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Abstract: This work introduces a general strategy to develop well-balanced high-order Discontinu-
ous Galerkin (DG) numerical schemes for systems of balance laws. The essence of our approach is a
local projection step that guarantees the exactly well-balanced character of the resulting numerical
method for smooth stationary solutions. The strategy can be adapted to some well-known different
time marching DG discretisations. Particularly, in this article, Runge–Kutta DG and ADER DG meth-
ods are studied. Additionally, a limiting procedure based on a modified WENO approach is described
to deal with the spurious oscillations generated in the presence of non-smooth solutions, keeping
the well-balanced properties of the scheme intact. The resulting numerical method is then exactly
well-balanced and high-order in space and time for smooth solutions. Finally, some numerical results
are depicted using different systems of balance laws to show the performance of the introduced
numerical strategy.

Keywords: systems of balance laws; exactly well-balanced; high-order methods; discontinuous
Galerkin methods; ADER; Runge–Kutta; WENO; reconstruction operators

1. Introduction

We consider one-dimensional systems of balance laws of the form

∂tU + ∂xF(U) = S(U)H′ + G(U). (1)

Here, U(x, t) is the state vector taking values in the space of admissibly states Ω ⊂ RM;
F : Ω → RM is the flux; S(U) : Ω → RM, is a function that takes into account the
geometrical source terms that are multiplied by the known function H : R→ R; and G(U)
contains algebraic source terms. We suppose that the system is hyperbolic, and therefore
the jacobian matrix of the flux has M distinct real eigenvalues.

The system (1) often admits steady-state solutions that, in most cases, are non-trivial.
Moreover, these solutions usually convey significant physical meaning. A paradigmatic
example of this is the lake-at-rest solution of the well-known shallow-water equations.
The correct preservation of these solutions plays an essential role in any simulation. Well-
balanced (or exactly well-balanced) numerical schemes aim to preserve all or at least a
relevant set of specific steady-state solutions up to machine precision. A precise definition
of well-balanced method is given in Section 2.

An essential advantage of well-balanced schemes is that they can accurately resolve
small perturbations to steady-state solutions with relatively coarse meshes. Indeed, if a nu-
merical method cannot preserve stationary solutions or recover a stationary solution after a
perturbation, the oscillations introduced may destroy the numerical solution for long inte-
gration times. Additionally, the numerical solution may be lost entirely if the perturbation
is in the same order as the discretisation errors introduced by a non well-balanced method.
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Then, a finer mesh or a higher-order numerical method may be considered. Still, in this
case, the computational effort can quickly become excessive. The ability of the numerical
scheme to correctly preserve stationary solutions becomes then a matter of paramount
importance.

The first effort to preserve stationary solution was originally introduced by Bermúdez
and Vázquez-Cendón in [1] for the sallow water system, where the C-property was defined
as the ability of a numerical scheme to solve a set of stationary solutions exactly or, at least,
with enhanced accuracy. Since then, multiple works have been published on well-balanced
numerical methods [2–34]. It is of interest to highlight the recent work in [35], where the
authors develop high order exactly well-balanced methods for systems of conservation
laws for finite volume method with both continuous and discontinuous source terms. A
similar strategy is presented in [36] for finite-difference methods. This paper extends the
numerical strategy introduced within the framework of finite volume methods in [35] to
Discontinuous Galerkin (DG) methods, describing a general approach to preserve stationary
solutions for general systems of conservation laws.

The DG methods were introduced by Reed and Hill in [37] and were later extended
to nonlinear hyperbolic systems of conservation laws by Cockburn and Shu in a series of
publications [38–41]. Since then, several authors have proposed DG numerical schemes
that are exactly well-balanced for a set of stationary solutions but they mainly focus on a
particular system, most commonly the shallow water equations (see [42–53]).

Many hyperbolic systems of conservation laws are frequently numerically approxi-
mated with Discontinuous Galerkin methods as they allow to scale the numerical order
of accuracy of the scheme quickly, thus providing an excellent resolution with coarse
meshes. That makes these schemes especially well-suited when the computational effort is
an important issue. A natural approach when discretising hyperbolic systems would be to
use the methods of lines, in which all but the time dimension is approximated by the DG
approach. The resulting time dimensional system of ODE can be then discretised using
explicit methods such as Runge–Kutta [54–60]. A more sophisticated approach that allows
reaching arbitrary high order in space and time in a fully implicit manner consist on ADER
(Arbitrary high order DErivative Riemann problem) approach. The ADER technique was
first developed by Toro and Titarev for finite volume methods [61–64] and later extended
to DG methods [55,65,66]. Since then, it has been widely used in order to solve many
hyperbolic systems of conservation laws see [67–72]. The recent ADER approach for DG
methods is based on a predictor-corrector scheme that computes an approximated predictor
solution through a fixed point algorithm locally in each element. With the DG method
providing arbitrary high order in space, the combination of both techniques allows one-step
fully discrete arbitrary high order in space and time numerical schemes.

The DG and ADER-DG methods have been successfully applied to geophysical flows.
In the framework of the one-layer shallow water model, we highlight the work in [68–70,73]
among others, and in the multilayer shallow water case in [74,75]. More recently, advances
on hyperbolic reformulations of nonlinear dispersive shallow water systems that make use
of the DG or ADER-DG techniques are found on [67,76–78].

A recurrent problem when high order methods are used is the appearance of spurious
oscillations at discontinuities that appear when the hyperbolic system of conservation
laws is considered. To avoid that, several limiting techniques exist. For instance, a multi-
dimensional and optimal-order detector (MOOD) can be used (see in [79]). Alternatively,
other limiter strategies are the minmod type total variation bounded (TVB) limiter [38,80],
the moment-based limiter [81] and the improved moment limiter [82]. Another approach
to limiting is the one based on WENO methodology, mainly developed by Shu, Qiu, and
Zhu et al. (see in [83–85]). The WENO limiter approach uses a convex combination of all
available neighbour polynomials, assigning essentially zero weights to stencils containing
discontinuities. This work proposes a limiter procedure based on this method but takes
advantage of a well-balanced reconstruction operator that preserves the well-balanced
properties of the numerical method.
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This paper is organised as follows. In Section 2, a brief description of the considered
numerical schemes are performed, including Runge–Kutta and ADER discretisations
in time. Section 3 describes the followed well-balanced methodology proposed for the
numerical schemes studied. Next, in Section 4, a limiter procedure that preserves the
well-balanced features of the numerical schemes is proposed. Then, in Section 5 some
numerical tests are provided for the Shallow water, Burger, Euler with gravity and the
hyperbolic dispersive Gavrilyuk–Favrie equations. Finally, some conclusions are given in
Section 6.

2. Discontinuous Galerking Method

We briefly recall the DG method to discretise the general system (1) for one-spatial
domains. We consider a set of element cells Ωi = [xi− 1

2
, xi+ 1

2
], with constant length ∆x.

The numerical solution of the PDE (1) at a given time t at each subset Ωi is represented
by uh(x, t) and is described in terms of piece-wise polynomials of degree N on the spatial
direction. We shall denote by Uh the space of piece-wise polynomials up to degree N so
that uh(x, t)|Ωi ∈ Uh, ∀i.

An orthogonal nodal basis is defined by the Lagrange interpolation polynomials over
the (N + 1) Gauss–Legendre quadrature nodes on the cell element Ωi. We stress that the
piece-wise solution uh may be discontinuous across elements, allowing jump discontinuities
at cell interfaces.

Given the element Ωi, the discrete solution uh projected on the nodal spatial basis
polynomials Φl(x) reads

uh(x, t) = ∑
l

ûi,l(t)Φl(x) := ûi,l(t)Φl(x), for x ∈ Ωi, (2)

with ûi,l(t) being the unknown degrees of freedom, and where the Einstein summation
convention over two repeated indices has been considered. In this work, we suppose that
H(x) is a given function and it is known at every point of the domain. In the subsequent
notation, we omit the space dependency of Φl(x) for the sake of simplicity.

The DG methods results then from multiplying the PDE system (1) with a polynomial
test function Φk ∈ Uh and integrating over the spatial element Ωi. That leads to the
following weak formulation where we seek uh(x, t) ∈ Uh such that, for all Ωi,∫

Ωi

Φk∂tuh dx +
∫

Ωi

Φk∂xF(uh) dx =
∫

Ωi

Φk
(
S(uh)H′ + G(uh)

)
dx, (3)

holds for all test functions Φk(x) ∈ Uh. The dependence on x and t has been dropped for
the sake of compactness. Using (2), the flux function is integrated by parts and the weak
formulation (3) can be rewritten as(∫

Ωi

Φ2
k dx

)
d
dt

ûi,k = Φk(xi−1/2)Fi−1/2 −Φk(xi+1/2)Fi+1/2

+
∫

Ω◦i
F(uh)Φ

′
k dx +

∫
Ω◦i

Φk
(
S(uh)H′ + G(uh)

)
dx, (4)

where the first integral contains the so-called element mass matrix, which is diagonal since
the DG polynomial basis is orthogonal. Likewise, Ω◦i denotes the set of all interior points
of Ωi. The second integral accounts for the smooth part of the flux, while the last integral
accounts for the presence of the continuous source terms. Finally, Fi−1/2 − Fi+1/2 describes
the jump across element interfaces given by a consistent numerical flux of the homogeneous
system

Fi+1/2 = F
(

u−h,i+1/2, u+
h,i+1/2

)
, (5)

where u−h,i+1/2 and u+
h,i+1/2 are the boundary extrapolated states at the left and right of

the interface xi+1/2, respectively. Note that the numerical fluxes are multiplied by the
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evaluation of the Lagrange base at the cell interfaces, Φk(xi±1/2). In this work, the standard
HLL Riemann solver is used. However, the numerical methods described in this work
can be easily extended to more accurate Riemann solvers such as the Polynomial Viscosity
Methods or Rational Viscosity Methods (see [86–89]).

Definition 1. Given a continuous stationary solution U of system (1), the semi-discrete numerical
scheme (4) is said to be well-balanced (or exactly well-balanced) if the set {ûi,l = U(xi,l)} is an
equilibrium of the ODE system, where {xi,l} is the set of nodal spatial points. Note that this
definition mimics the one given in [35] or [31] for finite volume methods.

It is clear that the semi-discrete method (4), as it is formulated, is not well-balanced in
general. The following section will describe a procedure to define DG well-balanced methods.

The semi-discrete numerical scheme (4) can be then approximated with any time-
marching numerical method. This work uses classical Runge–Kutta methods and the
family of one-step ADER-DG methods based on a predictor-corrector scheme. In the
next Subsection, a brief description of the aforementioned time discretisation methods is
given. The interested reader can be referred to [38–41,80,90] for DG Runge–Kutta methods
or [67–72] for ADER-DG methods.

2.1. Runge–Kutta Time Discretization

We first remark that due to the choice of an orthogonal DG polynomial basis, the
mass-matrix appearing in the semi-discrete system (4) is diagonal, and that leads us to
write (4) for each element Ωi and degree of freedom ûi,k in the more compact form

∂tûi,k(t) =
1

ωk
L(ûi,k(t)), ωk =

∫
Ωi

Φ2
k dx, (6)

where L(ûi,k(t)) is the spatial discretization operator. To discretise the time variable t, total
variation diminishing (TVD) schemes have been considered in this work.

For instance, the third order Runge–Kutta scheme applied to the time interval
[tn, tn + ∆t], ∆t being the time-step, reads

û(1)
i,k = L(ûi,k(tn)),

û(2)
i,k = L(ûi,k(tn) +

∆t
2

û(1)
i,k ),

û(3)
i,k = L(ûi,k(tn)− ∆t û(1)

i,k + 2∆t û(2)
i,k ),

ûn+1
i,k = ûi,k(tn) +

∆t
6
(û(1)

i,k + 4û(2)
i,k + û(3)

i,k ).

(7)

2.2. ADER Time Discretization

The predictor-corrector ADER-DG approach leads to a high-order one-step method in
both space and time. Here, the high-order accuracy in time is reached with a local space
and time predictor guess. The spatial-time predictor qh(x, t) is computed based on a weak
formulation of the PDE. Given the known solution uh(x, tn) at time tn, a Cauchy problem in
the cell element is solved without considering interactions between the neighbour elements.
The predictor solution is then used in (4) to compute the numerical solution uh(x, tn+1) at
the subsequent time step.

Here, we briefly recall the numerical procedure. Given a space-time control volume
Ωi × [tn, tn+1], the predictor solution qh is projected onto the local space-time basis, qh(x, t) = ∑

l
θl(x, t)q̂i

l := θl(x, t)q̂i
l , for x ∈ Ωi, t ∈ (tn, tn+1],

qh(x, tn) = uh(x, tn),
(8)
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where again the Einstein notation has been used. If the system (1) is multiplied by the
space-time test function θk ≡ θk(x, t) and integrated over Ωi × [tn, tn+1], it yields

∫
Ωi

θn+1
k qh(x, tn+1) dx−

∫ tn+1

tn

∫
Ωi

∂tθkqh(x, t) dxdt =
∫

Ωi

θn
k qh(x, tn) dx

−
∫ tn+1

tn

∫
Ωi

θk
(
∂xF(qh)− S(qh)H′ − G(qh)

)
dxdt. (9)

Using Equation (8), Equation (9) becomes a nonlinear system for the unknowns q̂i
l that

can be solved via a fixed point algorithm detailed in [65,91]. Notice that (9) is completely
local, without any interaction with neighbouring cells. The iterative method converges in
N + 1 steps at most for linear homogeneous systems [92].

Finally, the one-step high-order in both space and time ADER-DG method, after
replacing uh(x, t) by qh(x, t) in the right-hand side of (4), and integrating in the time
interval [tn, tn+1], reads(∫

Ωi

Φ2
k dx

)(
ûn+1

i,k − ûn
i,k

)
=
∫ tn+1

tn
Φk(xi−1/2)Fi−1/2 −Φk(xi+1/2)Fi+1/2 dt

+
∫ tn+1

tn

∫
Ω◦i

F(qh)∂xΦk dxdt +
∫ tn+1

tn

∫
Ω◦i

Φk
(
S(qh)H′ + G(qh)

)
dxdt, (10)

where
Fi+1/2 = F

(
q−h,i+1/2, q+h,i+1/2

)
.

Remark 1. DG methods are restricted to the Courant–Friedrichs–Lewy (CFL) condition

∆t ≤ CFL
2N + 1

∆x
|λmax|

, CFL ∈ (0, 1). (11)

3. Well-Balanced Technique

In this Section, we detail a well-balanced technique for the Runge–Kutta DG
methods (4)–(7) and the ADER-DG method (9) and (10).

3.1. Well-Balanced Runge–Kutta DG Methods

We propose now a spatial DG discretization method that exactly preserves stationary
solutions. Later, we will discuss the well-balanced technique for the chosen time marching
discretization. As in [35], we begin by computing a suited stationary solution in each
element Ωi at each time step tn:

1. Seek for the stationary solution u∗i (x) of the minimization problem in Ωi

∂xF(u∗i (x)) = S(u∗i (x))H′(x) + G(u∗i (x)), x ∈ Ωi

1
∆x

∫
Ωi

u∗i (x) dx =
1

∆x

∫
Ωi

uh(x, tn) dx,

that minimizes
∫

Ωi

(u∗i (x)− uh(x, tn))2 dx.

(12a)

(12b)

(12c)

The previous problem is in general difficult. Nevertheless if u∗i (x) depends on a set
of parameters, problem (12) reduces, in general, to a non-linear system of equations
if the integrals in (12b) are approximated by quadrature formulas defined in terms
of the Gaussian nodal points of the DG polynomials. Moreover, in some situations,
like the ones considered below, (12a) and (12b) are enough to determine uniquely the
local stationary solution. For instance, if u∗i (x) is of the form

u∗i (x) = ci + s(x), x ∈ Ωi, ci ∈ R, s(x) known function, (13)
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then the integration of (12b) by using quadrature rules leads to

ci = ∑
l

ωl(uh(xl , tn)− s(xl)), (14)

where ωl , xl are the Gaussian quadrature rule weights and nodes respectively. This
quadrature rule must be of the same order of the DG space approximation at the
element Ωi. Similarly, for stationary solutions u∗i (x) of the form

u∗i (x) = cis(x), x ∈ Ωi, ci ∈ R, s(x) known function, (15)

the constant ci can be simply computed from (12b) and yields

ci =
∑l ωluh(xl , tn)

∑l ωls(xl)
. (16)

2. Compute the fluctuation DG polynomial:

vh |Ωi
(x, t) = uh |Ωi

(x, t)− u∗i,h(x), x ∈ Ωi, t ∈ [tn, tn+1], (17)

where u∗i,h is the projection of u∗i into Uh. Note that (12c) guarantees that vh(x, tn) is
minimal in L2-norm.

3. To preserve stationary solutions, the numerical method (4) is modified as follows:(∫
Ωi

Φ2
k dx

)
d
dt

ûi,k =
∫

Ω◦i

(
F(uh)− F(u∗i,h)

)
∂xΦk dx

+ Φk(xi−1/2)
(

F̃i−1/2 − F∗i−1/2

)
+ Φk(xi+1/2)

(
F∗i+1/2 − F̃i+1/2

)
+
∫

Ω◦i
Φk

(
S(uh)− S(u∗i,h)

)
Ĥi,l∂xΦl dx +

∫
Ω◦i

Φk

(
G(uh)− G(u∗i,h)

)
dx, (18)

where Ĥi,l are the coordinates of the projection of H(x) into Uh, and

F̃i+1/2 = F
(

u∗i (xi+1/2) + v−h,i+1/2, u∗i+1(xi+1/2) + v+h,i+1/2

)
, (19)

is the usual first-order consistent numerical flux evaluated at the states

u∗i (xi+1/2) + v−h,i+1/2, u∗i+1(xi+1/2) + v+h,i+1/2, (20)

where u∗i and u∗i+1 are the stationary solutions computed at the step 1 at cells Ωi
and Ωi+1, respectively, and v−h,i+1/2 = vh |Ωi

(xi+1/2) and v+h,i+1/2 = vh |Ωi+1
(xi+1/2) are

the extrapolated values of the fluctuation computed at step 2 onto the left and right
cell interfaces respectively. Finally, F∗i+1/2 denotes the evaluation of the physical flux
function at the stationary solution at the intercells:

F∗i+1/2 = F(u∗i (xi+1/2)).

Remark 2. The procedure to compute a stationary solution (13)–(16) can be generalized for some
other different stationary solutions, or even for a k-parameter family of stationary solutions as
described in [35],

u∗h(x; ci,1, . . . , ci,k), ci,r ∈ R.

Remark 3. We stress that, as u∗i is a solution of (12), then (18) is of the same order of accuracy
than (4) (see in [35] for more details).
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Theorem 1. The semi-discrete numerical method (18) is well-balanced for a continuous global
stationary solution u∗, provided that every u∗i defined by (12) verifies u∗|Ωi

= u∗i for each Ωi, in the

sense that û∗i,k, coordinates of the projection of u∗ into Uh, is an equilibrium of the ODE system (18).

Proof. We consider as initial condition ûi,k(0) = û∗i,k, that implies

uh |Ωi
(x, 0) = u∗i,h(x), x ∈ Ωi,

and the three volume integrals are zero. In the same way, the fluctuations vh |Ωi
(x, 0) =

uh |Ωi
(x, 0) − u∗i,h(x) = 0, therefore the extrapolated values onto the element interfaces,

v−h,i−1/2(0) and v+h,i−1/2(0), are exactly zero as well. The continuity of u∗ implies that
u∗i (xi−1/2) = u∗i−1(xi−1/2) = u∗(xi−1/2) and the consistency of the numerical flux im-
plies that

F̃i−1/2 − F∗i−1/2 =

= F
(

u∗i−1,h(xi−1/2) + v−h,i−1/2(0), u∗i,h(xi−1/2) + v+h,i−1/2(0)
)
− F(u∗i (xi−1/2))

= F(u∗(xi−1/2), u∗(xi−1/2))− F(u∗(xi−1/2)) = 0.

The same reasoning can be applied to prove that F∗i+1/2 − F̃i+1/2 = 0. We conclude
that û∗i,k in an equilibrium of the ODE system given by the semi-discrete numerical
method (18).

Once the semi-discrete well-balanced method (18) has been proposed, the Cauchy
problem  ∂tûi,k =

1
ωk

L̃(ûi,k), t ∈ [tn, tn+1]

ûi,k(0) = ûi,k,0,
(21)

for an autonomous ODE system has to be solved. Here L̃ is given by the right-hand side
of (18). Clearly, a stationary solution u∗h is solution of (21) if and only if

L̃(u∗h) = 0. (22)

Therefore, given a time discretization of the form

ûn+1
i,k = ûn

i,k + ∆tϕ(ûn
i,k, ∆t),

for (21), the final discrete method is well-balanced for the stationary solution u∗h if and
only if

ϕ(u∗h, ∆t) = 0. (23)

Finally, it is clear that (22) implies (23) for any Runge–Kutta method as the ones
considered in this work.

3.2. Well-Balanced ADER DG Methods

To design a well-balanced method based on the ADER time discretization, we follow
a similar strategy as for the well-balanced DG Runge–Kutta method. Given an element Ωi,
a time-step tn, and the known numerical solution uh(x, tn) :

1. First, we seek for the discrete stationary solution u∗i (x) of the Cauchy problem in Ωi,
as in the first step of the previous Section 3.1.
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2. Then, we define the fluctuation DG polynomial vh
vh |Ωi

(x, t) = qh |Ωi
(x, t)− u∗i,h(x), x ∈ Ωi, t ∈ (tn, tn+1],

qh |Ωi
(x, tn) = uh |Ωi

(x, tn), x ∈ Ωi,

vh |Ωi
(x, tn) = uh |Ωi

(x, tn)− u∗i,h(x), x ∈ Ωi,

(24)

and the local space-time predictor given in (9) is modified as follows:

∫
Ωi

θn+1
k vh(x, tn+1) dx−

∫ tn+1

tn

∫
Ωi

∂tθkvh(x, t) dxdt

=
∫

Ωi

θn
k vh(x, tn) dx−

∫ tn+1

tn

∫
Ωi

θk

(
∂xF(qh)− ∂xF(u∗i,h)

)
+
∫ tn+1

tn

∫
Ωi

θk

((
S(qh)− S(u∗i,h)

)
Ĥi,l∂xΦl + G(qh)− G(u∗i,h)

)
(25)

Once the nonlinear system for the unknown v̂i
l has been solved via a fixed point

algorithm, the space-time predictor qh(x, t) is recovered as

qh |Ωi
(x, t) = vh |Ωi

(x, t) + u∗i,h(x), x ∈ Ωi, t ∈ [tn, tn+1].

3. Finally, the one-step ADER-DG method described in (10) is modified as follows:

(∫
Ωi

Φ2
k dx

)(
ûn+1

i,k − ûn
i,k

)
=
∫ tn+1

tn

∫
Ω◦i

(
F(qh)− F(u∗i,h)

)
∂xΦk dxdt

+
∫ tn+1

tn
Φk(xi−1/2)

(
F̃i−1/2(t)− F∗i−1/2

)
+ Φk(xi+1/2)

(
F∗i+1/2 − F̃i+1/2(t)

)
dt

+
∫ tn+1

tn

∫
Ωi

Φk

((
S(qh)− S(u∗i,h)

)
Ĥi,l∂xΦl + G(qh)− G(u∗i,h)

)
dxdt,

(26)

where

F̃i+1/2(t) = F
(

u∗i (xi+1/2) + v−h,i+1/2(t), u∗i+1(xi+1/2) + v+h,i+1/2(t)
)

, (27)

is the usual first order consistent numerical flux evaluated at the reconstructed predic-
tor states

u∗i (xi+1/2) + v−h,i+1/2(t), u∗i+1(xi+1/2) + v+h,i+1/2(t),

where u∗i and u∗i+1 are the stationary solutions computed at the step 1 at cells Ωi and
Ωi+1, respectively, and v−h,i+1/2(t) and v+h,i+1/2(t) are the extrapolated values of the
fluctuation computed at step 2 onto the left and right cell interfaces, respectively.
Additionally, F∗i+1/2 denotes the evaluation of the physical flux at the local stationary
solution at the inter-cells:

F∗i+1/2 = F(u∗i (xi+1/2)).

Note that the added terms in the DG system (18) and ADER-DG system (26) are zero
up to the order of the method. In this way, when the solution is far from a stationary
solution, the solution yielded by these systems will be the same as their non-well-balanced
counterparts (4) and (10) up to the order of the method. Additionally, in Section 5 a
numerical example is given where a comparison between a well-balanced and non well-
balanced simulation for a problem far from the equilibrium.

Finally, we stress that, although the techniques here have been described for the
particular case of one-dimensional problems, all methods can be easily extended in a
dimension by dimension fashion for the case of multiple spatial dimensions. For an
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implementation of the DG method in the higher spatial dimension case, we refer the reader
to the work in [76].

4. A Well-Balanced WENO Limiting Procedure

We now detail the limiting procedure employed in this work, based on Zhong and
Shu’s work in [83], where the authors propose a weighted essentially non-oscillatory
(WENO) limiter for Runge–Kutta DG methods.

The main difference with our proposal is that we limit the fluctuations with respect to
the stationary solutions, denoted by vh, rather than the solution itself. Once the fluctuation
has been limited, the numerical solution can be recovered by adding the stationary solution.

The limiter can be seen as a two-steps procedure as in [83]: in the first stage, the cells
that need limiting, or troubled cells, are identified. Then, in the second step, the cells that
were deemed as troubled are limited.

For both Runge–Kutta and ADER time-marching discretisation, the limiting procedure
is applied a priori and only once at the beginning of each time step.

4.1. Detector of Troubled Cells

We use the TVD minmod limiter detector following ideas detailed in [41,83]. We
first define

v̄i =
1

∆x

∫
Ωi

vh(x, tn) dx, (28)

where vh(x, tn) denotes the fluctuation with respect to the discrete stationary solution
u∗i,h(x) that has been computed as it is detailed in Section 3.1,

vh |Ωi
(x, tn) = uh |Ωi

(x, tn)− u∗i,h(x), x ∈ Ωi. (29)

We also define
v̂R = v−

i+ 1
2
− v̄i, v̂L = v̄i − ṽ+

i− 1
2
, (30)

where v+i−1/2 and v−i+1/2 are the evaluation of the polynomial fluctuation vh(x, tn) onto the
left and right cell interfaces respectively. Then, the minmod is applied as follows:

σR = minmod
(
v̂R, ∆+vi, ∆−vi

)
, σL = minmod

(
v̂L, ∆+vi, ∆−vi

)
, (31)

where
∆+vi = v̄i+1 − v̄i, ∆−vi = v̄i − v̄i−1, (32)

and the following minmod functions are given by

minmod(a, b, c) =

{
a if |a| ≤ M∆x,
m(a, b, c) otherwise,

(33)

m(a, b, c) =

{
s min(a, b, c) if s = sign(a) = sign(b) = sign(c),
0 otherwise.

(34)

Here, M is a parameter to be properly chosen depending on the PDE system. Finally,
a cell is marked as troubled if minmod(a, b, c) 6= a.

4.2. Limiting Procedure

The limiting technique for the cells marked as troubled by the detector described in the
previous Subsection is now detailed. The general idea is to reconstruct a new polynomial
solution at a troubled cell as a convex combination of its neighbouring polynomials.
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If the cell Ωi is deemed troubled, then the first step consist on projecting the fluctuation
at each neighbour element Ωj, j ∈ {i− 1, i, i + 1}, into a first-order DG polynomial with
the following form:

vp,j(x) =
1

∆x

∫
Ωj

vj,h(x) dx +
(x− xj,c)

∆x

∫
Ωj

∂

∂x
vj,h(x) dx, x ∈ Ωj, (35)

that is a first order polynomial that preserves the cell average of vj,h(x). Here, the sub-index
p denotes the projected polynomial using (35). We remark that we have used again vh
to denote the fluctuation with respect to the stationary solution as in (29). Likewise, xj,c
denotes the centre of the element Ωj and the time dependency has been dropped to simplify
the notation.

This projected polynomial is then used to rewrite the new polynomial fluctuation on
the element Ωi as follows:

vh
(new)
|Ωi

(x) = ω0,ivi−1,p(x) + ω1,ivi,p(x) + ω2,ivi+1,p(x), x ∈ Ωi, (36)

where

vi±1,p(x) = vi±1,p(x)− 1
∆x

∫
Ωi

vi±1,p(x) dx +
1

∆x

∫
Ωi

vi,h(x) dx, (37)

which ensures that vh
(new)
|Ωi

(x) has the same cell average as vh |Ωi
(x). As we have made

use of the fluctuation to calculate the new limited solution, the final limited solution is
computed as

uh
(new)
|Ωi

(x) = u∗i,h(x) + vh
(new)
|Ωi

(x). (38)

The normalized weights for the WENO convex combination in (36) follows the classical
WENO procedure:

ωl,i =
ω̄l,i

ω̄0,i + ω̄1,i + ω̄2,i
, ω̄l,i =

γl
(ε + βl)r , l = 0, 1, 2. (39)

The parameters γl used in this paper are γ1 = 0.998, and γ0,2 = 0.001; ε is set to
ε = 10−6. The employed values for r are in {0.25, 2}, and will be better detailed in the next
Subsection. Finally, the smooth indicators βl,i are defined as

βl,i =
2

∑
s=1

∫
Ωi

∆x2s−1
(

∂s

∂xs vp,l(x)
)2

dx. (40)

Again, we stress that the general limiting procedure described here is applied once
per time-step for either Runge–Kutta or ADER time discretisation.

4.3. Double-Loop Limiting Procedure

Even though the component-wise WENO technique is essentially non-oscillatory, the
resulting scheme may still generate spurious oscillations, especially at very high order. We,
therefore, propose the following strategy.

• First, the procedure (35)–(38) with the value r = 2 is used to produce a candidate solu-
tion uc

h(x). This candidate solution is evaluated once more by the detector described
in Section 4.1.

• Then, if the element is once again considered as troubled, the limiting strategy (35)–(38)
will be repeated changing the projector operator. Now, the fluctuation is projected
into a constant value given by

vj,p(x) =
1

∆x

∫
Ωj

vj,h(x) dx. (41)
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Additionally, the parameter r will be set to r = 0.25. This strategy will ensure a
smoother discrete solution for highly oscillating regions near strong discontinuities.

That finishes the limiting technique description.

Remark 4. It is essential to notice that the stationary solutions considered in this work are smooth,
and therefore the detector does not mark cells as troubled. However, let us suppose that roundoff
errors or local extremes provoke that an element is marked as troubled in the presence of a stationary
solution. In that case, the use of the fluctuation (29) will ensure that the stationary solution is
preserved, since the procedure (35)–(38) is exact for the null operator.

5. Numerical Test

In this Section, some numerical experiments are conducted to test the proposed
numerical first, second, third and fourth-order schemes for Runge–Kutta and ADER time
discretisations.

We consider four systems: Burgers, Shallow water, Euler with gravity and the hyperbolic
dispersive Gavrilyuk–Favrie equations. For each system, a brief description is given. Then,
we test the ability of the numerical scheme to preserve stationary solutions. Afterwards, some
numerical tests consisting of a perturbation of a stationary solution are shown alongside the
behaviour of the well-balanced limiter technique proposed in this paper.

The CFL number in (11) is always set to 0.9, meanwhile the limiter value M defined
in (33) is set to 1, except for the problem (63) that is set to 0.1. For the rest of the limiter
parameters appearing in Section 4, we maintain the same values that were defined in
that Subsection.

Remark that for the two-spatial domain dispersive system, the CFL condition (11) for
DG methods in the case of two dimensional domains reads

∆t ≤ 1
2

CFL
2N + 1

min{∆x, ∆y}
|λmax|

, CFL ∈ (0, 1),

and we set CFL = 0.9. Besides, for the two dimensional system, the values of the γ weights
for the limiter are set to γc = 0.996 for the central element, and γ = 0.001 for the four
neighbouring elements.

5.1. Burgers’ Equation

Let us consider the one-dimensional scalar balance law consisting of Burgers’ equation
with a source term written in the form (1) with

U = u, F(U) =
u2

2
, S(U) = u2, G(U) = 0, (42)

whose stationary solutions are given by

u(x) = CeH(x), C ∈ R, (43)

and with H(x) a known continuous function.

5.1.1. Preservation of a Stationary Solution

In this numerical experiment we set as initial condition a stationary solution of the
form (43) to ensure the well-balancing properties of the proposed methods for the sys-
tem (42). The initial condition considered is given by

u = eH(x), H = x. (44)

The computational domain is Ω = [−1, 1]. Dirichlet and open boundary conditions
were imposed at the left and at the right of the domain, respectively. Figure 1 shows the
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error between the computed numerical solutions and the stationary one given by eH(x).
As it can be seen in Figure 1 and Table 1, the well-balanced methods can preserve the
stationary solution at a final time t = 10 s.
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Figure 1. Fluctuation (u − eH) for the stationary problem (44) for the Burgers’ equation at time
t = 10 s with the fourth order non well-balanced (left) and well-balanced (right) numerical schemes.
An uniform Cartesian mesh of Nx = 50 elements has been used. Upper and lower panels stands for
Runge–Kutta and ADER time-marching discretisations, respectively.

Table 1. Numerical validation of the well-balanced and non well-balanced methods for the stationary
problem (44) (Burgers’ equation). Table contains L1 errors for the variable u at a final time t = 10 s for
both Runge–Kutta and ADER DG schemes of order N + 1 = 1, 2, 3, 4. Uniform Cartesian meshes of
Nx elements has been used.

Non Well-Balanced Well-Balanced

N Nx Runge-Kutta ADER Runge-Kutta ADER

25 1.39× 10−01 1.39× 10−01 0 0

0 50 6.52× 10−02 6.52× 10−02 2.66× 10−17 0
100 3.17× 10−02 3.17× 10−02 1.55× 10−17 0
200 1.56× 10−02 1.56× 10−02 0 0

25 6.47× 10−04 5.37× 10−04 8.88× 10−18 0

1 50 1.60× 10−04 1.34× 10−04 0 0
100 3.96× 10−05 3.33× 10−05 2.22× 10−18 1.11× 10−18

200 9.85× 10−06 8.29× 10−06 2.22× 10−18 5.55× 10−19

25 4.49× 10−06 3.80× 10−06 0 2.47× 10−18

2 50 5.91× 10−07 5.25× 10−07 7.40× 10−18 0
100 7.57× 10−08 6.85× 10−08 2.47× 10−18 0
200 9.57× 10−09 8.75× 10−09 1.23× 10−18 9.25× 10−19
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Table 1. Cont.

Non Well-Balanced Well-Balanced

N Nx Runge-Kutta ADER Runge-Kutta ADER

25 2.56× 10−08 1.10× 10−08 4.63× 10−18 3.09× 10−18

3 50 1.70× 10−09 7.85× 10−10 1.54× 10−18 7.53× 10−18

100 1.09× 10−10 5.61× 10−11 2.32× 10−18 4.15× 10−18

200 6.91× 10−12 4.00× 10−12 1.54× 10−18 2.27× 10−18

5.1.2. Perturbed Stationary Solutions

We consider now a perturbation of the stationary solution (44) given by

u = eH + 0.3e−200(x+0.5)2
, H = x. (45)

The computational domain Ω = [−1, 1] is covered with a coarse mesh of Nx = 100 elements.
Dirichlet and open boundary conditions are imposed at the left and the right of the domain,
respectively. The numerical experiment is run up to time t = 10 s with the fourth-order DG
method and for both Runge–Kutta and ADER time discretisations.

Figure 2 shows the error between the computed numerical solutions and the stationary
one given by eH . As it can be seen, once the perturbation has left the domain, the well-
balanced numerical scheme is able to recover the stationary solution eH , in contrast with
the non well-balanced scheme.
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Figure 2. Fluctuation with respect to the stationary solution (u− eH) (45) for the Burgers’ equation
at time t = 10 s with the fourth order non well-balanced (left) and well-balanced (right) methods.
An uniform Cartesian mesh of Nx = 100 elements has been used. Upper and lower panels stands for
Runge–Kutta and ADER time marching discretisations respectively.

5.1.3. Limited Simulation

In this final example, we aim to check the robustness of the proposed limiter technique
described in this paper. To do that, we consider the initial condition
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u =
1
2
+ sin(x), H = 0. (46)

The computational domain Ω = [0, 2π] is covered with a coarse mesh of Nx = 80
elements. Periodic boundary conditions were imposed everywhere. Figure 3 shows the
numerical approximation of u with different time-marching discretisations at the final
time t = 1.5 s, as well as a reference solution that has been computed by a first order
scheme with Nx = 20,000 elements. As it can be seen, the proposed schemes provide an
accurate approximation without producing any spurious oscillations, even for the case of
coarse meshes.
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Figure 3. Computed variable u for the problem (46) (Burgers’ equation) with the fourth-order well-
balanced Runge–Kutta (left) and ADER (right) numerical methods at time t = 1.5 s. An uniform
Cartesian mesh of Nx = 80 elements has been used.

5.1.4. Well-Balanced and Non-Well-Balanced Schemes Comparison

We perform now a comparison between the well-balanced and non-well-balanced
schemes for a solution which is not a perturbation of an equilibrium state. Particularly, the
following initial condition is considered:

u = 0.1e−200(x+0.5)2
, H = x. (47)

Periodic boundary conditions and 100 discretization points are considered in a computa-
tional domain Ω = [−1, 1]. Figure 4 depicts the results for a Runge–Kutta second and third
order scheme. The reference solution has been computed using a first order method with
20,000 discretization points. As it can be seen, the results shows that the well-balanced and
non well-balanced methods are in fact very similar regardless of the order of the method.
Similar results are obtained for ADER time marching methods.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 4. Computed variable u for the problem (47) (Burgers’ equation) with the second (left) and
third (right) order well-balanced Runge–Kutta numerical methods at time t = 5 s. An uniform
Cartesian mesh of Nx = 100 elements has been used.
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5.2. Shallow Water Equations

Let us consider the one-dimensional shallow water equations written in the form (1) with

U =

(
h

hu

)
, F(U) =

(
hu

hu2 +
1
2

gh2

)
, S(U) =

(
0

gh

)
, G(U) = 0, (48)

where h = h(x, t) is the total water depth, u is the depth-averaged velocity on the
x−direction, and H = H(x) is the known still water depth that we will suppose to be
continuous. Finally, g = 9.81 is the gravitational acceleration. In this case we adapt the well-
balanced strategy described in Section 3 to preserve the stationary solutions corresponding
to water at rest:

u = 0, η = cst, (49)

where η = h− H is the free-surface elevation.
A well-balance method could also be design following the ideas described in [93].

5.2.1. Order of Accuracy Test

We begin by checking numerically the order of accuracy of the numerical scheme for a
Runge–Kutta and ADER time discretisation for a second-, third-, and fourth-order schemes.
As pointed before, we consider here only a well-balanced method that preserves the water
at rest solution adapting the strategy described in Section 3. The computational domain is
Ω = [−5, 5], and periodic boundary conditions are imposed everywhere. We then simulate
the propagation of a Gaussian wave, with the initial condition given by

u = 0, h = H + 0.1e−x2
, H = 1− 0.2e−x2

, (50)

and until the final time t = 1 second, with a set of refined meshes. Table 2 shows the
L1 errors and the numerical convergence rates. The expected convergence order of the
Runge–Kutta and ADER DG methods can be observed.

Table 2. Numerical convergence results for the initial condition (50) (shallow water equations). High-
order Runge–Kutta and ADER DG schemes of order N + 1 = 2, 3, 4. Uniform Cartesian meshes of
Nx elements has been used. The L1 errors refer to the variables h and hu at a final time t = 1 s.

Runge-Kutta ADER

h hu h hu

N Nx Error Order Error Order Error Order Error Order

1

25 3.93× 10−03 - 1.27× 10−02 3.60× 10−03 - 1.17× 10−02 -
50 5.92× 10−04 2.73 1.86× 10−03 2.77 8.91× 10−04 2.01 2.79× 10−03 2.07

100 1.11× 10−04 2.41 3.49× 10−04 2.41 2.21× 10−04 2.01 6.78× 10−04 2.04
200 2.16× 10−05 2.37 6.81× 10−05 2.36 5.50× 10−05 2.00 1.67× 10−04 2.02

2

25 7.37× 10−05 - 2.19× 10−04 - 2.97× 10−04 - 9.46× 10−04 -
50 3.27× 10−06 4.49 9.72× 10−06 4.50 3.28× 10−05 3.18 1.06× 10−04 3.15

100 2.47× 10−07 3.73 7.30× 10−07 3.74 3.79× 10−06 3.11 1.26× 10−05 3.08
200 2.23× 10−08 3.47 6.92× 10−08 3.40 4.60× 10−07 3.04 1.55× 10−06 3.02

3

25 3.52× 10−06 - 1.02× 10−05 - 9.48× 10−06 - 3.43× 10−05 -
50 1.41× 10−07 4.64 3.52× 10−07 4.86 6.60× 10−07 3.84 2.24× 10−06 3.94

100 8.95× 10−09 3.98 2.21× 10−08 3.99 4.41× 10−08 3.91 1.44× 10−07 3.96
200 5.63× 10−10 3.99 1.39× 10−09 3.99 2.75× 10−09 4.00 9.12× 10−09 3.98
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5.2.2. Preserving Stationary Solutions

In this experiment, we set as initial condition a stationary solution of the form (49)
to ensure that the well-balanced methods are able to preserve it up to machine precision,
while the non well-balanced methods fail. The initial condition considered is given by

u = 0, h = H, H = 1− 0.8e−100x2
. (51)

The computational domain is Ω = [−1, 1] and Dirichlet boundary conditions are
imposed everywhere. As it can be seen in Figure 5 and Tables 3 and 4, the well-balanced
methods are able to preserve the stationary solution at a final time t = 10 s for both time-
marching discretisations and relative coarse meshes. Again, the numerical solutions are
compared with the stationary solution (51) as reference.
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Figure 5. Computed free surface for the stationary problem (51) (sallow-water equations) at time
t = 10 s with the fourth order non well-balanced (left) and well-balanced (right) methods. An
uniform Cartesian mesh of Nx = 100 elements has been used. Upper and lower panels stands for
Runge–Kutta and ADER time-marching discretisations respectively.

Table 3. Numerical validation of the well-balanced and non well-balanced methods for the stationary
problem (51) (shallow water equations). Table contains L1 errors for the water depth variable h at a
final time t = 10 s for Runge–Kutta and ADER DG schemes of order N + 1 = 1, 2, 3, 4. Uniform
Cartesian meshes of Nx elements has been used.

Non-Well-Balanced Well-Balanced

N Nx Runge–Kutta ADER Runge-Kutta ADER

25 1.92× 10−02 1.92× 10−02 3.00× 10−17 3.00× 10−17

0
50 6.08× 10−03 6.08× 10−03 1.27× 10−16 3.34× 10−16

100 1.40× 10−03 1.40× 10−03 4.86× 10−17 1.64× 10−17

200 5.37× 10−04 5.32× 10−04 5.97× 10−18 2.30× 10−17
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Table 3. Cont.

Non-Well-Balanced Well-Balanced

N Nx Runge–Kutta ADER Runge-Kutta ADER

25 1.16× 10−03 2.62× 10−03 6.66× 10−17 6.88× 10−16

1
50 2.73× 10−04 3.47× 10−04 2.06× 10−16 8.61× 10−16

100 3.76× 10−05 5.48× 10−05 2.82× 10−16 1.42× 10−15

200 4.81× 10−06 8.48× 10−06 4.37× 10−16 1.61× 10−15

25 3.22× 10−04 4.09× 10−04 1.52× 10−16 1.36× 10−16

2
50 3.20× 10−05 4.39× 10−05 1.85× 10−16 1.20× 10−15

100 2.36× 10−06 4.47× 10−06 2.74× 10−16 1.58× 10−15

200 1.51× 10−07 4.95× 10−07 3.67× 10−16 1.96× 10−15

25 1.84× 10−05 4.18× 10−05 1.47× 10−16 1.63× 10−15

3
50 1.64× 10−06 2.42× 10−06 3.11× 10−16 2.50× 10−15

100 6.43× 10−08 6.25× 10−08 5.78× 10−16 4.14× 10−16

200 2.08× 10−09 3.57× 10−09 6.75× 10−16 6.98× 10−16

Table 4. Numerical validation of the well-balanced and non well-balanced methods for the stationary
problem (51) (shallow water equations). Table contains L1 errors for the conserved variable hu at a
final time t = 10 s for Runge–Kutta and ADER DG schemes of order N + 1 = 1, 2, 3, 4. Uniform
Cartesian meshes of Nx elements has been used.

Non-Well-Balanced Well-Balanced

N Nx Runge–Kutta ADER Runge–Kutta ADER

25 6.12× 10−02 6.12× 10−02 4.40× 10−15 4.39× 10−15

0
50 3.96× 10−02 3.96× 10−02 1.06× 10−15 1.11× 10−15

100 2.20× 10−02 2.21× 10−02 4.09× 10−16 3.52× 10−16

200 1.20× 10−02 1.20× 10−02 1.69× 10−16 1.79× 10−16

25 3.56× 10−03 6.49× 10−03 5.68× 10−16 1.07× 10−14

1
50 3.35× 10−04 7.43× 10−04 5.33× 10−16 2.19× 10−15

100 2.28× 10−05 1.38× 10−04 8.28× 10−16 9.95× 10−15

200 1.44× 10−06 3.38× 10−05 1.30× 10−15 3.89× 10−15

25 5.27× 10−04 7.48× 10−04 3.97× 10−16 4.50× 10−16

2
50 1.40× 10−04 1.82× 10−04 6.83× 10−16 4.28× 10−15

100 1.96× 10−05 2.69× 10−05 7.47× 10−16 4.23× 10−15

200 2.52× 10−06 3.45× 10−06 9.91× 10−16 2.79× 10−15

25 1.23× 10−04 3.02× 10−04 3.62× 10−16 1.51× 10−14

3
50 2.59× 10−06 1.02× 10−05 7.01× 10−16 4.29× 10−15

100 4.85× 10−08 3.25× 10−07 9.93× 10−16 1.08× 10−15

200 7.75× 10−10 2.20× 10−08 1.87× 10−15 1.55× 10−15

5.2.3. Perturbed Stationary Solutions

We consider now a perturbation of the stationary solution (51) given by

u = 0, h = 0.1e−100x2
+ H, H = 1− 0.8e−100x2

. (52)

The computational domain Ω = [−1, 1] is covered with Nx = 100 elements. Dirichlet
and free-outflow boundary conditions are imposed at the right and the left of the domain,
respectively.

As it can be seen in Figure 6, the well-balanced scheme can recover the stationary
solution at a final time t = 10 s with the fourth-order DG method and for both Runge–Kutta
and ADER time discretisations. In this case, we plot the difference between the numerically
computed free surfaces and the exact stationary (51), which is zero.
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Figure 6. Computed free surface of the perturbed stationary solution (52) (sallow-water equations)
with the fourth order well-balanced Runge–Kutta (left) and ADER (right) DG schemes at t = 10 s. A
uniform Cartesian mesh of Nx = 100 elements has been used.

Moreover, in order to show the better performance of a well-balanced method against
a non well-balanced method, we propose a similar numerical test on a very coarse mesh
composed by 20 elements. Here, we consider the initial condition given by

u = 0, h = 10−4e−100x2
+ H, H = 1− 0.8e−100x2

. (53)

The numerical computation is then run up to the short time t = 0.5 s; the perturbation
does not reach boundaries in this case, and therefore periodic boundary conditions were
imposed everywhere.

As the perturbation is of the order (∆x)N+1, N + 1 = 4 being the order of the scheme,
we can expect that only the well-balanced method yields satisfactory results. In contrast,
the non well-balanced scheme introduces oscillations of that order that destroy the solution.
Here we only show the numerical results in Figure 7 for the Runge–Kutta time discretisation.
Similar results can be observed for ADER time discretisations.
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Figure 7. Computed free surface of the smaller perturbed stationary solution (53) (sallow-water
equations) with the fourth order non well-balanced (left) and well-balanced (right) Runge–Kutta DG
method at t = 0.5 s. A coarse uniform Cartesian mesh of Nx = 20 elements has been used.

5.2.4. Limited Simulation

In order to check the robustness of the limiting procedure described in Section 4.3, we
consider now a situation far from the equilibrium, where the use of some limiting technique
is mandatory. The computational domain Ω = [−5, 5] is covered now with a very refined
mesh of Nx = 400 elements. The initial condition is set to

u = 0, h = 0.1e−5x2
+ H, H = 1− 0.8e−x2

. (54)



Mathematics 2022, 10, 15 19 of 30

Periodic boundary conditions are imposed to obtain more interactions between waves.
Some snapshots of the computed free surface are depicted in Figure 8. As it can be observed,
there are no oscillations at the neighbourhood of the shock waves, which indicates that the
limiting approach provides a high overall quality of the computed numerical solution. The
solution is depicted alongside a reference solution that has been computed by a first order
scheme with Nx = 20,000 elements.

Note that the small oscillations appearing with the ADER method could be prevented
with an ad hoc tuning of the parameters associated with the limiter described in Section 4.
Here, we have maintained the same parameters for both approaches to compare both
Runge–Kutta and ADER methods.
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Figure 8. Computed free surface for the problem (54) (shallow water equations) with the fourth-order
well-balanced Runge–Kutta (left) and ADER (right) numerical methods at times t = 4, 5.5, 6.5 s
(from upper to lower panels). An uniform Cartesian mesh of Nx = 400 elements has been used.

5.3. Compressible Euler Equations with Gravitational Force

We consider the gas dynamic Euler equations written as in (1):

U =

 ρ
ρu
E

, F(U) =

 ρu
ρu2 + p

u(E + p)

, S(U) =

 0
−ρ
−ρu

, G(U) = 0, (55)
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ρ ≥ 0 being the density, u the velocity, E the total energy, and H(x) a given continuous
gravitational potential. The internal energy e is given by ρe = E− 1

2 ρu2. The pressure
p ≥ 0 is given by e through the equation of state (ideal gas),

p = (γ− 1)ρe, (56)

where γ > 1 is the adiabatic constant that will take the value 5
3 unless stated otherwise.

In this work, we will focus on the hydrostatic steady states solutions given by

u = 0, ∂x p = −ρH′(x). (57)

According to [35], a family of stationary solutions of (55) with u = 0 are

u = 0, ρ = α(H, C1) ≥ 0, p(x) = β(H, C1, C2) ≥ 0, E =
p(x)
γ− 1

, (58)

where α is a given continuous function and β is given by

∂σβ(H, C1, C2) = −α(H, C1).

The numerical methods are then chosen to preserve one of those families given by the
choice of α :

α(H, C1) = C1e−H , (59)

that results in the following set of stationary solutions with u = 0,

u = 0, ρ = C1e−H ≥ 0, p = C1e−H + C2 ≥ 0, E =
p

γ− 1
. (60)

5.3.1. Preserving Stationary Solutions

In this experiment, we set as initial condition a stationary solution of the form (60)
to check the well-balancing properties of the proposed methods for the system (55). The
initial condition is given by

u = 0, ρ = e−H , p(x, 0) = e−H , E =
p

γ− 1
, H = x. (61)

The computational domain is Ω = [−1, 1] and Dirichlet boundary conditions were
imposed everywhere. Figure 9 shows the error between the compute numerical solutions
and the stationary one given by (61). As it can be seen in Figure 9 and Table 5, the well-
balanced methods can preserve the stationary solution at a final time t = 10 s.

Table 5. Numerical validation of the well-balanced and non well-balanced methods for the stationary
problem (61) (Euler equations). Table contains L1 errors for the density variable ρ at a final time
t = 10 s for both Runge–Kutta and ADER DG schemes of order N + 1 = 1, 2, 3, 4. Uniform Castesian
meshes of Nx elements has been used.

Non-Well-Balanced Well-Balanced

N Nx Runge–Kutta ADER Runge–Kutta ADER

25 5.13× 10−02 1.03× 10−02 7.99× 10−17 1.31× 10−16

0
50 3.18× 10−02 5.46× 10−03 2.31× 10−16 4.42× 10−16

100 1.77× 10−02 3.21× 10−03 1.94× 10−16 6.21× 10−16

200 9.41× 10−03 1.85× 10−03 3.26× 10−16 6.61× 10−16
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Table 5. Cont.

Non-Well-Balanced Well-Balanced

N Nx Runge–Kutta ADER Runge–Kutta ADER

25 2.35× 10−04 3.08× 10−04 7.46× 10−16 1.15× 10−15

1
50 7.10× 10−05 8.81× 10−05 1.20× 10−15 1.47× 10−15

100 1.94× 10−05 2.34× 10−05 2.15× 10−15 2.65× 10−15

200 9.26× 10−06 6.03× 10−06 3.17× 10−15 4.21× 10−15

25 3.52× 10−06 2.98× 10−06 1.06× 10−15 2.84× 10−15

2
50 5.40× 10−07 4.67× 10−07 1.78× 10−15 5.01× 10−15

100 7.44× 10−08 6.58× 10−08 4.40× 10−15 9.39× 10−15

200 9.75× 10−09 8.73× 10−09 4.93× 10−15 1.36× 10−14

25 8.20× 10−09 1.81× 10−08 1.26× 10−15 1.35× 10−14

3
50 7.14× 10−10 1.53× 10−09 2.74× 10−15 2.83× 10−14

100 5.18× 10−11 1.09× 10−10 7.71× 10−15 4.53× 10−14

200 3.48× 10−12 7.00× 10−12 9.54× 10−15 7.16× 10−14
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Figure 9. Computed density variable fluctuation ρ − e−H for the stationary problem (61) (Euler
equations) at time t = 10 s with the fourth order non well-balanced (left) and well-balanced (right)
methods. An uniform Cartesian mesh of Nx = 100 elements has been used. Upper and lower panels
stands for Runge–Kutta and ADER time-marching discretisations, respectively.

5.3.2. Limited Simulation

We check again the well behaviour of the proposed mixed-order technique described
in this paper. To do that, we set H = 0, γ = 1.4, and consider the following discontinuous
initial condition given by 

(
ρL, uL, pL

)
if x < 0,

(
ρL, uR, pL

)
if x ≥ 0.

(62)
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Then, we set the values for the two well-known numerical tests:

• The sod problem [94]:

(
ρL, uL, pL

)
=
(
1, 0, 1

)
,
(
ρR, uR, pR

)
=
(
0.125 0 0.1

)
. (63)

• The Lax problem [95]:

(
ρL uL pL

)
=
(
0.445, 0.698, 3.528

)
,
(
ρR, uR, pR

)
=
(
0.5, 0, 0.571

)
. (64)

In both cases, the computational domain Ω = [−5, 5] is covered with Nx = 300
elements. The limiter value M defined in (33) is set to 0.01, and the CFL number to 0.5. Free
outflow boundary conditions were imposed everywhere.

Figures 10 and 11 show the results with the fourth order Runge–Kutta and ADER DG
methods for the Sod and Lax problems respectively. The numerical results are compared
against a reference solution that has been computed using a first order method with
Nx = 20,000 elements.
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Figure 10. Computed density variable ρ for the problem (63) (Euler equations) with the fourth-order
well-balanced Runge–Kutta (left) and ADER (right) numerical methods at time t = 2 s. An uniform
Cartesian mesh of Nx = 300 elements has been used.
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Figure 11. Computed density variable ρ for the problem (64) (Euler equations) with the fourth-order
well-balanced Runge–Kutta (left) and ADER (right) numerical methods at time t = 1.3 s. An uniform
Cartesian mesh of Nx = 300 elements has been used.

5.4. Dispersive Gavrilyuk–Favrie Equations

Finally, we will consider a hyperbolic dispersive shallow water system that was firstly
introduced in [96] for the case of a flat bottom bathymetry, and later extended for the non-
flat bottom case in [78]. The system can be seen as a hyperbolic relaxation approach of the
elliptic Serre–Green–Naghdi equations, and is formally deduced from a master Lagrangian
formalism. The system for the case of two-spatial domains reads

∂tU + ∂xF1(U) + ∂yF2(U) = S1(U)∂x H + S2(U)∂y H + G(U), (65)
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where

U =


h

hu
hv
hw
hξ

, F1 =


hu

hu2 +
1
2

gh2 + hp

uhv
uhw
uhξ

, F2 =


hv

vhu

hv2 +
1
2

gh2 + hp

vhw
vhξ



S1 =



0

gh +
3h
2ξ

p

0
0

3
2

hu


, S2 =



0
0

gh +
3h
2ξ

p

0
3
2

hv


, G =



0
0
0

λ

(
1− ξ

h

)
hw

.

(66)

Here, h = h(x, y, t) is the water depth, H = H(x, y) is the known still water depth that we
will assume to be continuous, and u, v, w are the depth averaged velocities at the x, y and
z direction respectively. Furthermore, p(h, ξ) is the non-hydrostatic pressure

p =
3ξ

h

(
1− ξ

h

)
,

g = 9.81 is the gravitational acceleration, and λ is a large pressure constant parameter that
makes the system (66) formally converges to the elliptic Serre–Green–Naghdi equations [97]
when λ → ∞. Finally, ξ(x, y, t) is an auxiliary equilibrium variable introduced in the
relaxation procedure. In the following, we will set λ = 300 for the numerical test considered.

The system satisfied an extra energy conservation law, and the eigenstructure is fully
well known. For more details, the reader is refereed to [78]. As for Shallow-water equations,
we will consider the family of stationary lake at rest solutions given by

u = v = w = 0, η = cst, hξ = h2, (67)

where η = h− H is the free-surface elevation.
There are many crucial reasons for considering the numerical validation of the pro-

posed methods for that system here: we will validate the proposed numerical methodology
for dispersive shallow flows numerical solutions, and the case of two spatial dimen-
sions; the system introduces a non-homogeneous geometrical source term G(U); the usual
steady-states lake at rest solutions for this system contains nonlinear relations between the
conserved variables, and that makes standard well-balancing techniques no longer valid
to preserve them. Finally, up to our knowledge, this is the first time that a well-balanced
high-order method has been proposed for this particular dispersive hyperbolic system.

5.4.1. Preserving Stationary Solutions

In this first numerical experiment, we set as initial condition a stationary solution
of the form (67) to check the well-balancing abilities of the proposed methods for the
system (66). The initial condition considered (see Figure 12) is given by

u = v = w = 0, h = H, hξ = h2, H = 1− 0.2e−2(x2+y2). (68)

The computational domain is Ω = [−5, 5]× [−5, 5] and periodic boundary conditions
are imposed. As it can be seen in Figures 13 and 14 and Table 6, the well-balanced methods
are able to preserve the stationary solution at a final time t = 10 s for both time-marching
discretization and relative coarse meshes. Note that the solutions are compared against the
stationary solution (68) as reference.
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Figure 12. Bottom and the initial lake at rest free surface condition for the stationary problem (68)
(dispersive Gavrilyuk–Favrie equations).

Table 6. Numerical validation of the well-balanced and non well-balanced methods for the stationary
problem (68) (dispersive Gavrilyuk–Favrie equations). Table contains L1 errors for the water depth
variable h at a final time t = 10 s for Runge–Kutta and ADER DG schemes of order N + 1 = 1, 2, 3, 4.
Uniform Cartesian meshes of Nx × Ny elements has been used.

Non-Well-Balanced Well-Balanced

N Nx × Ny Runge–Kutta ADER Runge–Kutta ADER

20×20 8.06× 10−01 1.37× 10−01 0 0

0
30×30 5.80× 10−01 3.72× 10−01 0 0
40×40 4.25× 10−01 5.36× 10−01 0 0
50×50 2.28× 10−01 2.21× 10−01 0 0

20×20 1.48× 10−02 1.71× 10−02 0 0

1
30×30 4.20× 10−03 4.82× 10−03 5.30× 10−15 3.31× 10−14

40×40 1.75× 10−03 2.01× 10−03 0 0
50×50 8.68× 10−04 1.02× 10−03 1.11× 10−14 7.56× 10−14

20×20 2.38× 10−03 2.62× 10−03 0 0

2
30×30 8.46× 10−04 8.85× 10−04 2.77× 10−14 1.24× 10−13

40×40 3.70× 10−04 3.80× 10−04 0 0
50×50 1.87× 10−04 1.92× 10−04 4.45× 10−14 1.97× 10−13

20×20 3.52× 10−04 4.09× 10−04 0 0

3
30×30 4.30× 10−05 4.60× 10−05 2.05× 10−13 2.76× 10−13

40×40 9.03× 10−06 9.75× 10−06 1.97× 10−13 2.97× 10−13

50×50 2.82× 10−06 3.23× 10−06 3.57× 10−13 3.62× 10−13
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Figure 13. Cont.
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Figure 13. Computed free surface for the stationary problem (68) (dispersive Gavrilyuk–Favrie
equations) at time t = 10 s with the fourth-order non-well-balanced (left) and well-balanced (right)
methods. A uniform Cartesian mesh of Nx × Ny = 50× 50 elements has been used. Upper and lower
panels stands for Runge–Kutta and ADER time-marching discretisations, respectively.
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Figure 14. Computed velocity norm
√

u2 + v2 + w2 for the stationary problem (68) (dispersive
Gavrilyuk–Favrie equations) at time t = 10 s with the fourth order non well-balanced (left) and
well-balanced (right) methods. An uniform Cartesian mesh of Nx × Ny = 50× 50 elements has been
used. Upper and lower panels stands for Runge–Kutta and ADER time-marching discretisations,
respectively.

5.4.2. Limited Simulation

Next, we check the behaviour of the proposed mixed-order technique described in
this paper. To do that, we set the following circular dam-break initial condition:

u = v = w = 0, hξ = h2, H = 1− 0.2e−2x2
,

h =

{
H, for x2 + y2 ≥ 1
0.25 + H, for x2 + y2 < 1.

(69)

The computational domain Ω = [−5, 5]× [−5, 5] is covered with a mesh of Nx × Ny =
200× 200 elements. We set periodic boundary conditions everywhere. Some snapshots
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of a section at y = 0 of the computed free-surface are depicted in Figure 15 with a fourth-
order Runge–Kutta time marching discretization. As it can be observed, the comparison
between a limited and a non-limited simulation shows that there is no oscillations at the
neighbourhood of the dispersive shock waves. Note that the high-oscillatory and over-
amplified waves appearing in Figure 15 from the unlimited numerical solution, are not of
the nature of this hyperbolic dispersive system.
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Figure 15. Cross section at y = 0 of the computed free-surface for the problem (69) (dispersive
Gavrilyuk–Favrie equations) at time t = 0.1 s (left) and t = 5 s (right) with the fourth order
limited (blue) and non-limited (black) Runge–Kutta DG method. A uniform Cartesian mesh of
Nx × Ny = 200× 200 elements has been used. Dashed lines stand for the bottom topography H.

6. Conclusions

We have presented a novel and general technique for preserving stationary solutions
for Discontinuous Galerkin methods. This general approach is able to transform standard
DG schemes in exactly well-balanced arbitrary high-order Discontinuous Galerkin methods
for both Runge–Kutta and ADER time-marching discretisations.

For continuous source terms, the methodology only uses a well-suited definition of
a well-balanced reconstruction operator and not on the Riemann-solver. Therefore, the
well-balanced technique does not rely on the particular details of the system. That makes
the method very general and can be applied to any system of hyperbolic PDEs, as long as
the desired stationary solutions to be maintained are known.

Furthermore, the standard WENO limiting procedure is carefully considered. Here, we
extend classical ideas to propose a novel WENO limiter that preserve stationary solutions.
That makes the final numerical methods proposed here arbitrary high-order, essentially
non-oscillatory and well-balanced.

We have tested the numerical methodology derived here with some standard systems,
proving the well-balancing properties of the approach, the high-order accuracy, and the
general well behaviour of the technique in the presence of strong discontinuities.
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