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Abstract: This paper considers a class of stochastic fractional-space diffusion equations with polyno-
mials. We establish a limiting equation that specifies the critical dynamics in a rigorous way. After
this, we use the limiting equation, which is an ordinary differential equation, to approximate the
solution of the stochastic fractional-space diffusion equation. This equation has never been studied
before using a combination of additive noise and fractional-space, therefore we generalize some
previously obtained results as special cases. Furthermore, we use Fisher’s and Ginzburg–Landau
equations to illustrate our results. Finally, we look at how additive noise affects the stabilization of
the solutions.
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1. Introduction

Stochastic partial differential equations (SPDEs) are crucial in understanding the
dynamics of many fascinating phenomena. In recent years, the significance of taking
random influences into consideration in modeling, analyzing, simulating, and predicting
complex phenomena has become widely realized in physics, chemistry, biology, materials
science, and climate dynamics, as well as in geophysical and other areas; see [1,2].

Furthermore, fractional derivatives have drawn tremendous interest mainly because
of their possible implementations in different areas, such as, for example, in physics [3–6],
biology [7], finance [8–10], biochemistry and chemistry [11], and hydrology [12,13]. These
fractional-order equations are better suited than equations with integer-orders because
derivatives of the fractional order are allowed the memory and hereditary properties of
various substances to be represented [14].

It seems that examining fractional equations with some random force is more sig-
nificant. Therefore, we are concerned, here, with the fractional space-diffusion equation
perturbed by additive noise on a bounded domain G ⊂ R:

dϕ = [−ε−2D(−∆)
r
2 ϕ + P(ϕ)]dt + ε−1dW, t ≥ 0, x ∈ G, (1)

where ε � 1 is a small parameter, D is the diffusion coefficient, (−∆)
r
2 is the fractional

Laplacian with r ∈ (1, 2], P is a polynomial with the degree m and represents reaction
kinetics, and W is a finite dimensional Wiener process.

In normal diffusion with time, the mean square displacement of an equation particle
linearly increases, i.e.,

〈
x2(t)

〉
n t. In contrast, anomalous diffusion is a diffusion process not

following this linear relation. In some cases, they have a power-law scaling relation, namely〈
x2(t)

〉
n tr, that is present in various types of equations. r is defined as the anomalous

exponent of diffusion in the case of r = 1 of normal diffusion, whereas r = 2, r ∈ (0, 1), and
r ∈ (1, 2) correspond to a ballistic diffusion, a sub-diffusion, and a Levy super-diffusion,
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respectively [4]. By the transformation of a Fourier, the anomalously diffusive operator
(−∆)

r
2 is defined [8,15–17] as:

L{(−∆)
r
2 ϕ}(η) = |η|rL{ϕ}(η),

where L{ϕ} is the Fourier transform of ϕ.
It is interesting to note that if we input P(ϕ) = ϕ(1− ϕ)(ϕ− a), Equation (1) becomes

the stochastic fractional space Fitzhugh–Nagumo equation, which is used in the field of
biology and population genetics, and also is used to model nerve impulse transmission
[18,19]. We derive the stochastic space-fractional heat equation if we set P(ϕ) = ϕ− ϕ3,
which is used in physics and describes the heat distribution within a given time interval in
a given region [20]. Furthermore, if P(ϕ) = ϕ(1− ϕ

N ), then (1) gives rise to the stochastic
fractional-space Fisher equation, which is used as the spatial and temporal propagation
model in an infinite medium of a virile gene [21]. Additionally, it is used in chemical kinetics
[22], auto catalytic chemical reactions [23], flame propagation [24], neurophysiology [25],
and nuclear reactor theory [26].

Recently, Equation (1) with r = 2 was addressed in the stochastic case by [27–30].
This equation with r = 2 was studied analytically by [31,32] in the deterministic case, i.e
without noise. Recently, this Equation (1) was discussed by [33,34] with multiplicative
noise. Furthermore, many analytical and numerical methods have been proposed to find
the solution of the fractional-space partial differential Equation (1) without noise, such as in
[35–41]. In this paper, we analytically approximate the solution of Equation (1) by using the
perturbation method. This equation has never been addressed before using a combination
of additive noise and fractional-space, therefore we generalize some previously obtained
results as a special case.

The first aim of this paper is to show that the approximate solution of (1) is given by

ϕ(t, x) = ξ(t) + χ(t, x) + error , (2)

where ξ solves
dξ = [P(ξ) + G(ξ)]dt. (3)

The polynomial G(ξ), is defined later in (22) and has a degree of m− 2. The term
χ(t, x) in Equation (2) is referred to as a fast Ornstein–Uhlenbeck process (FOUP for short)
and it will be defined later in (10). We note that the ordinary differential Equation (3)
contains the same polynomial P as in Equation (1), plus an additional polynomial G that
occurs as a result of the interaction between the non-linear term and additive noise. The
second aim of this paper is to discuss the impact of additive noise on the solutions of
Equation (1).

As an applications of how our results can be applied, we provide theoretical examples
from physics (the real Ginzburg–Landau equation) and biology (the Fisher’s equation).
To clarify our results, let us consider the very simple real-valued Ginzburg–Landau equation
with Neumann boundary conditions on [0, π] as follows

dϕ = [−ε−2(−∆)
r
2 ϕ + ϕ− ϕ3]dt + ε−1dW. (4)

The approximation Theorem 2 shows us that the solution of the Ginzburg–Landau
Equation (4) shall be of the kind (2), where ξ is the solution of

dξ = [
(

1−
N

∑
k=1

3α2
k

2kr

)
ξ − ξ3]dt,

where αkfor k = 1, 2, · · · , N are real numbers and where there is noise intensity. If we input
r = 2, we have the previous result that was obtained by [28].

In this paper, one great innovation of our approach is the explicit estimation of error
in terms of arbitrarily high moments of error, as usually only weak convergence is handled
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against approximation. Moreover, this paper is the first paper, to the best of our knowl-
edge, to analytically find the approximate solution of stochastic fractional-space partial
differential equations.

The rest of this article is set out as follows. In the next section, we present some
notations, assumptions, and preliminaries that we need in this paper. We also estimate an
equation representing the high modes and give bounds on it in Section 3. We will state
a general case of the averaging-over OU-process in Section 4. After that, we deduce the
limiting equation and prove the main result of Theorem 2 in Section 5. In Section 6, there are
two examples to clarify our results, including the Ginzburg–Landau and Fisher’s equations.
Finally, the conclusion of this paper is given.

2. Preliminaries

LetH=L2([0, π]) be a separable Hilbert space with norm ‖·‖ and inner product 〈·, ·〉.
Since the operator −∆ is self-adjoint, there exists a complete orthonormal system{

ej
}∞

j=0 and a sequence
{

λj
}∞

j=0 such that

−∆ej = λjej ,

with
0 = λ0 ≤ λ1 ≤ · · ·· ≤ λj ≤ · · ··

Here, we consider −∆ with the Neumann boundary condition on [0, π]. Therefore,

ej(x) =

{
1 i f j = 0,√

2
π cos(jx) i f j 6= 0,

and
λj = j2.

DefineHc andHs as

Hc := kernel{∆} = span{1} and Hs = (Hc)⊥.

Define the projections

Pc := H → Hc and Ps := I − Pc,

where I is the identity operator onH.
Consider the fractional spaceHr to be the domain of A r

2 for r > 0, which is defined as

(−∆)
r
2 ϕ =

∞

∑
j=0

λ
r
2
j
〈

ϕ, ej
〉
ej,

Hr = D((−∆)
r
2 ) =

{
ϕ ∈ H :

∞

∑
j=0

λr
j ϕ2

j < ∞

}
,

with norm

‖ϕ‖2
r =

∥∥∥(−∆)
r
2 ϕ
∥∥∥2

=
∞

∑
k=0

λr
j ϕ2

j .

Furthermore, let Tr(t) = exp(−t(−∆)
r
2 ) for t ≥ 0 be the analytic semigroup generated

by the fractional Laplacian −(−∆)
r
2 and satisfy

‖Tr(t)ϕ‖r ≤ e−ωt‖ϕ‖r for all ϕ ∈ Hr, (5)

where a constant ω > 0 exists.
For the non-linear P in Equation (1), we assume:
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Assumption 1. Let P : Hr → Hr satisfy for all ϕ ∈ Hr such that

‖P(ϕ)‖r ≤ C(1 + ‖ϕ‖m
r ), (6)

where m is the degree of P .

Put shortly, we are using Pc(ϕ) = PcP(ϕ) and Ps(ϕ) = PsP(ϕ).

Assumption 2. Let F(u) = Pc(u) + G(u), where G(u) is defined in (22). Assume for u, w, v ∈
Hc that

〈F(u + v + w)− F(v), u〉 ≤ C(|u|2 + |w|2 + |w|m) . (7)

We note that from Assumption 2, if we input v = w = 0,, we derive

〈F(u), u〉 ≤ C|u|2 for u ∈ Hc (8)

For the noise in Equation (1), see the following.

Assumption 3. Suppose that the Wiener process W(t) for t ≥ 0, is finite dimensional and acts
only onHs. Corresponding to [42], one can write it as

W(t, x) =
N

∑
j=1

αjβ j(t)ej(x),

where αj ∈ R for all j ∈ {1, 2, · · · , N} and (β j)j∈{1, 2,··· , N} are mutually independent real-valued
Brownian motions.

Definition 1. Define the FOUP χ as

χ(t) =
N

∑
j=1

χj(t)ej, (9)

where

χj(t) = αjε
−1
∫ t

0
e−ε−2D≥

r
2
j (t−s)dβ j(s). (10)

In the following definition, we assume that the solution of Equation (1) is not too large.

Definition 2. Stopping time: define the stopping time τ∗ as

τ∗ := inf
{

t > 0 : ‖ϕ(t)‖r > ε−κ
}
∧ T0, (11)

for some T0 > 0 and κ ∈ (0, 1
2m ).

3. High Modes and Its Bounds

In this section, we deduce an equation representing high modes and bound it. We
start by splitting the solution ϕ of (1) into

ϕ(t, x) = ϕc(t) + ϕs(t, x), (12)

where ϕc ∈ Hc and ϕs ∈ Hs. By substituting (12) into (1), we have

d(ϕc + ϕs) = [−ε−2D(−∆)
r
2 ϕs + P(ϕc + ϕs)]dt + ε−1dW. (13)
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By projecting toHs, we obtain

dϕs = [−ε−2D(−∆)
r
2 ϕs + Ps(ϕc + ϕs)]dt + ε−1αdW. (14)

This equation can be expressed in the integral form as

ϕs(t) = Tr(ε
−2Dt)ϕs(0) +

∫ t

0
Tr(ε

−2D(t− τ))(ϕc + ϕs)dτ + χ(t), (15)

where χ is defined in Definition 1.
In the following lemma, we will show how ϕs(t) equals to χ(t), plus a small term.

Lemma 1. Assume that Assumption 1 is satisfied. Then, there is C > 0 such that

E sup
t∈[0,τ∗ ]

∥∥∥ϕs(t)− χ(t)−Tr(ε
−2Dt)ϕs(0)

∥∥∥p

r
≤ Cεp−mpκ , (16)

for p ≥ 1 and κ > 0 from the definition of τ∗.

Proof. Using the triangle inequality for (15), the equation yields∥∥∥ϕs(t)− χ(t)−Tr(ε
−2Dt)ϕs(0)

∥∥∥
r
≤

∥∥∥ ∫ t

0
Tr(ε

−2D(t− s))Ps(ϕc + ϕs)ds
∥∥∥

r

≤ C‖Ps(ϕc + ϕs)‖r

∫ t

0
e−ε−2ωD(t−s)ds

≤ Cε2(1 + ‖ϕc + ϕs‖m
r ).

By taking E supt∈[0,τ∗ ] on both sides, we find that

E sup
t∈[0,τ∗ ]

∥∥∥ϕs(t)− χ(t)−Tr(ε
−2Dt)ϕs(0)

∥∥∥
r
≤ Cε2(1 +E sup

t∈[0,τ∗ ]
‖ϕc + ϕs‖m

r )

≤ Cε2,

where we used (5), representing Assumption 1 and the definition of τ∗, respectively.

Now, let us, without proof, declare the uniform bounds on χ(t). For the proof, see
Lemma 4.2 in [28].

Lemma 2. Let χ(t) be defined in Definition 1. Then, there is C > 0 such that

E sup
t∈[0,T0]

‖χ(t)‖p
r ≤ Cε−κ0 , (17)

for every p ≥ 1 and κ0 > 0.

The next corollary declares that ϕs(t) is much smaller than ε−κ , as stated in the
definition of stopping time τ∗.

Corollary 1. Assume that the assumptions of Lemmas 1 and 2 are satisfied. Let ϕs(0) = O(1).
Then, for p ≥ 1, κ < 1

m and C > 0,

E sup
t∈[0,τ∗ ]

‖ϕs(t)‖p
r ≤ Cε−κ0 for p ≥ 1. (18)
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Proof. Using Equation (16) and triangle inequality, we find that

E sup
[0,τ∗ ]
‖ϕs‖p

r ≤ cE sup
[0,τ∗ ]

∥∥∥ϕs − χ−Tr(ε
−2Dt)ϕs(0)

∥∥∥p

r

+cE sup
[0,τ∗ ]

∥∥∥Tr(ε
−2Dt)ϕs(0)

∥∥∥p

r
+ cE sup

[0,τ∗ ]
‖χ‖p

r .

Apply Lemmas 1 and 2 to finish the proof.

Lemma 3. Let ϕs(0) = O(1), then∫ t

0

∥∥∥Tr(ε
−2Ds)ϕs(0)

∥∥∥n
ds ≤ Cε2 for n ≥ 1.

Proof. ∫ t

0

∥∥∥Tr(ε
−2Ds)ϕs(0)

∥∥∥n
ds ≤

∫ t

0
e−ε−2ωnDτ‖ϕs(0)‖nds = Cε2.

4. Averaging over FOUP

Here, we use a comprehensive version of Lemma 5.1 from [28] over the FOUP χj. This
lemma declares that odd powers of χj are small powers of the order O(ε1−κ0), while the
power of χj averages to a constant.

Lemma 4. Assume that φ is a stochastic process with real values and φ(0) = O(ε−γ) for some
γ ≥ 0. If dφ = Fdt together with F = O(ε−γ), then

∫ t

0
φ

N
∏
i=1

χ
ni
i dτ =


∑N

i=1
ni(ni−1)α2

i

2 ∑N
j=1 njDλ

r
2
j

∫ t
0 φ

N
∏
j=1

χ
nj
j χ−2

i dτ

+O(ε1−γ−κ0) if all ni are even and

O(ε1−γ−κ0) if one of the ni is odd.

(19)

In the next lemma, we utilize Lemma 4 repeatedly and display the outcome that we
require afterwards in our application.

Lemma 5. Assume that φ is as in Lemma 4. Then, there is a constant C2k for k ∈ N such that∫ t

0
φχ2kdτ = C2k

∫ t

0
φdτ +O(ε1−γ−κ0), (20)

where χ is defined in Definition 1.

Proof. We address three cases as follows.
First case when k = 1 :

∫ t

0
φχ2dτ = Pc

∫ t

0
φ

(
N

∑
j=1

χjej

)2

dτ

=
N

∑
j=1

(e2
j )
∫ t

0
φχ2

j dτ + 2
N

∑
j 6=i

(ejei)
∫ t

0
φχjχidτ.
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From Lemma 4, we have

∫ t

0
φχ2dτ =

N

∑
j=1

e2
j α2

j

2Dλ
r
2
j

∫ t

0
φdτ +O(ε1−γ−κ0).

Thus,

C2k
k=1
= C2 =

N

∑
j=1

e2
j α2

j

2Dλ
r
2
j

.

Second case when k = 2 :

∫ t

0
φχ4dτ =

∫ t

0
φ

(
N

∑
j=1

χjej

)4

dτ

=
N

∑
j=1

e4
j

∫ t

0
φχ4

j dτ + 6
N

∑
j 6=i

e2
j e2

i

∫ t

0
φχ2

j χ2
i dτ + 4

N

∑
k 6=i

eje3
i

∫ t

0
φχjχ

3
i dτ.

Again, from Lemma 4, we derive

∫ t

0
φχ4dτ = [

N

∑
j=1

3e4
j α4

j

4D2λr
j
+

N

∑
j 6=i

3e2
j e2

i α2
j α2

i

2λ
r
2
j λ

r
2
i

]
∫ t

0
φdτ +O(ε1−γ−κ0).

Hence,

C2k
k=2
= C4 =

N

∑
j=1

3e4
j α4

j

4D2λr
j
+

N

∑
j 6=i

3e2
j e2

i α2
j α2

i

2D2λ
r
2
j λ

r
2
i

.

Third case when k > 2: We can follow the previous cases by expanding(
N

∑
j=1

χjej

)2k

.

5. Limiting Equation and Main Theorem

Here, the limiting equation is derived for Equation (1). Additionally, the main theorem
of this paper is stated and proved.

Lemma 6. Assume that Assumptions 1, 2, and 3 are satisfied. If ϕs(0) = O(1), then

ϕc(t) = ϕc(0) +
∫ t

0
Pc(ϕc)dτ +

∫ t

0
G(ϕc)dτ +R(t), (21)

where
G(ϕc) = ∑

k≥1

C2k
(2k)!

[Pc(ϕc)]
(2k), (22)

and
R = O(ε1−(2m−1)κ). (23)

Proof. By recalling (13) and projecting toHc, we have

dϕc = Pc(ϕc + ϕs)dt. (24)
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W rewrite the above equation in the integral form as

ϕc(t) = ϕc(0) +
∫ t

0
Pc(ϕc + ϕs)dτ. (25)

Recall Lemma 1 which states

ϕs(t) = χ(t) + ψ(t) + z(t), (26)

with
ψ(t) = Tr(ε

−2Ds)ϕs(0) and z(t) = O(ε1−mκ) .

By substituting (26) into (25), we have

ϕc(t) = ϕc(0) +
∫ t

0
Pc(ϕc + χ + ψ + z)(τ)dτ. (27)

Now, by applying Taylor’s expansion to Pc, we derive

ϕc(t) = ϕc(0) +
∫ t

0
Pc(ϕc + χ)(τ)dτ + z̃(t),

where

z̃(t) =
m

∑
k=1

Pc

∫ t

0

[Pc(ϕc + χ)](k)

k!
(ψ + z)kdτ. (28)

We next apply Taylor’s expansion again to polynomial Pc

ϕc(t) = ϕc(0) +
∫ t

0
Pc(ϕc)(τ)dτ +

m

∑
k=1

∫ t

0

[Pc(ϕc)](k)

k!
χkdτ + z̃(t),

where m is the degree of P . Using (20), we derive

ϕc(t) = ϕc(0) +
∫ t

0
Pc(ϕc)dτ +

∫ t

0
G(ϕc)dτ +R(t),

where
R(t) = z̃(t) +O(ε1−κ0). (29)

To bound the errorR, we take the E supt∈[0,τ∗ ]‖·‖
p
r on both sides of (28).

E sup
[0,τ∗ ]
‖z̃‖p

r ≤ C
m

∑
k=1

E sup
[0,τ∗ ]

∥∥∥∥∥
∫ t

0

[Pc(ϕc + χ)](k)

k!
(ψ + z)kdτ

∥∥∥∥∥
p

r

.

Using Lemmas 1 and 2, Assumption 1, and the theorem of Burkholder–Davis–Gundy
(cf. Theorem 1.2.4 in [43]), the equation yields

E sup
[0,τ∗ ]
‖z̃‖p

r ≤ Cε1−(2m−1)κ . (30)

Substituting (30) into (29) yields (23).

Lemma 7. Assume that Assumption 1 is satisfied. Define ξ(t) in Hc as a solution of (3) with
E|ξ(0)|p ≤ C. Then, for all T0 > 0 there is C > 0 such that

E sup
[0,T0]

|ξ(t)|p ≤ C. (31)
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Proof. By taking the scalar product 〈·, ξ〉 on both sides of (3), we derive

1
2

dt|ξ|2 = 〈Pc(ξ) + G(ξ), ξ〉.

Using Equation (8) yields
1
2

dt|ξ|2 ≤ C|ξ|2.

By integrating from 0 to t, we have

|ξ(t)|2 ≤ |ξ(0)|2 + 2C
∫ t

0
|ξ(τ)|2dτ.

By applying Gronwall’s lemma, we attain for t ∈ [0, T0]

|ξ(t)| ≤ |ξ(0)|eCT0 . (32)

We take the expectation on both sides after the supremum for Equation (32) to obtain
(31).

In fact, we cannot control the error terms that are defined in terms of ϕs or ϕc. There-
fore, we are limited to a sufficiently large subset of Ω where all our estimates of errors are
true.

Definition 3. Define the set Ω∗ ⊂ Ω so that all of these estimations are included:

sup
[0,τ∗ ]
‖ϕs‖r < ε−κ0− 1

2 κ , (33)

sup
[0,τ∗ ]
‖ϕs − χ−Tr(ε

−2Ds)ϕs(0)‖r < ε1−mκ−κ , (34)

sup
[0,τ∗ ]
|∼| < ε−

1
2 κ , (35)

and
sup
[0,τ∗ ]
‖R‖r < ε1−2mκ , (36)

are valid on Ω∗.

As shown below, the set Ω∗ has a probability of nearly to one.

Proposition 1. Assume that Assumptions 1 and 2 are satisfied. Then, Ω∗ has probability

P(Ω∗) ≥ 1− Cεp. (37)

Proof. We notice that

P(Ω∗) ≥ 1−P( sup
[0,τ∗ ]
‖ϕs‖r ≥ ε−κ0− 1

2 κ)−P( sup
[0,τ∗ ]
‖ϕs − χ−Tr(ε

−2Ds)ϕs(0)‖r ≥ ε1−κ(m+1))

−P( sup
[0,τ∗ ]
|ξ| > ε−

1
2 κ)− P( sup

[0,τ∗ ]
‖R‖r ≥ ε1−2mκ).

By first using the Chebychev inequality and afterwards using Lemmas 1, 6, and 7, and
Corollary 1, we derive

P(Ω∗) ≥ 1− C[εqκ + εqκ + εqκ ] ≥ 1− Cεqκ ≥ 1− Cεp.
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Theorem 1. Let Assumption 2 hold. Assume that ξ and ϕc are solutions of (3) and (21), respec-
tively, with ξ(0) = ϕc(0) = O(1). Then,

sup
t∈[0,τ∗ ]

‖ϕc(t)− ξ(t)‖r ≤ Cε1−2mκ , (38)

and
sup

t∈[0,τ∗ ]
‖ϕc(t)‖r ≤ Cε−

1
2 κ . (39)

Proof. By subtracting (3) from (21), we derive

ϕc(t)− ξ(t) =
∫ t

0
Pc(ϕc)−Pc(ξ)dτ +

∫ t

0
G(ϕc)− G(ξ)dτ +R(t).

Let F(u) = Pc(u) + G(u) to have

ϕc(t)− ξ(t) =
∫ t

0
[F(ϕc)− F(ξ)]dτ +R(t).

Now, define Θ = ϕc − ξ −R to obtain

Θ(t) =
∫ t

0
[F(Θ + ξ +R)− F(ξ)]dτ.

Thus,
dtΘ(t) = F(Θ + ξ +R)− F(ξ).

By taking the scalar product 〈·, Θ〉 on both sides and using Assumption 2, we have

1
2

dt|Θ(t)|2 = 〈F(Θ + ξ +R)− F(ξ), Θ〉

≤ |Θ(t)|2 + |R(t)|2 + |R(t)|m

≤ |Θ(t)|2 + Cε2−4mκ on Ω∗.

By using Gronwall’s lemma, we obtain

sup
[0,τ∗ ]
|Θ| ≤ Cε1−2mκ on Ω∗.

We finish the first part by using

sup
[0,τ∗ ]
|ϕc − ξ| ≤ sup

[0,τ∗ ]
|Θ|+ sup

[0,τ∗ ]
|R| ≤ Cε1−2mκ .

For the second part, consider

sup
[0,τ∗ ]
|ϕc| ≤ sup

[0,τ∗ ]
|ϕc − ξ|+ sup

[0,τ∗ ]
|ξ|

≤ Cε1−2mκ + Cε−
1
2 κ

≤ Cε−
1
2 κ ,

for κ < 1
2m , where we used the first part and (35).
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Theorem 2. (Approximation: suppose that Assumptions 1–3 are satisfied. Let ϕ be a solution
of (1) with splitting ϕ = ϕc + ϕs as defined in (12). Additionally, let ξ be a solution of (3) with
ξ(0) = ϕc(0). Then, for all κ ∈ (0, 1

2m ) and T0 > 0, there is C > 0 such that

P
(

sup
t∈[0,T0]

∥∥∥ϕ(t)− ξ(t)− χ(t)−Tr(ε
−2Ds)ϕs(0)

∥∥∥
r
> ε1−2mκ

)
≤ Cεp, (40)

for all p > 0.

Proof. We notice that for τ∗:

Ω∗ ⊆ { sup
[0,τ∗ ]
‖ϕc‖r < ε−κ , sup

[0,τ∗ ]
‖ϕs‖r < ε−κ} ⊆ {τ∗ = T0} ⊂ Ω.

By using Equation (12) and the triangle inequality, we obtain

sup
t∈[0,T0]

‖ϕ(t)− ξ(t)− χ(t)−Tr(ε
−2Ds)ϕs(0)‖r

= sup
t∈[0,τ∗ ]

‖ϕ(t)− ξ(t)− χ(t)−Tr(ε
−2Ds)ϕs(0)‖r

≤ sup
[0,τ∗ ]
‖ϕc − ξ‖r + sup

[0,τ∗ ]
‖ϕs − χ−Tr(ε

−2Ds)ϕs(0)‖r

≤ Cε1−2mκ on Ω∗.

where we used (34) and (38). Hence,

P
(

sup
t∈[0,T0]

‖ϕ(t)− ξ(t)− χ(t)−Tr(ε
−2Ds)ϕs(0)‖r > Cε1−2mκ

)
≤ 1− P(Ω∗) .

By using (37), the equation yields (40).

6. Application

Throughout chemistry, physics, biology, and other fields of reaction-diffusion equa-
tions with non-linearities of polynomials, there are many models in which the main theory
of approximation is applied; for example, consider Fisher’s and Fitzhugh–Nagumo equa-
tions in biology and the real-valued Ginzburg–Landau equation in physics. Here, we are
looking at two models, namely one from physics and the other from biology, as follows.

6.1. Physical Example

The first example is the Ginzburg–Landau equation [20]. The Ginzburg–Landau
equation is used for modeling a wide variety of physical systems. Additionally, it was first
formulated in the sense of pattern formation as a long-wave amplitude equation in the
case of convection in binary mixtures close to the onset of instability. The fractional space
Ginzburg–Landau equation with additive noise is

dϕ = [−ε−2(−∆)
r
2 ϕ + ϕ− ϕ3]dt + ε−1dW for t ≥ 0, (41)

where the variable ϕ(t, x) is a real-valued function of t and x.
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To check Assumption 1, we note that P(ϕ) = ϕ− ϕ3 and then for r > 1
2

‖P(ϕ)‖r =
∥∥∥ϕ− ϕ3

∥∥∥
r
≤ ‖ϕ‖r +

∥∥∥ϕ3
∥∥∥

r

≤ 2
3
+

1
3
‖ϕ‖3

r + ‖ϕ‖3
r

≤ 4
3
(1 + ‖ϕ‖3

r ),

where we used the Young inequality.
Moreover, we use (22) with k = 1 to obtain

G(ξ) =
N

∑
j=1

3α2
j

2jr
ξ,

Hence, the limiting equation is

dξ = [
(

1−
N

∑
j=1

3α2
j

2jr
)

ξ − ξ3]dt. (42)

Now, the solution of (41) by our main theorem is approximated by

ϕ(t, x) ' ξ(t) + χ(t, x),

where ξ is a solution of (42) and χ is defined in (1). If we suppose that the noise acts only in
one mode, i.e., W(t) = αjβ j cos(jx), then Equation (42) takes the form

dξ = [
(

1−
3α2

j

2jr
)

ξ − ξ3]dt. (43)

If we choose αj such that α2
j < 2jr

3 for r ∈ (1, 2], then the term (1−
3α2

j
2jr ) is negative.

We may say, in this case, that the dynamics of the dominant modes were stabilized by the
degenerated additive noise.

6.2. Biological Example

The second example is Fisher’s equation [21]. Fisher’s equation becomes one of
the most important types of non-linear equations due to its existence in many chemical
and biological processes. Fisher’s equation with fractional space and, by being forced by
additive noise, takes the form

dϕ = [−ε−2D(−∆)
r
2 ϕ + Aϕ(1− ϕ

K
)]dt + ε−1dW, (44)

where A and K are positive constants. Here, ϕ(t, x) describes the evolution of the state over
the spatial–temporal domain defined by the coordinates t and x, respectively.

Our main theory shows that the approximate solution of Fisher’s Equation (44) is

ϕ(t, x) = ξ(t) + χ(t, x) + error,

where ξ is the solution of

dξ = [Aξ(1− ξ

K
)− A

2DK

N

∑
j=1

α2
j

jr
]dt.
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7. Conclusions

In this article, we obtained the approximation solutions of stochastic fractional-space
diffusion equations via the solutions of ordinary differential equations, which are called
limiting equations. This equation has never been studied before using a combination of
additive noise and fractional-space. We applied our results to many example such as
Fisher’s equation and the Ginzburg–Landau models. Additionally, we discussed the influ-
ence of degenerate additive noise on the stabilization of the approximate solutions. These
solutions are of considerable importance in understanding many important complex physi-
cal phenomena as fractional diffusion equations arise in the modeling of turbulent flow,
contaminant transport in groundwater flow, and chaotic dynamics of classical conservative
systems.
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