n
p=1

(
1 + σ−Jp

)vp


 ∏n

p=1

(
1 +

∣∣∣σ−Jp

∣∣∣)vp

+∏n
p=1

(
1 + σ−Jp

)vp







(30)

In the following Definition 15, we invent the BCFHOWG operator.

Definition 15. The bipolar complex fuzzy Hamacher ordered weighted geometric (BCFHOWG)
operator is given as

BCFHOWGv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jφ(p)

)vp
(31)

where (φ(1), φ(2), . . . , φ(n)) is a permutation of (1, 2, 3, . . . , n), such that Jφ(p−1) ≥ Jφ(p)

∀ p = 1, 2, 3, . . . , n, and v = (v1, v2, v3, . . . , vn)
T signifies the weight vector linked with

Jp(p = 1, 2, . . . , n) and vp ∈ [0, 1], ∑n
p=1 vp = 1.

Theorem 15. The BCFHOWG operator gives a BCFN and

BCFHOWGv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jφ(p)

)vp

=



α ∏n
p=1

(
η+Jφ(p)

)vp

 ∏n
p=1

(
1 + (α− 1)

(
1− η+

Jφ(p)

))vp

+(α− 1)∏n
p=1

(
η+
Jφ(p)

)vp


+ i

α ∏n
p=1

(
σ+
Jφ(p)

)vp

 ∏n
p=1

(
1 + (α− 1)

(
1− σ+

Jφ(p)

))vp

+(α− 1)∏n
p=1

(
σ+
Jφ(p)

)vp


,

−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣η−Jφ(p)

∣∣∣)vp

−∏n
p=1

(
1 + η−Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣η−Jφ(p)

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + η−Jφ(p)

)vp


+ i


−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣σ−Jφ(p)

∣∣∣)vp

−∏n
p=1

(
1 + σ−Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣σ−Jφ(p)

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + σ−Jφ(p)

)vp







(32)

Proof. The proof is similar to that of Theorem 11. �

One can easily prove that the BCFHOWG operator satisfies the following three properties.
Idempotency is an extremely helpful property in various circumstances, as it im-

plies that an operation can be rehashed or revised as often as necessary without initi-
ating accidental impacts. In the following theorem, we invent the idempotency for the
BCFHOWG operator.
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Theorem 16. (Idempotency) If all Jp(p = 1, 2, 3, . . . , n) are identical, that is, Jp = J ∀ p , then

BCFHOWGv(J1, J2, J3, . . . , Jm) = J (33)

The invented BCFHOWG operator satisfies the boundedness property, which is inter-
preted as below.

Theorem 17. (Boundedness) Let J− = minJp
p

, J+ = maxJp
p

. Then

J− 4 BCFHOWGv(J1, J2, J3, . . . , Jm) 4 J+ (34)

Monotonicity is a significant trademark in numerous applications. The term comes
from monotonic mathematical operations, otherwise called the non-decreasing function. In
the following theorem, we invent monotonicity for the BCFHWA operator.

Theorem 18. (Monotonicity) Let Jp =
(
F+

Jp
, F−Jp

)
=

(
η+
Jp

+ i σ+
Jp
(τ), η−Jp

+ i σ−Jp

)
(p = 1, 2, 3, . . . , n) and Kp =

(
F+

Kp
, F−Kp

)
=

(
η+
Kp

+ i σ+
Kp

(τ), η−Kp
+ i σ−Kp

)
(p = 1, 2, 3, . . . , n) be two collection of BCFNs. If η+

Jp
≤ η+

Kp
, σ+

Jp
≤ σ+

Kp
, η−Jp

≤ η−Kp
,

and σ−Jp
≤ σ−Kp

for all p . Then

BCFHOWGv(J1, J2, J3, . . . , Jn) 4 BCFHOWGv(K1, K2, K3, . . . , Kn) (35)

Particular Cases 5. Now we interpret two particular cases of the BCFHOWG operator as follows:

1. When we take α = 1, then the BCFHOWG operator transforms into the bipolar complex fuzzy
ordered weighted geometric (BCFOWG) operator

BCFOWGv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jφ(p)

)vp

=


n
∏

p=1

(
η+
Jφ(p)

)vp
+ i

n
∏

p=1

(
σ+
Jφ(p)

)vp
,

−1 +
n
∏

p=1

(
1 + η−Jφ(p)

)vp
+ i

(
−1 +

n
∏

p=1

(
1 + σ−Jφ(p)

)vp

)


(36)

2. fuzzy Einstein ordered weighted geometric (BCFEOWG) operator

BCFEOWAv(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jφ(p)

)vp

=



2 ∏n
p=1

(
η+Jφ(p)

)vp

 ∏n
p=1

(
2− η+

Jφ(p)

)vp

+∏n
p=1

(
η+
Jφ(p)

)vp


+ i

2 ∏n
p=1

(
σ+
Jφ(p)

)vp

 ∏n
p=1

(
2− σ+

Jφ(p)

)vp

+∏n
p=1

(
σ+
Jφ(p)

)vp


,

−

 ∏n
p=1

(
1 +

∣∣∣η−Jφ(p)

∣∣∣)vp

−∏n
p=1

(
1 + η−Jφ(p)

)vp


 ∏n

p=1

(
1 +

∣∣∣η−Jφ(p)

∣∣∣)vp

+∏n
p=1

(
1 + η−Jφ(p)

)vp


+ i


−

 ∏n
p=1

(
1 +

∣∣∣η−Jφ(p)

∣∣∣)vp

−∏n
p=1

(
1 + η−Jφ(p)

)vp


 ∏n

p=1

(
1 +

∣∣∣η−Jφ(p)

∣∣∣)vp

+∏n
p=1

(
1 + η−Jφ(p)

)vp







(37)
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In the following Definition 16, we invent the BCFHHG operator.

Definition 16. The bipolar complex fuzzy Hamacher hybrid geometric (BCFHHG) operator is
given as

BCFHHGw, v(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
J′φ(p)

)wp
(38)

where w = (w1, w2, w3, . . . , wn) , such that wp ∈ [0, 1] ; ∑n
p=1 wp = 1is the linked weighting

vector, J′
φ(p)is the p− thbiggest element of the bipolar complex fuzzy arguments J′p

(
J′p = (nv)Jp

)
, p = (1, 2, 3, . . . , n) ; v = (v1, v2, v3, . . . , vn)

Tsignifies the weight vector linked with
Jp(p = 1, 2, . . . , n)with vp ∈ [0, 1] ; ∑n

p=1 vp = 1 ; and nis the balancing coefficient.

If we take w =
(

1
n , 1

n , . . . , 1
n

)
, then the BCFHHG operator transforms into the BCFHWG

operator, and if we take v =
(

1
n , 1

n , . . . , 1
n

)
, then the BCFHHOG operator transforms into the

BCFHOWG operator.

Theorem 19. The BCFHHG operator gives a BCFN and

BCFHHGw, v(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
J′

φ(p)

)wp

=



α ∏n
p=1

(
η′+Jφ(p)

)vp

 ∏n
p=1

(
1 + (α− 1)

(
1− η′+Jφ(p)

))vp

+(α− 1)∏n
p=1

(
η′+Jφ(p)

)vp


+ i

α ∏n
p=1

(
σ′+Jφ(p)

)vp

 ∏n
p=1

(
1 + (α− 1)

(
1− σ′+Jφ(p)

))vp

+(α− 1)∏n
p=1

(
σ′+Jφ(p)

)vp


,

−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣η′−Jφ(p)

∣∣∣)vp

−∏n
p=1

(
1 + η′−Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣η′−Jφ(p)

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + η′−Jφ(p)

)vp


+i


−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣σ′−Jφ(p)

∣∣∣)vp

−∏n
p=1

(
1 + σ′−Jφ(p)

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣σ′−Jφ(p)

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + σ′−Jφ(p)

)vp







(39)

where w = (w1, w2, w3, . . . , wn), such that wp ∈ [0, 1];
n
∑

p=1
wp = 1 is the linked weighting

vector; J′
φ(p) is the p− th biggest element of the bipolar complex fuzzy arguments J′p

(
J′p = (nv)Jp

)
,

p = (1, 2, 3, . . . , n); v = (v1, v2, v3, . . . , vn)
T signifies the weight vector linked with

Jp(p = 1, 2, . . . , n) with vp ∈ [0, 1];
n
∑

p=1
vp = 1; and n is the balancing coefficient, α > 0.

Proof. The proof is similar to the proof of Theorem 11. �

Particular Cases 6. Now we interpret two particular cases of the BCFHHG operator as follows:

1. When we take α = 1, then the BCFHHG operator transforms into the bipolar complex fuzzy
geometric (BCFG) operator

BCFGw, v(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
J′

φ(p)

)wp

=


n
∏

p=1

(
η′+Jφ(p)

)wp
+ i

n
∏

p=1

(
σ′+Jφ(p)

)wp
,

−1 +
n
∏

p=1

(
1 + η′−Jφ(p)

)wp
+ i

(
−1 +

n
∏

p=1

(
1 + σ′−Jφ(p)

)wp

)


(40)
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2. When we take α = 2, then the BCFHHG operator transforms into the bipolar complex fuzzy
Einstein hybrid geometric (BCFEHG) operator

BCFEHGw, v(J1, J2, J3, . . . , Jn) =
n
⊗

p = 1

(
Jφ(p)

)wp

=



2 ∏n
p=1

(
η′+Jφ(p)

)wp

 ∏n
p=1

(
2− η′+Jφ(p)

)wp

+∏n
p=1

(
η′+Jφ(p)

)wp


+ i

2 ∏n
p=1

(
σ′+Jφ(p)

)wp

 ∏n
p=1

(
2− σ′+Jφ(p)

)wp

+∏n
p=1

(
σ′+Jφ(p)

)wp


, s

−

 ∏n
p=1

(
1 +

∣∣∣η′−Jφ(p)

∣∣∣)wp

−∏n
p=1

(
1 + η′−Jφ(p)

)wp


 ∏n

p=1

(
1 +

∣∣∣η′−Jφ(p)

∣∣∣)wp

+∏n
p=1

(
1 + η′−Jφ(p)

)wp


+ i


+i


−

 ∏n
p=1

(
1 +

∣∣∣σ′−Jφ(p)

∣∣∣)wp

−∏n
p=1

(
1 + σ′−Jφ(p)

)wp


 ∏n

p=1

(
1 +

∣∣∣σ′−Jφ(p)

∣∣∣)wp

+∏n
p=1

(
1 + σ′−Jφ(p)

)wp







(41)

5. An Approach to MADM with Bipolar Complex Fuzzy Information

In this part of the article, we show a MADM technique based on the interpreted bipolar
complex Hamacher aggregation operators in Section 4 under the BCFS environment.

Suppose that A = {A1, A2, A3, . . . , Am} is the set of alternatives,
B = {B1, B2, B3, . . . , Bn} is the set of attributes, and v = (v1, v2, v3, . . . , vn) is
the weight vector of attributes, such that vp ∈ [0, 1], p = (1, 2, 3, . . . , n), ∑n

p=1 vp = 1.

Suppose X =
(
xqp
)

m×n =
(
F+

qp, F−qp

)
=
(

η+
qp + i σ+

qp, η−qp + i σ−qp

)
m×n

is the bipolar com-

plex fuzzy decision matrix, where F+
qp denotes the PD for which the alternative Ap satisfies

attribute Bp provided by the decision-maker, and F−qp denotes the ND for which the
alternative Ap does not satisfy attribute Bp provided by the decision-maker.

Algorithm

We interpret the algorithm to solve MADM issues in the environment of BCFSs by
utilizing BCFHWA and BCFHWG operators as follows:

Step I: By employing the BCFHWA operator to the decision information provided in
the matrix X, derive all the values xq (q = 1, 2, 3, . . . , m) of the alternative Aq.

xq =
(
F+

q , F−q
)
=
(

η+
q + i σ+

q , η−q + i σ−q

)
= BCFHWAv

(
xq1, xq2, xq3, . . . , xqn

)
=

n
⊕

p = 1

(
vpxqp

)

=



 ∏n
p=1

(
1 + (α− 1)η+

qp

)vp

−∏n
p=1

(
1− η+

qp

)vp


 ∏n

p=1

(
1 + (α− 1)η+

qp

)vp
+

(α− 1)∏n
p=1

(
1− η+

qp

)vp


+ i

 ∏n
p=1

(
1 + (α− 1)σ+

qp

)vp

−∏n
p=1

(
1− σ+

qp

)vp


 ∏n

p=1

(
1 + (α− 1)σ+

qp

)vp
+

(α− 1)∏n
p=1

(
1− σ+

qp

)vp


,

−α ∏n
p=1|η−qp|vp ∏n

p=1

(
1 + (α− 1)

(
1 + η−qp

))vp

+(α− 1)∏n
p=1

∣∣∣η−qp

∣∣∣vp


+ i

−α ∏n
p=1|σ−qp|vp ∏n

p=1

(
1 + (α− 1)

(
1 + σ−qp

))vp

+(α− 1)∏n
p=1

∣∣∣σ−qp

∣∣∣vp





(42)

If we select the BFCHWG operator, then
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xq =
(
F+

q , F−q
)
=
(

η+
q + i σ+

q , η−q + i σ−q

)
= BCFHWGv

(
xq1, xq2, xq3, . . . , xqn

)
=

n
⊗

p = 1

(
xqp
)vp

=



α ∏n
p=1(η+qp)

vp ∏n
p=1

(
1 + (α− 1)

(
1− η+

qp

))vp

+(α− 1)∏n
p=1

(
η+

qp

)vp


+ i

α ∏n
p=1(σ+

qp)
vp ∏n

p=1

(
1 + (α− 1)

(
1− σ+

qp

))vp

+(α− 1)∏n
p=1

(
σ+

qp

)vp


,

−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣η−qp

∣∣∣)vp

−∏n
p=1

(
1 + η−qp

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣η−qp

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + η−qp

)vp


+ i


−

 ∏n
p=1

(
1 + (α− 1)

∣∣∣η−qp

∣∣∣)vp

−∏n
p=1

(
1 + η−qp

)vp


 ∏n

p=1

(
1 + (α− 1)

∣∣∣η−qp

∣∣∣)vp
+

(α− 1)∏n
p=1

(
1 + η−qp

)vp







(43)

Step II. Determine the scores SB
(
xq
)
(q = 1, 2, 3, . . . , m).

Step III. Rank all the alternatives Aq
(q = 1, 2, 3, . . . , m) in terms of SB

(
xq
)
(q = 1, 2, 3, . . . , m). If the two scores functions

SB
(
xq
)

and SB
(
xp
)

have same values, then we use the accuracy function HB
(
xq
)

and HB
(
xp
)

to rank the alternatives Aq and Ap.
Step IV. Choose the best alternative.
Step V. End.

6. Numerical Example

In this segment, we use a practical MADM example to explain the application of
interpreted operators. Consider A to be the universal set in this example and each Ap ∈ A

to be given in the setting of BCFN, i.e., Ap =
(
F+

p , F−p
)
=
(

η+
p + i σ+

p , η−p + i σ−p

)
.

Recognizing, assessing, and gauging the applicants against job necessities can be
accepted as a capacity of the employees’ selection. Employees’ capabilities such as compe-
tence, knowledge, and experience perform an essential part of an organization’s achieve-
ment. It is hard to assess the consequences of the incorrect recruiting decisions of an
individual. One of the fundamental goals of an enterprise is to find effective methods of
evaluating and positioning a number of employees who have been assessed for various
capabilities. In the literature, the selection of an appropriate individual from among various
applicants is an important aspect. When the policies of employee selection are accepted by
the enterprise, they imply an improvement of the enterprise’s performance. Enterprises
invest energy in recruiting people. The employers’ costs are increased by an excess of
time and costs spent on engaging, training, and firing inefficient and frustrated employees.
These costs increase if the employers take a longer time to realize the employee’s deficien-
cies. Our proposed algorithm in Section 5 is the appropriate method for the selection of
employees that covers all the enterprises’ requirements.

Suppose an enterprise is recruiting an employee for the post of an assistant director.
Firstly, the enterprise forms a selection board formed by a CEO and three other senior
representatives. There are four applicants, Aq(q = 1, 2, 3, 4), who applied for that post. The
selection board choose four attributes to assess the applicants i.e., B1 = qualification, B2 =
experience, B3 = organizational skills, and B4 = professionalism. The four applicants
Aq(q = 1, 2, 3, 4) are assessed by using BCFN by the decision-makers, factoring in the
above-mentioned four attributes, whose weighting vector is v = (0.2, 0.25, 0.15, 0.4). The
decision matrix X =

(
xqp
)

4×4 is given in Table 1.
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Table 1. Bipolar complex fuzzy numbers.

B1 B2 B3 B4

A1

(
0.6 + i 0.2,
−0.4− i0.6

) (
0.9 + i 0.1,
−0.1− i 0.4

) (
0.3 + i 0.3,
−0.3− i 0.9

) (
0.1 + i 0.5,
−0.3− i 0.9

)
A2

(
0.3 + i 0.9,
−0.4− i 0.76

) (
0.12 + i 0.9,
−0.2− i 0.5

) (
0.4 + i 0.1,
−0.34− i 0.6

) (
0.1 + i 0.4,
−0.53− i 0.2

)
A3

(
0.9 + i 0.8,
−0.02− i 0.1

) (
0.2 + i 0.5,
−0.7− i 0.4

) (
0.8 + i 0.45,
−0.3− i 0.76

) (
0.45 + i 0.87,
−0.23− i 0.1

)
A4

(
0.17 + i 0.35,
−0.9− i 0.27

) (
0.64 + i 0.34,
−0.01− i 0.02

) (
0.45 + i 0.19,
−0.9− i 0.35

) (
0.6 + i 0.45,
−0.23− i 0.25

)

For the selection of the employees, we use the BCFHWA (BCFHWG) operator with an
MADM approach and bipolar complex fuzzy data, which is given below:

Step I: For α = 3, employ the BCFHWA operator to determine all preference values xq
of the applicants Aq(q = 1, 2, 3, 4).

x1 = (0.509 + i 0.314,−0.237− i 0.708), x2 = (0.189 + i 0.676,−0.376− i 0.410), x3 =
(0.595 + i 0.742,−0.215− i 0.207), x4 = (0.513 + i 0.365,−0.214− i 0.149).

Step II: Determine the score values SB
(
xq
)
(q = 1, 2, 3, 4) of the overall BCFNs

xq(q = 1, 2, 3, 4).

SB(x1) = 0.467 , SB(x2) = 0.52 , SB(x3) = 0.729 , SB(x4) = 0.629

Step III. Rank all the applicants Aq(q = 1, 2, 3, 4) following score values SB(
xq
)
(q = 1, 2, 3, 4) of the overall BCFNs: A3 � A4 � A2 � A1.
Step IV. A3 is selected as the best applicant.
Step V. End.
If we apply the BCFHWG operator instead of BCFHWA, then the above problem will

solve similarly:
Step I: For α = 3, employ the BCFHWG operator to determine all preference values xq

of the applicants Aq(q = 1, 2, 3, 4).
x1 = (0.336 + i 0.269,−0.189− i 0.779), x2 = (0.164 + i 0.525,−0.397− i 0.506), x3 =

(0.469 + i 0.696,−0.332− i 0.29), x4 = (0.473 + i 0.354,−0.514− i 0.21).
Step II: Determine the score values SB

(
xq
)
(q = 1, 2, 3, 4) of the overall BCFNs

xq(q = 1, 2, 3, 4).

SB(x1) = 0.409 , SB(x2) = 0.447 , SB(x3) = 0.643 , SB(x3) = 0.526

Step III. Rank all the applicants Aq(q = 1, 2, 3, 4) following score values SB(
xq
)
(q = 1, 2, 3, 4) of the overall BCFNs: A3 � A4 � A2 � A1.
Step IV. A3 is selected as the best applicant.
Step V. End.
We observe that all rating values of alternatives are different when we use two different

operators, but their ranking order is similar. The best alternative (applicant) is U3 for both
BCFHWA and BCFHWG operators.

7. Comparative Analysis

This section develops a comparative analysis of the aggregation operators so as to
demonstrate the authenticity and dominance of our proposed methods and operators.

We completed a comparison between our interpreted methods and the current stud-
ies [8,24–26]. In Reference [24], Wei et al. defined Hamacher aggregation operators (AOs)
based on BFSs. Huang [8] gives Hamacher AOs based on IFSs. Jana et al. [25] defined
Dombi AOs based on BFSs. In Reference [26], Jana et al. invented Dombi prioritized AOs.

Consider the data given in Table 1. The data of Table 1 is two-dimensional (i.e., real
part and imaginary part) along with PD and ND. We know that the work of Wei et al. [24],
Jana et al. [25], and Jana et al. [26] can only operate with one-dimensional information with
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positive and negative aspects (i.e., positive degree and negative degree), but are incapable
of accounting for the second dimension or imaginary part. From the above discussion, it
is clear that the work of Wei et al. [24], Jana et al. [25], and Jana et al. [26] are unable to
solve the MADM issues related to data in the environment of BCFSs. Moreover, the work
of Huang [8] only can cope with one-dimensional information along with membership and
non-membership grade where both membership and non-membership grade belongs to
the [0, 1]. Huang [8] does not provide us with any information about the negative aspect.
From this, we observe that the work of Huang [8] is also unable to solve the MADM aspects
involving the data in the environment of BCFSs. Only the interpreted work can solve such
type of MADM cases. This shows that our approach is superior to the existing methods.
BCFS amplifies the existing methods: when the imaginary part equals zero in both PD and
ND, it transforms into BFSs, and if the imaginary part equals zero in PD and the ND part is
neglected, its converts into FSs. The score values and ranking results of the interpreted and
existing methods are given in Table 2. Figure 1 provides a graphic of the score values of
existing and interpreted methods.

Table 2. Score values and ranking results of interpreted and existing work.

Methods Score Values Ranking

Wei et al. [24] Failed Failed
Jana et al. [25] Failed Failed
Jana et al. [26] Failed Failed

Huang [8] Failed Failed

Interpreted BCFHWA operator SB(x1) = 0.467 , SB(x2) = 0.52,
SB(x3) = 0.729 , SB(x4) = 0.629 A3 � A4 � A2 � A1

Interpreted BCFHWG operator SB(x1) = 0.409, SB(x2) = 0.447,
SB(x3) = 0.643, SB(x4) = 0.526 A3 � A4 � A2 � A1
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8. Conclusions

In this manuscript, we established various operations, the score function, and the
accuracy function for BCFS. Furthermore, inspired by Hamacher operations, we inter-
preted BCFHWA operator, BCFHOWA operator, BCFHHA operator, BCFHWG operator,
BCFHOWG operator, and BCFHHG operator. We described the features and the particular
cases of the above operators such as BCFWA operator, BCFOWA operator, BCFHA operator,
BCFWG operator, BCFOWG operator, and BCFHG operator by taking the parameter equal
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to 1. By taking the parameter equal to 2, we obtained BCFEWA operator, BCFEOWA opera-
tor, BCFEHA operator, BCFEWG operator, BCFEOWG operator, and BCFEHG operator.
Subsequently, we used these operators to generate methods to resolve the bipolar complex
fuzzy MADM issues. In order to authenticate the interpreted methods, we provided a
numerical example for a company that has recruited the best employee for the position of
assistant director.

Finally, in order to show the effectiveness and practicality of our approach, we com-
pared our results with the existing operators.

The Hamacher operators based on BCFS generalize Hamacher operators for FS, BFS,
and CFS. By obtaining the unreal part equal to zero in both PD and ND, we found Hamacher
operators for the data in the structure of BFS; by neglecting the ND, we acquired Hamacher
operators for CFS; and by obtaining the unreal part zero in PD and neglecting the ND,
we acquired Hamacher operators for FS. However, our proposed approach presents some
limitations, since the invented operators cannot manage the information in the structure of
bipolar complex intuitionistic FS, bipolar complex fuzzy soft set, etc.

In the future, we shall use our operators and functions in different domains, such as
complex fuzzy N-soft sets [47], complex hesitant FS [48], complex dual hesitant FSs [49,50],
picture fuzzy N-soft sets [51], complex spherical FS [52], complex Pythagorean FS [53],
generalized intuitionistic fuzzy hypergroupoid [54], and decision-making [55,56].
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Appendix A

Proof of Theorem 2. We prove it through mathematical induction.

Let n = 1, and therefore we find that v1 = 1, and Equation (11) becomes

BCFHWAv(J1, J2, J3, . . . , Jn) = J1

=




(

1 + (α− 1)η+
J

)
−
(

1− η+
J (τ)

) 

(

1 + (α− 1)η+
J

)
+

(α− 1)
(

1− η+
J

) 
+ i


(

1 + (α− 1)σ+
J

)
−
(

1− σ+
J (τ)

) 

(

1 + (α− 1)σ+
J

)
+

(α− 1)
(

1− σ+
J

) 
,

−α|η−J |
(

1 + (α− 1)
(

1 + η−J

))
+(α− 1)

∣∣∣η−J ∣∣∣

+ i

−α|σ−J |
(

1 + (α− 1)
(

1 + σ−J

))
+(α− 1)

∣∣∣σ−J ∣∣∣
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Thus, for n = 1, (11) holds.
Next, suppose that Equation (11) holds for n = m,

BCFHWAv(J1, J2, J3, . . . , Jm) =
m
⊕

p = 1

(
vpJp

)

=



 ∏m
p=1

(
1 + (α− 1)η+

Jp

)vp

−∏m
p=1

(
1− η+

Jp

)vp


 ∏m

p=1

(
1 + (α− 1)η+

Jp

)vp
+

(α− 1)∏m
p=1

(
1− η+

Jp

)vp


+i

 ∏m
p=1

(
1 + (α− 1)σ+

Jp

)vp

−∏m
p=1

(
1− σ+

Jp

)vp


 ∏m

p=1

(
1 + (α− 1)σ+

Jp

)vp
+

(α− 1)∏m
p=1

(
1− σ+

Jp

)vp


,

−α ∏m
p=1

∣∣∣η−Jp

∣∣∣vp ∏m
p=1

(
1 + (α− 1)

(
1 + η−Jp

))vp

+(α− 1)∏m
p=1

∣∣∣η−Jp

∣∣∣vp


+ i

−α ∏m
p=1

∣∣∣σ−Jp

∣∣∣vp ∏m
p=1

(
1 + (α− 1)

(
1 + σ−Jp

))vp

+(α− 1)∏m
p=1

∣∣∣σ−Jp

∣∣∣vp


Now let n = m + 1. Then, we have
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BCFHWAv(J1, J2, J3, . . . , Jm, Jm+1) =
m
⊕

p = 1

(
vpJp

)
⊕ (vm+1, Jm+1)

=



 ∏m
p=1

(
1 + (α− 1)η+

Jp

)vp

−∏m
p=1

(
1− η+

Jp=1

)vp


 ∏m

p=1

(
1 + (α− 1)η+

Jp

)vp
+

(α− 1)∏m
p=1

(
1− η+

Jp

)vp


+i

 ∏m
p=1

(
1 + (α− 1)σ+

Jp

)vp

−∏m
p=1

(
1− σ+

Jp

)vp


 ∏m

p=1

(
1 + (α− 1)σ+

Jp

)vp
+

(α− 1)∏m
p=1

(
1− σ+

Jp

)vp


,

−α ∏m
p=1

∣∣∣η−Jp

∣∣∣vp ∏m
p=1

(
1 + (α− 1)

(
1 + η−Jp

))vp

+(α− 1)∏m
p=1

∣∣∣η−Jp

∣∣∣vp


+ i

−α ∏m
p=1

∣∣∣σ−Jp

∣∣∣vp ∏m
p=1

(
1 + (α− 1)

(
1 + σ−Jp

))vp

+(α− 1)∏m
p=1

∣∣∣σ−Jp

∣∣∣vp





⊕




(

1 + (α− 1)η+
J

)vm+1

−
(

1− η+
J

)vm+1




(
1 + (α− 1)η+

J

)vm+1

+(α− 1)
(

1− η+
J

)vm+1


+ i


(

1 + (α− 1)σ+
J

)vm+1

−
(

1− σ+
J

)vm+1




(
1 + (α− 1)σ+

J

)λ

+(α− 1)
(

1− σ+
J

)λ


,

−α|η−J |
vm+1

(
1 + (α− 1)

(
1 + η−J

))vm+1

+(α− 1)
∣∣∣η−J ∣∣∣vm+1


+ i

−α|σ−J |
vm+1

(
1 + (α− 1)

(
1 + σ−J

))vm+1

+(α− 1)
∣∣∣σ−J ∣∣∣vm+1





=



 ∏m+1
p=1

(
1 + (α− 1)η+

Jp

)vp

−∏m+1
p

(
1− η+

Jp

)vp


 ∏m+1

p=1

(
1 + (α− 1)η+

Jp

)vp
+

(α− 1)∏m+1
p=1

(
1− η+

Jp

)vp


+i

 ∏m+1
p=1

(
1 + (α− 1)σ+

Jp

)vp

−∏m+1
p

(
1− σ+

Jp

)vp


 ∏m+1

p=1

(
1 + (α− 1)σ+

Jp

)vp
+

(α− 1)∏m+1
p=1

(
1− σ+

Jp

)vp


,

−α ∏m+1
p=1

∣∣∣η−Jp

∣∣∣vp ∏m+1
p=1

(
1 + (α− 1)

(
1 + η−Jp

))vp

+(α− 1)∏m+1
p=1

∣∣∣η−Jp

∣∣∣vp


+i

−α ∏m+1
p=1

∣∣∣σ−Jp

∣∣∣vp ∏m+1
p=1

(
1 + (α− 1)

(
1 + σ−Jp

))vp

+(α− 1)∏m+1
p=1

∣∣∣σ−Jp

∣∣∣vp




Thus, for n = m + 1, (11) holds. ⇒ (11) holds, for all n. �

Proof of Theorem 11. We prove it through mathematical induction.

Let n = 1, and therefore we find that v1 = 1 and Equation (29) becomes

BCFHWGv(J1, J2, J3, . . . , Jn) = J1

=



α(η+J )(
1 + (α− 1)

(
1− η+

J

))
+(α− 1)η+

J

+ i
α(σ+

J )(
1 + (α− 1)

(
1− σ+

J

))
+(α− 1)σ+

J

,

− ()
(

1 + (α− 1)
∣∣∣η−J ∣∣∣)+

(α− 1)
(

1 + η−J

) 
+ i

−

(

1 + (α− 1)
∣∣∣σ−J ∣∣∣)

−
(

1 + σ−J

) 
 (1+)+

(α− 1)
(

1 + σ−J

) 
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Thus, for n = 1, (29) holds.
Next, suppose that (29) holds for n = m,

BCFHWGv(J1, J2, J3, . . . , Jm) =
m
⊗

p = 1

(
Jp
)vp

=



α ∏m
p=1

(
η+Jp

)vp ∏m
p=1

(
1 + (α− 1)

(
1− η+

Jp

))vp

+(α− 1)∏m
p=1

(
η+
Jp

)vp


+ i

α ∏m
p=1

(
σ+
Jp

)vp ∏m
p=1

(
1 + (α− 1)

(
1− σ+

Jp

))vp

+(α− 1)∏m
p=1

(
σ+
Jp

)vp


,

−

 ∏m
p=1

(
1 + (α− 1)

∣∣∣η−Jp

∣∣∣)vp

−∏m
p=1

(
1 + η−Jp

)vp


 ∏m

p=1

(
1 + (α− 1)

∣∣∣η−Jp

∣∣∣)vp
+

(α− 1)∏m
p=1

(
1 + η−Jp

)vp


+i


−

 ∏m
p=1

(
1 + (α− 1)

∣∣∣σ−Jp

∣∣∣)vp

−∏m
p=1

(
1 + σ−Jp

)vp


 ∏m

p=1

(
1 + (α− 1)

∣∣∣σ−Jp

∣∣∣)vp
+

(α− 1)∏m
p=1

(
1 + σ−Jp

)vp






Now let n = m + 1. Then, we have

BCFHWAv(J1, J2, J3, . . . , Jm, Jm+1) =
m
⊗

p = 1

(
Jp
)vp ⊗ (Jm+1)

vm+1

=



α ∏m
p=1

(
η+Jp

)vp ∏m
p=1

(
1 + (α− 1)

(
1− η+

Jp

))vp

+(α− 1)∏m
p=1

(
η+
Jp

)vp


+ i

α ∏m
p=1

(
σ+
Jp

)vp ∏m
p=1

(
1 + (α− 1)

(
1− σ+

Jp

))vp
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(
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Jp

)vp
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∣∣∣η−Jp

∣∣∣)vp
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∣∣∣η−Jp
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p=1

(
1 + η−Jp

)vp
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 ∏m
p=1

(
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∣∣∣σ−Jp

∣∣∣)vp
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p=1

(
1 + σ−Jp
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p=1

(
1 + (α− 1)

∣∣∣σ−Jp

∣∣∣)vp
+
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p=1

(
1 + σ−Jp
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Thus, for n = m + 1, (29) holds. Therefore, (29) holds, for all n. �

Proof of Theorem 3. By Definition 11, we have

BCFHWAv(J1, J2, J3, . . . , Jm) = BCFHWAv(J, J, J, . . . , J)

=



 ∏n
p=1

(
1 + (α− 1)η+

Jp

)vp

−∏n
p=1

(
1− η+

Jp

)vp


 ∏n

p=1

(
1 + (α− 1)η+

Jp

)vp
+

(α− 1)∏n
p=1

(
1− η+

Jp

)vp


+i

 ∏n
p=1

(
1 + (α− 1)σ+

Jp

)vp

−∏n
p=1

(
1− σ+

Jp

)vp


 ∏n

p=1

(
1 + (α− 1)σ+

Jp

)vp
+

(α− 1)∏n
p=1

(
1− σ+

Jp

)vp


,

−α ∏n
p=1

∣∣∣η−Jp

∣∣∣vp ∏n
p=1

(
1 + (α− 1)

(
1 + η−Jp

))vp

+(α− 1)∏n
p=1

∣∣∣η−Jp

∣∣∣vp


+ i

−α ∏n
p=1

∣∣∣σ−Jp

∣∣∣vp ∏n
p=1

(
1 + (α− 1)

(
1 + σ−Jp

))vp

+(α− 1)∏n
p=1

∣∣∣σ−Jp

∣∣∣vp





=



 ∏n
p=1

(
1 + (α− 1)η+

J

)vp

−∏n
p=1

(
1− η+

J

)vp
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p=1

(
1 + (α− 1)η+

J

)vp
+

(α− 1)∏n
p=1

(
1− η+

J

)vp
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 ∏n
p=1

(
1 + (α− 1)σ+

J

)vp

−∏n
p=1

(
1− σ+

J

)vp
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p=1

(
1 + (α− 1)σ+

J
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+
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(
1− σ+

J
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p=1|η−J |
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p=1

(
1 + (α− 1)

(
1 + η−J

))vp

+(α− 1)∏n
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∣∣∣η−J ∣∣∣vp
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−α ∏n
p=1|σ−J |
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(
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,
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(

1 + η−J

)
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−α|σ−J | 1 + (α− 1)
(
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= J

�

Proof of Theorem 12. By Definition 14, we have
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BCFHWAv(J1, J2, J3, . . . , Jm) = BCFHWAv(J, J, J, . . . , J)

=



α ∏n
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(
η+Jp

)vp ∏n
p=1

(
1 + (α− 1)

(
1− η+

Jp

))vp

+(α− 1)∏n
p=1

(
η+
Jp

)vp
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p=1
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Jp

)vp ∏n
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Jp
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+(α− 1)∏n
p=1

(
σ+
Jp
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(
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∣∣∣η−Jp

∣∣∣)vp
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(
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)vp


 ∏n
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(
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