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Abstract: The detection method based on anchor-free not only reduces the training cost of object
detection, but also avoids the imbalance problem caused by an excessive number of anchors. However,
these methods only pay attention to the impact of the detection head on the detection performance,
thus ignoring the impact of feature fusion on the detection performance. In this article, we take
pedestrian detection as an example and propose a one-stage network Cascaded Cross-layer Fusion
Network (CCFNet) based on anchor-free. It consists of Cascaded Cross-layer Fusion module (CCF)
and novel detection head. Among them, CCF fully considers the distribution of high-level information
and low-level information of feature maps under different stages in the network. First, the deep
network is used to remove a large amount of noise in the shallow features, and finally, the high-level
features are reused to obtain a more complete feature representation. Secondly, for the pedestrian
detection task, a novel detection head is designed, which uses the global smooth map (GSMap) to
provide global information for the center map to obtain a more accurate center map. Finally, we
verified the feasibility of CCFNet on the Caltech and CityPersons datasets.

Keywords: pedestrian detection; machine learning; end-to-end; anchor-free; feature reuse

1. Introduction

Pedestrian detection is a crucial but challenging task in computer vision and mul-
timedia, which has been applied in various fields. The goal of pedestrian detection is
to find all pedestrians in images and videos. Early detection methods [1–6] show that
directly using the features of the backbone output is not conducive to the detection of small
objects in the image. Recent detection methods show that obtaining high-resolution and
high-quality feature representations is the key to improving detection results. As we all
know, the low-level features of the backbone contain accurate small object information,
while the high-level features contain accurate large object information. Therefore, how
to more effectively integrate the characteristics of different stages has been the focus of
research on pedestrian detection in recent years.

According to the feature detection method, we divide the feature fusion methods into
FPN-like (Like Feature Pyramid Networks) methods and FCN-like (Like Fully Convolu-
tional Networks) methods. The specific difference is that the FPN-like methods detects
features of different scales separately, while the FCN-like methods only detects final feature
after the fusion of features of different scales. The basic idea of the FPN-like methods is
proposed by Single Shot MultiBox Detector (SSD) [2], and its main process is to detect ob-
jects in feature maps at different resolutions. However, SSD ignores the spatial information
in the shallow feature map, and thus loses the information of small objects in the shallow
feature. To improve the recognition performance of small objects, Feature Pyramid Net-
works (FPN) [7] combines high-level feature maps with strong semantic information and
low-level feature maps with weak semantic information but rich spatial information. Some
recent works have proposed some FPN-like methods [8–14]. In order to more effectively
integrate features of different scales. However, these methods mainly focus on the features
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of adjacent stages in the feature fusion process, and the deep features containing rich se-
mantic information gradually weaken during the top-down process. Therefore, high-level
semantic information is lost when detecting shallow features, so that small objects in the
image can not be effectively detected.

To avoid the shortcomings of FPN-like methods, some methods directly fuse features
of different scales, and then only need to detect the fused features. The origin of this
type of method comes from Fully Convolutional Networks (FCN) [15], which combines
the features of different stages to obtain feature maps containing semantic information
of different scales. In this paper, structures similar to FCN are collectively referred to as
the FCN-like methods [15–24]. Compared with FPN-like methods, FCN-like methods
have lower computational complexity and faster computational speed, while avoiding
the situation that small objects can not be detected due to loss of high-level semantic
information. These methods have the same weights for feature fusion at different scales in
the feature integration process. In this case, the noise in the shallow features will directly
affect the accuracy of the final feature. Previous work Semantic Structure Aware Inference
(SSA) [25] proved that the information of small objects is not only in the shallow features,
but there is also a small amount of small object information in the deep features. However,
the noise information in the shallow network is huge, so how to reduce the impact of the
noise information in the shallow features on the detection accuracy is a problem that has
not been solved by the current FCN-like methods.

Toward this end, this work takes pedestrian detection as an example and proposes
a novel Cascaded Cross-layer Fusion Network (CCFNet), which consists of backbone
network, Cascaded Cross-layer Fusion module (CCF), and novel detection head. The basic
process framework is shown in Figure 1. First, the CCF merges the features in different
stages in the backbone to obtain the final feature map and then performs detection on
the feature map. Different from the previous method, CCF uses deep features to denoise
shallow features and then reuses deep features to increase the semantic information in
the final feature map. To improve the running speed of the algorithm, CCFNet adopts
the anchor-free method, based on the detection of pedestrian center points, does not
generate anchor points and anchor boxes, and does not match multiple key points. In
the detection head, we introduced the center map and global smooth map (GSMap) of
the object respectively to reduce the impact of complex scenes and object crowding on
the detection performance. Traditional anchor-free detection head only rely on scale map
to solve the problem of ‘where’ and ‘how size’ the object is. This approach increases the
difficulty of training the detector. Therefore, we first introduce the center map to undertake
the task of ‘where the object is’, while the scale map only needs to undertake the task of ‘how
size the object is’. The center map is obtained by convolution, so the center map is obtained
by local feature inference. The finiteness of local features limits the accuracy of the center
map, so we introduce global smooth map to provide global information for the center map.
The specific process is shown in the detection head in Figure 1. Extensive experimental are
conducted on the Caltech and CityPersons datasets. The superior performance of CFFNet
for pedestrian detection is demonstrated in comparison with the state-of-the-art methods.

The main contributions of this work are summarized as follows:

(1) We propose a novel Cascaded Cross-layer Fusion module (CCF) to reduce the noise
information in the shallow features through high-level semantic information, and
at the same time reuse high-level semantic information to strengthen the high-level
semantic information in the final feature map;

(2) The center map provides the confidence of each object center point, but the confidence
is obtained from local information. Therefore, this paper proposes global smooth map
to provide the center map with global information, thereby improving the accuracy of
the center map;

(3) The feasibility of CCFNet is verified on the Caltech and CityPersons Datasets.
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Figure 1. The overall structure of Cascaded Cross-layer Fusion Network (CCFNet). It includes two
parts: CCF module and detection head. CCF cascades and reuses features to generate low-level
feature maps with contextual semantic information. This feature map generates center map, scale
map, and global smooth map through the detection head. And generate the new center map with
global information by integrating center map and global smooth map. Finally, locate and mark the
objects.

2. Related Work
2.1. Anchor-Base and Anchor-Free

The object detection model can be divided into anchor-based detection network and
anchor-free detection network. The anchor-based detection network uses anchor points
and anchor boxes to generate high-quality prediction regions, then classifies and regresses
the prediction regions, which have high accuracy and can extract richer features. Such
as Faster Regions with CNN Features (Faster R-CNN) [1], Cascade Regions with CNN
Features (Cascade R-CNN) [26], SSD [2], You Only Look Once Version 2 (YOLOv2) [27], etc.
However, anchor-base detection network requires manual intervention due to the number
of anchor points and the large aspect ratio of the anchor box, which has disadvantages such
as too many parameters and insufficient flexibility.

Therefore, people study methods that do not rely on anchor points and anchor boxes,
this method is called the anchor-free detection network. The anchor-free detection network
are divided into two types: anchor-free detection network based on key points and anchor-
free detection network based on object center. The former generate an object bounding box
through a set of predefined or self-learned key points (usually a set of corner points of the
bounding box) to locate the object, such as CornerNet-Lite [28] and ExtremeNet [29], etc.
The latter locates the object by calculating the distance from the object center to the four
sides of the bounding box, such as Center and Scale Prediction (CSP) [23], CenterNet [30],
etc. The anchor-free detection network based on object center is similar to the anchor-base
detection network, but there is not need to generate a large number of anchor points to
predict the bounding box, which improves the detection speed of the algorithm. Recently,
Zhang et al. [31] proposed that the definition of positive and negative samples of the
dataset is the fundamental difference between their performance. Therefore, CCFNet is
also built with an anchor-free structure and has reached or even exceeded the accuracy
anchor-base detection network.

2.2. FPN-like Methods

The main idea of FPN [7] is to build a top-down feature pyramid to fuse feature maps
at different stages of the backbone, and to detect objects of different sizes on feature maps
of different scales. This idea is used in different models, You Only Look Once Version 3
(YOLOv3) [8] obtains multi-scale information through multiple convolutions and repeated
fusion of the features of the last three stages of the backbone. Adaptively Spatial Feature
Fusion (ASFF) [9] adds attention structure based on YOLOv3, which realizes the selective
use of the feature information of different stages by controlling the contribution degree of
the features of other stages to the current feature. Bi-Directional Feature Pyramid Network
(BiFPN) [11] realize adaptive control of the size of FPN by overlapping effective blocks
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in FPN multiple times. Recursive Feature Pyramid Network (Recursive-FPN) [12] uses
recursive FPN to re-input the mixed multi-scale feature map to the backbone, extract the
features again, and finally achieve extremely competitive performance. Multi-level Feature
Pyramid Network (MLFPN) [13] proposes three modules, Feature Fusion Module (FFM1),
Thinned U-shape Module (TUM), and Scale-wise Feature Aggregation Module (SFAM),
to integrate semantic information and detailed information by overlapping feature maps
multiple times. However, FPN-like methods not only need to fuse feature maps multiple
times but also need to build detection head on feature maps of different output sizes to deal
with objects of different sizes. Therefore, FPN-like has shortcomings such as a complex
model and slow calculation speed.

2.3. FCN-like Methods

With the attention of anchor-free detection networks, the idea of FCN-like gradually
shifted from the segmentation task to the object detection task. Different from the FPN-
like methods, the FCN-like methods only outputs a feature map that integrates feature
information of different scales to the detection head. FCN [15] uses deconvolution layer to
upsample the feature map of the last stage of the backbone to restore it to the same size of the
input image, thereby preserving the spatial information in the input image to classify each
pixel in the feature map. In contrast, the reference [24] adopts a completely symmetrical
structure, uses deconvolution to restore the image size, splices and fuses feature information
of different scales according to the dimension of the feature map. However, its parameters
are few and it is not suitable for large-scale detection or segmentation tasks. CornerNet [21]
and CSP [23] use FCN to generate feature maps adapted to the detection head. FCN-like
methods have fast calculation speed, but the feature information contained in feature maps
of different scales is different. If two feature layers with a large semantic information gap
are mixed through dimensionality reduction, a large amount of feature information will be
lost, and small objects in the image will be lost.

The difference from the above is that CCF combines the advantages of FPN-like
methods and FCN-like methods, and retains more low-level detailed information and
high-level semantic information through feature reorganization. In addition, CCFNet also
proposes global smooth map that enhances the global perception of the center map to deal
with the problem of object occlusion.

3. Methods

This section will elaborate on the proposed Cascaded Cross-layer Fusion Network
(CCFNet) for pedestrian detection by exploring the feature fusion and global dependencies.

3.1. Detection Network

The object detection network is usually divided into backbone network, neck, and
detection head. The backbone network is responsible for extracting features from the image.
A high-quality feature will significantly improve the ability of object localization. The neck
is the hub connecting the backbone and detection head. It integrates the features obtained
by the backbone network and then inputs the integrated features into the detection head. A
high-quality neck can more fully integrate the high-level and low-level information of the
image to improve the representation ability of the model. The detection head is responsible
for classification and regression.

Most backbone networks [32–36] can be divided into five stages. With the deepening
of the network stage, the resolution of the feature map is reduced at a rate of 2 times. In
other words, the size of the feature map obtained in the last stage is 1/32 of the input image,
which is not friendly to the small object. Previous work [37,38] proposed that the size of
the feature map generated in the fifth stage of backbone should be kept at 1/16 of the input
image, which can improve the detailed information in the deep feature map to increase the
ability to detect small objects.

The input image I ∈ R3×H×W passes through each stage of the backbone network to
obtain a set of feature maps F = {F1, F2, F3, F4, F5}. The low-level feature maps generated in
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the previous stage have more detailed information, but it has a lot of noise. The high-level
feature maps generated in later stages have more semantic information. The neck [13,19,39]
will reprocesses the feature map set F of the backbone network to obtain feature map fdet
suitable for the detection head. The detection head [1,40,41] is used to classify and locate
the object on the feature map fdet output by the neck. In anchor-free detection network, the
detection head is defined as Fdet = {cls( fdet), regr( fdet))}, cls(·) represents the classification
branch that classifies the object by key points, regr(·) represents the regression branch that
locates the object by scale.

3.2. Cascaded Cross-Layer Fusion Module

We combine the advantages of the FPN-like methods and the FCN-like methods,
propose Cascaded Cross-layer Fusion module (CCF) to more effectively extract the feature
information of the object. CCF uses deconvolution to change the scale of the deep feature
map to fuse with the shallow feature map. CCF transfers the deep features to the shallow
features in a top-down method, enriching the shallow features while removing noise.
However, in this transfer process, the semantic information contained in the deep feature
map will continue to be lost. Therefore, CCF supplements missing semantic information
by reusing deep feature maps. In this way, the final feature map can not only retain the
detailed information in the shallow feature map, but also have the semantic information in
the deep feature map. Following [23,37], the final feature map size of CCF is [H/4, W/4].
It is worth noting that this is the same size as the feature map of the second stage. The
specific implementation process is as follows:

As shown in Figure 2, CCF uses F4 and F5 as the source to deliver deep semantic
information and denoise the shallow feature maps, because the feature maps generated in
the fourth and fifth stages of the backbone network contain rich semantic information. In
addition, to reduce the computational complexity of the network, the dimensions of F4 and
F5 are reduced by 1 × 1 convolution to generate Fc4 and Fc5. Finally, Fc4 and Fc5 are fused to
obtain the feature map Fs4. Fs4 retains the semantic information of F4 and F5 and continues
to be used for subsequent transmission of semantic information. The fusion generation
method of feature map Fs4 can be expressed as:

Fs4 = Sum(Fc4, Fc5) (1)

where Sum(·) indicates that the fusion method of Fc4 and Fc5 is the element-wise addition
between the feature maps Fc4 and Fc5.

The feature map Fs4 will serve two purposes: (1) Regarding Fs4 as a new source, it will
fuse with the new receiver F3 and continue to convey semantic information from the deep
features map. Only the output features of the last two stages in the backbone have the same
size. Therefore, it is necessary to perform deconvolution before fusing the shallow features
to make it the same size as the previous layer. Therefore, the new source Fs4 performs
up-sampling through deconvolution to obtain a feature map Fsd4 of the same size as Fc3.
The process is as follows:

Fsd4 = DC(Fs4) (2)

where DC(·) means 4 × 4 deconvolution. Fsd4 will be used as the new source, and Fc3
after dimensionality reduction of feature map F3 will be fused to obtain Fs3 according to
Equation (1). Fs3 will be used to transfer the semantic information and detailed information
contained in the feature maps F3, F4 and F5. (2) As mentioned before, in purpose (1), the
semantic information of the deep feature map will continue to be lost, so the feature map
Fsd4 needs to be transformed into a feature map Fd4 of size [H/4, W/4] for feature reuse
(Equation (2)). Fd4 can retain the feature representation in the deep feature map.

To continue to transmit the semantic information from the deep feature map and
retain the detailed information in F3, the feature map Fs3 is transformed to the same size as
F2 through deconvolution, and the resulting Fsd3 will be used for subsequent operations
(Equation (2)).
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Figure 2. Cascaded Cross-layer Fusion Module (CCF).

The feature map F3 only contains part of the detailed information, which is not enough
to support the network to detect small objects, as shown in the ablation study (Section 4.3).
Therefore, CCF refers to the feature map F2 generated in the second stage, so that the
final feature map input to the detection head has more detailed information. However,
F2 contains a lot of noise. CCF uses Fsd3 containing depth semantics to denoise F2. In
other words, the feature map Fc2 is obtained by reducing the dimension of F2 through
1 × 1 convolution. Fc2 and Fsd3 are calculated by Equation (1) to get the feature map Fs2. It
is worth noting that the size of Fs2 is [H/4, W/4]. There is no need to perform additional
processing on Fs2.

Finally, CCF merge all feature maps through Concat(·) to obtain a final feature map
Flc with rich detailed information and semantic information, Flc can be expressed as:

Flc = Concat(Fd4, Fsd3, Fs2) (3)

Following [7], CCF use 3 × 3 convolution after Flc to reduce the aliasing effect pro-
duced in the process of deconvolution and feature fusion.

3.3. Detection Head

Our detection head contains center map, scale map, and global smooth map. Following
CSP [23], the center map is equipped with gaussian heat map to locate the object, and scale
map is used to determine the size of the object. Although the Gaussian heat map can reduce
the weight of negative samples around the object center point, the center map only obtains
local perception and lacks global perception. To this end, we add global smooth map,
which is fused with the center map, and the generated new center map will have global
perception. In addition, considering that the aspect ratio of the pedestrian will change with
the change of the pedestrian state, we discarded the scale map that predicts the size of the
pedestrian by only predicting the height and fixing the width. The scale map was modified
to predict the height and width of pedestrians at the same time.

As shown in Figure 3, the detection head includes center map, global smooth map
and scale map. They are all obtained by the feature map Flc generated by CCF through
different 1 × 1 convolutions. Then we use the global smooth map to modify the center map
to obtain a more accurate new center map. Finally, the new center map and scale map are
used to generate detection results. Optionally, the offset map can be added to the detection
head to correct the position of the object.
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Figure 3. The overall architecture of the detection head mainly includes three map components,
namely the center map, the scale map and the global smooth map (GSMap).

3.4. Loss Function
3.4.1. Center Loss

Combined with the global smooth map, the center loss is modified as follows:

Lcenter = −
1
K

W/4

∑
i=1

H/4

∑
j=1

(sij fij + (1− sij)bij)log(1− pij) (4)

where {
fij = gsij(1− pij)

γ

bij = pγ
ij(1−Mij)

β
(5)

from Equations (4) and (5), K is the total number of objects, W and H are the width and
height of the input image respectively, sij represents the true label on the coordinates
(i, j), pij represents the probability of the positive on the coordinates (i, j), gsij is global
smooth confidence, Mij is Gaussian heat map [23], fij and bij represent the foreground and
background scores in the image, respectively.

3.4.2. Scale Loss

Calculate the scale map by SmoothL1 loss [42] to predict the error between the height
and width of the object according to the ground truth. The details of scale loss as follows:

Lscale = −
1
K
(

K

∑
k=1

SmoothL1(hk, ĥk) +
K

∑
k=1

SmoothL1(wk, ŵk)) (6)

where hk and ĥk respectively represent the height of the prediction boxes of the network
and the height of the ground truth of each positive, wk and ŵk respectively represent the
width of the prediction boxes of the network and the width of the ground truth of each
positive.

3.4.3. Total Loss

Optionally, if the offset map is added to correct the object position, the offset loss is:

Lo f f set = −
1
K
(

K

∑
k=1

SmoothL1(ok, ôk)) (7)

where ok represents the predicted offset of each positive and ôk represents the ground truth
of each positive.

Therefore, the complete loss function is:
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L = λcLcenter + λsLscale + λoLo f f set (8)

where λc, λs, and λo are the weights of center loss, scale loss and offset loss, which is set to
0.01, 1 and 0.1 in this experiments. Although on the surface, our loss function is similar to
the loss of many methods, from the details we can know that this is different.

4. Experimental Results

To evaluate the proposed CCFNet, we conducted comparative experiments on Cal-
tech [43,44] and CityPersons [45]. In this section, we introduce the datasets and exper-
imental setting, then verify the effectiveness of the model by the ablation study on the
CityPersons dataset, and finally show the compare experimental results with state-of-the-art
methods and visualize to verify the superiority of the CCFNet.

The details of each section are as follows: The Section 4.1 introduces the datasets and
evaluation indicators of pedestrian detection. The Section 4.2 introduces the experimental
setting. The ablation studies on the CityPersons dataset will be analyzed in the Section 4.3.
In Section 4.4, the superiority and effectiveness of the model is verified by comparison
with other methods on the Caltech and CityPersons datasets. In Section 4.5, visualize the
detection results to further illustrate the superiority of CCFNet. Finally, in Section 4.6, we
discuss all the experimental results.

4.1. Datasets

The Caltech dataset is about 10 hours of video data, divided into 11 subsets, of which
6 subsets are training sets and 5 subsets are test sets. We divided the video into RGB frames,
the training set extracts one image for every 3 frames (total of 42,782 images) and the test set
extracts one image for every 30 frames (total of 4024 images). It is observed in Figure 4a,b:
the training set contains 5564 pedestrians and 4992 ignored regions, the test set contains
7596 pedestrians and 0 ignored regions.

(a) Caltech_Train (b) Caltech_Val (c) Cityperson_Train (d) Cityperson_Val

Figure 4. The histogram and pie chart represent the distribution statistics of each category in the
Caltech and CityPersons datasets. (a) represents the label distribution of the training set in the Caltech
dataset. (b) represents the label distribution of the test set in the Caltech dataset. (c) represents the
label distribution of the training set in the CityPersons dataset. (d) represents the label distribution of
the validation set in the CityPersons dataset.

The CityPersons dataset is a subset of the Cityscapes dataset, it has a training set of
2975 images and a validation set of 500 images. From Figure 4c,d, we can clearly known
that objects with 59.51% in the training set are marked as pedestrian labels. Objects with
24.37% are marked as ignore labels, including object height pixels less than 20, unclear
object status, billboards, etc. Objects with 6.05% are marked as rider labels, Objects with
3.72% are marked as sitting labels. Objects with 1.50% are marked as other labels, including
being held of the people. Objects with 4.85% belong to the group. It is worth noting that
during the evaluation process, prediction boxes that match rider, sitting, other, ignored
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areas, etc. It will not be included in the error sample. The label distribution of the validation
set is similar to the training set.

Following [44], we using Log-Average Miss Rate (MR−2) as an evaluation indicator.
It evaluates the False Positive Per Image (FPPI) of each image between [0.01, 1]. The
Caltech dataset is evaluated on the Reasonable and Reasonable_Occ=Heavy subsets. The
CityPersons dataset is evaluated on the Reasonable, Bare, Partial and Heavy subsets. The
definition rules of subsets are shown in Table 1, where in f means infinity.

Table 1. Standards for dividing subsets of the pedestrian datasets.

Subsets Height Visibility

Reasonable [50, in f ] [0.65, in f ]
Bare [50, in f ] [0.90, in f ]

Partial [50, in f ] [0.65, 0.90]
Heavy [50, in f ] [0, 0.65]

Reasonable_Occ=Heavy [50, in f ] [0.2, 0.65]

4.2. Experimental Setting

Unless otherwise specified, The construction of CCFNet follows mmdetection [46]
and pedestron [47]. The experiment in this paper is run on a TITAN RTX. On the Caltech
dataset, the batch size is set to 16, the initial learning rate is 2× 10−4, and the iteration is
20 epoch. On the CityPersons dataset, the batch size is set to 4, the initial learning rate is
2× 10−4, and the iteration is 150 epoch. Our experimental setup is based on [48,49].

4.3. Ablation Study

For CCF. To study the effective combination methods of the feature maps, we test the
impact of different fusion strategies on model performance. CCF starts with the features of
the second stage and keeps the final feature map size as [H/4, W/4], which is consistent
with the feature map size of the second stage. As shown in Table 2, sn represents the feature
map generated at the n-th stage of the backbone. It can be easily observed that the last
model combines feature maps {s2, s3, s4, s5} obtains the best performance. When s2 is
removed, that is, the combination way {s3, s4, s5} gets a poor result, which indicates that the
lack of detailed information makes it impossible to accurately locate the object. When s5 is
removed, that is, the combination way {s2, s3, s4} also obtains a bad result, which shows
that the semantics information contained in the deep features information is crucial. In
summary, {s2, s3, s4, s5} is the most suitable combination methods.

Table 2. Ablation study analysis of different combinations of multi-scale feature on the Citypersons
dataset.

Feature Maps Backbone Reasonable Bare Partial Heavys2 s3 s4 s5

X X - - ResNet-50 29.4 22.8 26.9 67.0
- X X - ResNet-50 16.6 12.3 15.4 55.2
- - X X ResNet-50 15.5 10.3 15.4 56.3
X X X - ResNet-50 16.3 12.4 15.3 54.4
- X X X ResNet-50 15.4 10.8 14.6 53.7
X X X X ResNet-50 10.6 7.1 10.1 48.4

To verify the effectiveness of CCF, we use different neck to connect the backbone network
ResNet-50 and the detection head [23], such as FPN [7], Augmented FPN (AugFPN) [50],
Attention-guided Context Feature Pyramid Network (ACFPN) [51] and CSP [23]. As
shown in the table 3, we can observe that compared with necks of other models, CCF
has strong competitiveness in Reasonable, Bare and Partial subsets. In the Heavy subset,
CCF is also better than part of the necks. Compared with FPN, CCF reuses the semantic
information of deep feature maps to obtain more contextual information in the final feature
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map. In addition, CCF does not need to output multi-scale feature maps to detect objects.
Compared with CSP, CCF removes the noise in the shallow feature map, and retains more
detailed information by cascading.

Table 3. Ablation study of different neck module on the Citypersons dataset.

Reasonable Bare Partial Heavy

ResNet-50 + FPN 11.9 8.1 11.6 48.6
ResNet-50 + AugFPN 11.9 8.5 11.7 50.2
ResNet-50 + ACFPN 11.8 8.2 11.2 50.7
ResNet-50 + CSP 11.2 7.7 10.6 45.7
ResNet-50 + CCF 10.6 7.1 10.1 48.4

For GSMap. Table 4 shows the ablation study on GSMap. The Baseline contains neck
and detection head. The neck contains the deconvolution of the fifth stage of ResNet-50 and
the detection head contains center map and scale map. Baseline + GSMap means adding
GSMap to the detection head. Baseline + GSMap means replacing the neck in the baseline
with CCF. Baseline + CCF + GSMap uses CCF to replace the neck in the baseline and adds
GSMap to the detection head. As shown in Table 4, we can be observed that adding GSMap
separately based on the baseline increases the Reasonable subset by 0.7%, the Bare subset
by 0.3%, the Partial subset by 0.8%, and the Heavy subset by 3.7%. If CCF and GSMap
work at the same time, compared with baseline + CCF, each subset increases by 0.4%, 0.3%,
0.6% and 5.7%, respectively. This result shows that GSMap enhances the locating ability by
making the center map have global feature information. Its performance is enhanced as the
effective feature information increases.

Table 4. Ablation study of global smooth map on the Citypersons dataset.

Backbone Reasonable Bare Partial Heavy

Baseline ResNet-50 11.2 7.3 10.8 50.3
Baseline + GSMap ResNet-50 10.5 7.0 10.0 46.6
Baseline + CCF ResNet-50 10.6 7.1 10.1 48.4
Baseline + CCF + GSMap ResNet-50 10.2 6.8 9.5 42.7

For Scale Prediction. Table 5 shows the impact of scale prediction on CCFNet. Fol-
lowing previous work [23], we set the three scale predictions of height, width and height
+ width. Compared with the predicted height, height + width increases by 0.6% on the
reasonable subset and 4.5% on the heavy subset. Compared with the predicted width,
height + width increases by 1.2% on the reasonable subset and 7.2% on the heavy subset.
Simultaneously predicting the height and width of the object can further improve the
performance of CCFNet. This result is attributed to predicting the height and width of the
object at the same time, which can adapt to objects with different aspect ratios, rather than
being limited to a certain aspect ratio. In addition, retaining more feature information is
conducive to the prediction of object width. From the results of the heavy subsets, it can be
concluded that predicting the height and width at the same time helps to deal with dense
and overlapping objects.

Table 5. Ablation study of different definitions for scale prediction on the Citypersons dataset.

Scale Prediction Backbone Reasonable Bare Partial Heavy

Height ResNet-50 10.8 7.2 10.7 47.2
Width ResNet-50 11.4 8.1 11.0 49.9

Height + Width ResNet-50 10.2 6.8 9.5 42.7
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4.4. State-of-the-Art Comparisons

Caltech Dataset: CCFNet compares some excellent methods in reasonable and Rea-
sonable_Occ=Heavy subset. As shown in the Figure 5, CCFNet has 4.33% MR-FPPI on
the Reasonable subset, which is 0.37% more advanced than the best method. On the
Reasonable_Occ=Heavy subset, CCFNet has 43.21% MR-FPPI, which is also competitive.
When the model is initialized on the CityPersons dataset, the performance of CCFNet has
increased by 6.04%, surpassing other comparison methods. CCFNet uses feature cascading
and reorganization to retain more contextual information, and improves the positioning
ability of the center map through global smoothing graph.
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Figure 5. The results of various models on the Caltech dataset. (a) Compare with existing methods
on Reasonable subset. (b) Compare with existing methods on the Reasonable_Occ=Heavy subset.

As shown in the Table 6, CCFNet also compares advanced algorithms, such as Repul-
sion Loss (RepLoss) [38] used to solve the occlusion problem and anchor-free detection
network CSP, etc. In the reasonable subset, CCFNet achieved 4.3% MR-FPPI, which is 0.7%
and 0.2% lower than that of RepLoss and CSP, respectively. In the Reasonable_Occ=Heavy
subset, CCF has reached 43.2% MR-FPPI, which is an increase of 4.7% and 2.6% compared
to RepLoss and CSP, respectively. This is an impressive improvement. When the model is
initialized on the CityPersons dataset, CCFNet reaches 3.5% on a reasonable subset, and
36.2% on the Reasonable_Occ=Heavy subset. It is proved that CCFNet reuses high-level
features in cascaded manner is effective.

Table 6. The results of various models on the Caltech dataset.

Reasonable Reasonable_Occ=Heavy

ALFNet [52] 6.1 51.0
MGAN [53] 6.8 38.2
HyperLearner [54] 5.5 48.7
RepLoss [38] 5.0 47.9
CSP [23] 4.5 45.8
CCFNet (ours) 4.3 43.2

ALFNet + city [23,52] 4.5 43.4
RepLoss + city [23,38] 4.0 41.8
CSP + city [23] 3.8 36.5
CCFNet + city (ours) 3.5 36.2

CityPersons Dataset: We verify the performance of CCFNet on CityPersons dataset,
which contained reasonable, heavy, bare and partial subsets. The comparative experiment
results as show in Table 7. MR−2 of CCFNet on the reasonable subset is 10.2%, on the
bare subset is 6.8%, on the partial subset is 9.5%, and on the heavy subset is 42.7%. In
the reasonable subset, CCFNet is 0.4% and 0.3% lower than Attribute-aware Pedestrian
Detection (APD) [55] and Mask-Guided Attention Network (MGAN) [53], respectively.
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In the heavy subset, CCFNet is increased by 7.1% and 4.5% compared with APD and
MGAN, respectively. It can be seen that CCFNet achieved best performance beyond other
comparison methods. It reflects the strong competitiveness of CCFNet.

Table 7. The results of various models on the CityPersons dataset.

Backbone Reasonable Bare Partial Heavy

TLL [37] ResNet-50 15.5 10.0 17.2 53.6
TLL + MRF [37] ResNet-50 14.4 9.2 15.9 52.0
RepLoss [38] ResNet-50 13.2 7.6 16.8 56.9
OR-CNN [56] VGG-16 12.8 6.7 15.3 55.7
ALFNet [52] ResNet-50 12.0 8.4 11.4 51.9
CSP [23] ResNet-50 11.0 7.3 10.4 49.3
APD [55] ResNet-50 10.6 7.1 9.5 49.8
MGAN [53] VGG-16 10.5 - - 47.2
CCFNet (ours) ResNet-50 10.2 6.8 9.5 42.7

4.5. Visualization

To further illustrate the superiority of CCFNet, we visualized the detection results
on the CityPersons dataset, as shown in Figure 6. The first line (a) represents the original
image in the validation set of the CityPersons dataset. The second line (b) represents the
ground truth. The third line (c) represents the visualization result of the CSP. And the
fourth line (d) represents the visu.alization result of CCFNet. The visualization results of
CSP and CCFNet rely on the same confidence.

To show the effectiveness of the CCFNet, we selected three images from different
scenes to compared with CSP. The first image belongs to a crowded scene. The second
image belongs to a simple scene containing small objects. The third image is a scene with
low visibility, low exposure, and small objects. The visualization result as show in Figure 6.
It can be seen that in the first image, CSP and CCFNet generate a large number of detection
boxes, but CCFNet has fewer false detection boxes. In addition, CCFNet can better solve
the problem of multiple detection boxes for one single object. From the second image, CSP
and CCFNet have the problem of overlapping detection boxes, but CSP has extremely bad
results. In contrast, CCFNet has better visualization. From the third image, CSP can detect
small objects in the image, but it also gets a lot of objects that should not be detected. In
contrast, CCFNet avoids this problem. Therefore, CCFNet not only has good performance,
but its visualization results are also robust.

As shown in Figure 7, the first line (a) represents the original image in the validation
set of the CityPersons dataset. The second line (b) represents the heat map of the ACFPN.
The third line (c) represents the heat map of the CSP. And the fourth line (d) represents
the heat map of CCFNet. We also selected the images of the three scenes for comparison.
The three images respectively cover complex environments, crowded scenes, and general
scenes. It can be seen that the highlight of ACFPN presents a discrete distribution, the
highlight of CSP presents a concentrated distribution, and the highlight of CCFNet is
multi-peak. The ACFPN can not distinguish which type of person belongs to, and can not
cope with the crowded state of objects, this is related to the fact that ACFPN is a general
object detection network. The CSP responds to certain backgrounds, which makes CSP a
bad visualization result, even though it has a low error detection rate. The CCFNet will not
over-respond to the background and can distinguish the categories of people, it not only
has a lower error detection rate, but its visualization results are also more optimistic.
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a.

b.

c.

d.

Figure 6. Visualization results of CCFNet and CSP do not limit the visibility of pedestrian objects.
(a) Input the original image for the CityPersons dataset; (b) is the ground truth corresponding to (a);
(c) is the visualization result of CSP; (d) is the visualization result of CCFNet.

a.

b.

c.

d.

Figure 7. Visualization results of ACFPN, CSP, and CCFNet. (a) Input the original image for the
CityPersons dataset; (b) is the visualization result of ACFPN; (c) is the visualization result of CSP;
(d) is the visualization result of CCFNet.

4.6. Discussion

The proposal of CCFNet is influenced by the anchor-free object detection network. In
the anchor-free network, how to make the neck effectively use the feature representation
extracted by the backbone network will directly affect the performance of the detection
head. Previous work [50,51] has achieved good performance in general object detection,
but it can not be generalized to some special tasks, such as pedestrian detection.
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Table 2 shows the ablation experiment of multi-scale features in the CCF module. By
combining the feature maps of different stages, the optimal feature map combination is
discussed. CCF reduces the noise in the shallow feature map by cascading and reusing deep
semantic information, while retaining the semantic information lost due to dimensionality
reduction operations. The purpose of this is to make the final feature map have more
features.

Table 3 shows the comparative experiments between CCF and other necks. The
previously proposed FPN-like methods and FCN-like methods achieve the most advanced
performance in general object detection, but they are not suitable for pedestrian detection
tasks. CCF module shows a very competitive performance.

Table 4 shows the ablation experiment of GSMap. The center map reduces the weight of
negative samples through the Gaussian heat map, but does not change the shortcomings of
convolution operation that can only obtain partial global information [57–59]. The proposal
of GSMap can enable the center map to obtain more global information. In addition,
according to the results of the heavy subset. It not only proves that the congestion problem
between objects can not be completely solved by enhancing the semantic information in
the feature map, but also requires additional modules for assistance, such as GSMap.

Table 5 shows the experiment of object scale prediction. The previous work only
determines the size of the object by predicting the height [23,48]. We have proved through
experiments that predicting the height and width of objects at the same time is the most
suitable for CCFNet. In addition, this can also help cope with dense and overlapping
problems.

Figure 5 and Table 6 show the comparative experiments of CCFNet with other ad-
vanced algorithms on the Caltech dataset. Table 7 shows the comparative experiments of
CCFNet with other advanced algorithms on the Citypersons dataset. Their results prove
the effectiveness of CCFNet.

5. Conclusions

In this paper, we proposed Cascaded Cross-layer Fusion module (CCF), which com-
bines deep semantics and shallow details to obtain features, which will obtain more con-
textual semantic information. In order to cope with the situation of highly congested
and severely occluded objects, we designed global smooth map (GSMap) and improved
center loss function, which can effectively solve this problem at a small cost. Cascaded
Cross-layer Fusion Network (CCFNet) can achieve better performance without relying on
anchor points, multiple key points and complex post-processing. Finally, we conducted a
large number of experiments on Caltech and CityPersons datasets to verify the superiority
of CCFNet. Although the model introduces dimensionality reduction operations in the
design process to reduce the computational complexity of the model, the final model still
uses a large number of parameters that cannot meet the requirements of the real-time
system. Therefore, designing an effective lightweight module is the focus of our next work.
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