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Abstract: The paper considers the problem of algorithmic differentiation of information matrix
difference equations for calculating the information matrix derivatives in the information Kalman
filter. The equations are presented in the form of a matrix MWGS (modified weighted Gram–
Schmidt) transformation. The solution is based on the usage of special methods for the algorithmic
differentiation of matrix MWGS transformation of two types: forward (MWGS-LD) and backward
(MWGS-UD). The main result of the work is a new MWGS-based array algorithm for computing the
information matrix sensitivity equations. The algorithm is robust to machine round-off errors due
to the application of the MWGS orthogonalization procedure at each step. The obtained results are
applied to solve the problem of parameter identification for state-space models of discrete-time linear
stochastic systems. Numerical experiments confirm the efficiency of the proposed solution.

Keywords: algorithmic differentiation; information matrix; information filter; MWGS-orthgonalization;
array algorithms; sensitivity equation; parameter identification

1. Introduction

Matrix orthogonal transformations are widely used in solving various problems of
computational linear algebra [1].

The problem of calculating the values of the derivatives in matrix orthogonal transfor-
mations arises in automatic differentiation [2], perturbation and control theories, differential
geometry when solving such problems as calculating Lyapunov exponents [3,4], numerical
solutions of the matrix differential Riccati equation [5,6], and the Riccati sensitivity equa-
tion [7,8], computing higher-order derivatives in the experiment planning [9]. In the theory
of Kalman filtering [10–14], orthogonal transformations are used to efficiently compute the
solution of the matrix difference Riccati equation.

The methods for calculating the values of derivatives in matrix orthogonal transfor-
mations are similar in their properties to automatic (algorithmic) differentiation methods.
Three methods for calculating derivatives are currently most common:

• symbolic (analytical) differentiation;
• numerical differentiation;
• automatic (algorithmic) differentiation.

Symbolic differentiation allows one to obtain exact analytical formulas for the deriva-
tives of the elements of a parameterized matrix, but this approach requires significant
computational costs, and is not suitable for solving problems in real-time. With numerical
differentiation, the result depends significantly on many factors, for example, on the step
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size. On the contrary, algorithmic (automatic) differentiation does not allow one to calculate
expressions for derivatives or their tabular approximation, but does allow one to calculate
the values of the derivatives at a given point for given values of the function arguments.
This requires knowledge of the expression for the function, or at least a computer program
to calculate it.

Consider a rectangular parameterized matrix A(θ) and a diagonal matrix DA(θ),
where θ is a scalar real parameter. The problem of algorithmic differentiation of matrix
MWGS transformation (MWGS—the modified weighted Gram–Schmidt orthogonaliza-
tion [10]) is to find, at a given point θ = θ̂ a triangular (upper or lower) matrix of derivatives
B′θ
∣∣
θ=θ̂

and the diagonal derivative matrix (DB)′θ
∣∣
θ=θ̂

using known parameterized matri-
ces A(θ), DA(θ) and obtained as the result of MWGS transformation AT = BWT (where
ATDAA = BDBBT) triangular (upper or lower) matrix B with ones on the diagonal and
diagonal matrix DB .

Suppose that the domain of the parameter θ is such that the matrix A has full column
rank and the diagonal matrix DA > 0. In what follows, for convenience of presentation,
we denote A , A(θ̂) and DA , DA(θ̂). Then, we will call two pairs of matrices {A, DA}
and {B, DB} as MWGS-based arrays.

In our recent papers [15,16], we have proposed two methods for algorithmic differen-
tiation of the MWGS-based arrays. These computational methods are based on the forward
MWGS-LD orthogonalization ([16], p. 66) and the backward MWGS-UD orthogonalization
procedure ([10], p. 127).

In this paper, we further develop our recently obtained results. Our research aims to
construct a novel computational algorithm for evaluating the derivatives of MWGS factors
of information matrix Y. Firstly, we show how our early suggested methods for algorithmic
differentiation of the MWGS-based arrays can be applied to construct a new MWGS-based
array algorithm for computing the information matrix sensitivity equations. Secondly, we
demonstrate how the proposed algorithm can be efficiently applied to solve the parameter
identification problem when gradient-based optimization methods are used.

The paper is organized as follows. Section 2 provides basic definitions associated with
the information form of the Kalman filter, discusses the MWGS-based array algorithm for
computing the information matrix, and presents two algorithms for computing derivatives
of the MWGS-based arrays. Section 3 contains the main result of the paper—the new
MWGS-based array algorithm for computing the information matrix sensitivity equations.
Section 4 discusses the implementation details of the proposed algorithm and demonstrates
how it can be applied for solving the parameter identification problem of the one practical
stochastic system model. Finally, conclusions are made in Section 5.

2. Methodology
2.1. Information Kalman Filter and Information Matrix

The information Kalman filter (IKF) is an alternative formulation of the well-known
Kalman filter (KF) [17]. IKF differs from KF in that it computes not an error covariance
matrix P but its inverse matrix Y known as the information matrix. When there is no a
priori information about the initial state value, the IKF is particularly useful because it
easily starts from Y0 = 0. In the same case, the initial error covariance matrix Π0 is not
defined. Additionally, an implementation of the IKF could be computationally cheaper
when the size of the measurements vector is greater than the size of the state vector [11].
Information filter does not use the same state vector representation as KF. They utilize the
so-called information state d , Yx instead ([11], p. 263).

Consider a discrete-time linear stochastic system

xk+1 = Fkxk + Gkwk, k ≥ 0, (1)

zk+1 = Hk+1xk+1 + vk+1 (2)
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where xk ∈ Rn is the state and zk ∈ Rm are the measurements; k is a discrete-time instant.
The process noise wk ∈ Rq and the measurement noise vk ∈ Rm are Gaussian white-noise
processes with zero mean and covariance matrices Qk > 0 and Rk > 0. That means

E
{[

wk
vk

][
wT

j vT
j

]}
=

[
Qk 0
0 Rk

]
δkj (3)

where δkj denotes the Kronecker delta function. The initial state vector x0 ∼ N (x̄0, Π0).
Suppose that matrices Fk are invertible [11]. Consider the problem of information

filtering. It is to calculate at each discrete-time moment k the information state estimate,
dk|k = Yk|k x̂k|k given Zk

1 = {z1, . . . , zk}. The solution is obtained by the conventional IKF
equations, which are as follows [11]:

I. TIME UPDATE: The predicted information state estimate and the predicted informa-
tion matrix obey the difference equations

d̂k+1 = [I − LkGT
k ]F
−T
k d̂k|k, d̂0|0 = Y0 x̄0 . (4)

Yk+1 = [I − LkGT
k ]Ak, Y0|0 = Π−1

0 (5)

where
Ak , F−T

k Yk|kF−1
k , (6)

Lk = AkGkC−1
k , Ck = GT

k AkGk + Q−1
k . (7)

II. MEASUREMENT UPDATE: The updated (filtered) information state estimate d̂k+1|k+1
obeys

d̂k+1|k+1 = d̂k+1 + HT
k+1R−1

k+1zk+1 . (8)

The filtered information matrix satisfies the difference equation

Yk+1|k+1 = Yk+1 + HT
k+1R−1

k+1Hk+1 . (9)

Equations (4)–(9) can be derived from the KF formulas by taking into account the definitions
of the information matrix and the information state.

Furthermore, we will use the notations. Let B be a triangular matrix which can be
either a unit upper triangular matrix, i.e., B := U (with 1’s on the main diagonal) or a unit
lower triangular matrix, i.e., B := L. D is a diagonal matrix.

2.2. The MWGS-Based Array Algorithm for Computing the Information Matrix

Let us consider Equations (5)–(7) and (9). They allow one to compute information
matrix Yk|k at each discrete-time instant k. To improve the numerical robustness to ma-
chine round-off errors, we have proposed in [18] a new MWGS-based array algorithm for
computing the information matrices and the information states in IKF.

The MWGS-based array computations imply the use of numerically stable modified
weighted Gram–Schmidt (MWGS) orthogonalization procedure for updating the required
quantities. (The MWGS outperforms the conventional Gram–Schmidt algorithm for com-
putational accuracy [19].) In [18], we have used both the forward MWGS-LD and the
backward MWGS-UD orthogonalization procedures.

Each iteration of these IKF implementations has the following form: given a pair
of matrices {A,DA} (so-called the pre-arrays), compute a pair of matrices {B,DB} (the
post-arrays) using the MWGS orthogonalization procedure

AT = BWT (10)

where a rectangular matrix A ∈ Rr×s, the MWGS transformation matrix W ∈ Rr×s (r ≥ s)
produces the block triangular matrix B with 1’s on the main diagonal. A matrix B ∈ Rs×s

is either an upper triangular block matrix U or a lower triangular block matrix L such that
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AT DA A = B DB BT and WTDAW = DB (11)

where the diagonal matrices are DA ∈ Rr×r, DB ∈ Rs×s, and DA > 0; see ([10], Lemma
VI.4.1) for details.

We have proved ([18], Statement 1) that Algorithm 1 is algebraically equivalent to
the IKF given by Equations (4)–(9). Thus, we have obtained an alternative method for
calculating the information matrix Y within the MWGS-based array algorithm. A significant
advantage of Algorithm 1 is its numerical robustness to machine round-off errors. A
detailed discussion can be found in [18,20].

Algorithm 1 [18]. The MWGS-based array IKF.

INITIALIZATION. Let Y0 = Π−1
0 . Compute the modified Cholesky decomposition. (The modified Cholesky

decomposition has the form A = BADABT
A where A is a symmetric positive definite matrix, DA is a diagonal

matrix, and BA is a unit triangular (lower or upper) matrix [1,11].) Y0 = BY0 DY0 BT
Y0

. Set the initial values

d̂0|0 = Y0 x̄0 and BY0|0 = BY0 , DY0|0 = DY0 .
. FOR k = 0, . . . , K− 1 DO
I. TIME UPDATE. Apply the modified Cholesky decomposition for the process noise covariance matrix
Qk = BQk DQk BT

Qk
. Compute matrices B−1

Qk
and D−1

Qk
. Find the MWGS factors {BYk+1 , DYk+1} of matrix Yk+1 as

follows:
I.A. In the case of the forward MWGS-LD factorization (i.e., B = L), the following steps should be done:[

L−T
Qk

GT
k F−T

k LYk|k
0 F−T

k LYk|k

]
︸ ︷︷ ︸

Pre-array: AT
TU

=

[
LCk 0(

Lk LCk

)
LYk+1

]
︸ ︷︷ ︸

Post-array: LTU

WT
TU , (12)

WT
TU

[
D−1

Qk
0

0 DYk|k

]
︸ ︷︷ ︸
Pre-array: DATU

WTU =

[
DCk 0

0 DYk+1

]
︸ ︷︷ ︸
Post-array: DL TU

(13)

where WTU ∈ R(q+n)×(q+n) is the MWGS-LD transformation, the block unit triangular (lower) post-arrayL TU ∈
R(q+n)×(q+n), the diagonal post-array DL TU ∈ R(q+n)×(q+n). The resulted MWGS-LD factors {LYk+1 , DYk+1}
are simply read off from the resulting post-arrays L TU and DL TU .
I.B. In the case of the backward MWGS-LD factorization (i.e., B = U), one has to follow the next steps:[

F−T
k UYk|k 0

GT
k F−T

k UYk|k U−T
Qk

]
︸ ︷︷ ︸

Pre-array: DATU

=

[
UYk+1

(
LkUCk

)
0 UCk

]
︸ ︷︷ ︸

Post-array: UTU

WT
TU , (14)

WT
TU

[
DYk|k 0

0 D−1
Qk

]
︸ ︷︷ ︸
Pre-array: DATU

WTU =

[
DYk+1 0

0 DCk

]
︸ ︷︷ ︸
Post-array: DU TU

(15)

where WTU ∈ R(n+q)×(n+q) is the MWGS-UD transformation, the block unit triangular (upper) post-array
U TU ∈ R(n+q)×(n+q), the diagonal post-array DU TU ∈ R(n+q)×(n+q). Again, we can easily extract the required
MWGS-UD factors {UYk+1 , DYk+1} from the resulting post-arrays U TU and DU TU .
Given d̂k|k , find the predicted information state estimate:

d̂k+1 =
[

I −
(

LkBCk

)
B−1

Ck
GT

k

]
F−T

k d̂k|k (16)

where matrix product
(

LkBCk

)
is directly extracted either from the post-arrays L TU in (12) or from U TU in (14).

II. MEASUREMENT UPDATE. Apply the modified Cholesky factorization for the measurement noise co-
variance matrix Rk = BRk DRk BT

Rk
. Compute matrices B−1

Rk
and D−1

Rk
. Find the filtered MWGS factors

{BYk+1|k+1
, DYk+1|k+1

}: [
BYk+1 HT

k+1B−T
Rk+1

]
︸ ︷︷ ︸

Pre-array: AT
MU

=
[

BYk+1|k+1

]
︸ ︷︷ ︸

Post-array: BMU

WT
MU , (17)
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Algorithm 1. Cont.

WT
MU

[
DYk+1 0

0 D−1
Rk+1

]
︸ ︷︷ ︸
Pre-array: DAMU

WMU =
[

DYk+1|k+1

]
︸ ︷︷ ︸

Post-array: DBMU

(18)

where WMU ∈ R(n+m)×n is the MWGS transformation matrix, the block triangular post-array BMU ∈ Rn×n,
the diagonal post-array DBMU ∈ Rn×n. The resulting post-arrays BMU and DBMU are the MWGS factors
{BYk+1|k+1

, DYk+1|k+1
}.

Next, compute the filtered estimate d̂k+1|k+1 by (8).
. END.

2.3. Algorithmic Differentiation of the MWGS-Based Arrays

When solving practical problems of parameter identification [21], the discrete linear
stochastic model (1)–(2) is often parameterized. The latter means that the system matrices
could depend on the unknown parameter θ. Therefore, it should be estimated together
with the hidden state vector xk given measurements zk. In this case, any parameters’
estimation scheme includes two components, namely: the filtering method for computing
an identification criterion and the chosen optimization algorithm to identify the optimal
value θ̂?. Altogether, it is called the adaptive filtering scheme [22].

It is well-known that the gradient-based optimization algorithms converge fast and,
therefore, they are the preferred methods for practical implementation [8]. They require the
computation of the gradient of identification criterion. The latter leads to the problem of
the adaptive filter derivatives computation. The related vector- and matrix-type equations
are called the filter sensitivity equations with respect to unknown parameter θ.

Consider conventional information Kalman filter, presented by Equations (4)–(9),
and MWGS-based IKF (Algorithm 1). We can construct matrix sensitivity equations for
information matrix evaluating in the conventional IKF by direct differentiation of (5)–(7),
and (9). This solution is not hard, and it is as follows:

(Yk+1)
′
θ = [I − LkGT

k ](Ak)
′
θ − [(Lk)

′
θGT

k + Lk(GT
k )
′
θ ]Ak, (19)

(Ak)
′
θ = (F−T

k )′θYk|kF−1
k + F−T

k (Yk|k)
′
θ F−1

k + F−T
k Yk|k(F−1

k )′θ , (20)

(Lk)
′
θ = (Ak)

′
θGkC−1

k + Ak(Gk)
′
θC−1

k + AkGk(C−1
k )′θ , (21)

(Ck)
′
θ = (GT

k )
′
θ AkGk + GT

k (Ak)
′
θGk + GT

k Ak(Gk)
′
θ + (Q−1

k )′θ , (22)

(Yk+1|k+1)
′
θ = (Yk+1)

′
θ + (HT

k+1)
′
θ R−1

k+1Hk+1 + HT
k+1(R−1

k+1)
′
θ Hk+1

+HT
k+1R−1

k+1(Hk+1)
′
θ .

(23)

However, a corresponding solution is not obvious for the MWGS-based array IKF
(Algorithm 1). Finding new computational methods for evaluating the derivatives of
MWGS-factors of information matrix Y is the aim of our research.

Let us consider two of our methods for algorithmic differentiation of the MWGS-based
arrays. They were proposed in [15,16].

Case 1. Consider the forward MWGS-LD orthogonalization procedure (10) and (11),
where B := L (lower triangular matrix), DB := DL (diagonal matrix).
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Lemma 1 ([16]). Let entries of the pre-arrays A, DA in (11) be known differentiable functions of a
parameter θ. Consider the transformation (11) in Case 1. Given the derivatives of the pre-arrays A′θ
and (DA)′θ , we can calculate the corresponding derivatives of the post-arrays:

L′θ = L
(
L̄0 + L̄2 + ŪT

0
)
D−1
L , (DL)′θ = 2D0 +D2 (24)

where L̄0, D0, Ū0 are strictly lower triangular, diagonal and strictly upper triangular parts of the
matrix product WT(DA)′θL−T , respectively. D2 and L̄2 are diagonal and strictly lower triangular
parts of the product WT(DA)′θW.

Case 2. Consider the backward MWGS-UD orthogonalization procedure (10) and (11)
where B := U (upper triangular matrix), DB := DU (diagonal matrix).

Lemma 2 ([15]). Let entries of the pre-arrays A, DA in (11) be known differentiable functions of a
parameter θ. Consider the transformation (11) in Case 2. Given the derivatives of the pre-arrays A′θ
and (DA)′θ , we can calculate the corresponding derivatives of the post-arrays:

U ′θ = U
(
L̄T

0 + Ū0 + Ū2

)
D−1
U , (DU )′θ = 2D0 +D2 (25)

where L̄0, D0, Ū0 are strictly lower triangular, diagonal and strictly upper triangular parts of the
matrix product WT(DA)′θU−T , respectively. D2 and Ū2 are diagonal and strictly upper triangular
parts of the product WT(DA)′θW.

Applying Lemmas 1 and 2, we construct the corresponding algorithms for calculating
the values of derivatives in the MWGS-based arrays for given parametrized matrices A(θ)
and DA(θ).

Remark 1. Function MWGS-LD(A, DA) implements the forward MWGS orthogonalization
procedure.

Remark 2. Function MWGS-UD(A,DA) implements the backward MWGS orthogonalization pro-
cedure.

Thus, computational Algorithms 2 and 3 have the following properties:

1. They allow calculating, at a given point, the values of derivatives of elements of
the matrix factors obtained by MWGS transformation of the pair of parameterized
matrices. In this case, there is no need to calculate values of the derivatives of elements
of the MWGS transformation matrix.

2. These algorithms require simple addition and multiplication matrix operations, and
only one triangular and one diagonal matrix inversion operation. Therefore, they
have a simple structure to easily implement in program code.

3. Their correctness is strictly mathematically proved [15,16].
4. Their performance has been confirmed by practical examples [15,23].

It should be noted here that the results of Lemma 2 and Algorithm 3 have been success-
fully applied in [24] for constructing an efficient UD-based algorithm for the computation
of maximum likelihood sensitivity of continuous-discrete systems.
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Algorithm 2. Diff_LD (LD-based derivative computation).

. INPUT DATA: A(θ) ∈ Rr×s, DA(θ) ∈ Rr×r , θ = θ̂ ∈ Rp,

A′θi
=

{
akj(θ)

∂θi

}
, (DA)′θi

=
{

dk(θ)
∂θi

}
, i = 1, . . . , p.

. BEGIN

1 evaluate A← A(θ̂), DA ←DA(θ̂);
2 evaluate A′

θ̂i
← A′θi

∣∣∣
θi=θ̂i

, (DA)′θ̂i
← (DA)′θi

∣∣∣
θi=θ̂i

;

3 compute [L, DL, W]←MWGS-LD(A,DA);
. FOR i = 1, . . . , p DO

4 compute X←WTDAA′θ̂i
L−T ;

5 split X into three parts [L̄0 +D0 + Ū0]← X;
6 compute V ←WT(DA)′θ̂i

W;

7 split V into three parts [L̄2 +D2 + L̄T
2 ]← V;

8 obtain result (DL)′θ̂i
← 2D0 +D2;

9 obtain result L′
θ̂i
← L

(
L̄0 + L̄2 + ŪT

0
)
D−1
L .

. END FOR

. END.

. OUTPUT DATA: L ∈ Rs×s, DL ∈ Rs×s;
{
L′

θ̂i
, (DU )′θ̂i

}
, i = 1, . . . , p.

Algorithm 3. Diff_UD (UD-based derivative computation).

. INPUT DATA: A(θ) ∈ Rr×s, DA(θ) ∈ Rr×r , θ = θ̂ ∈ Rp,

A′θi
=

{
akj(θ)

∂θi

}
, (DA)′θi

=
{

dk(θ)
∂θi

}
, i = 1, . . . , p.

. BEGIN

1 evaluate A← A(θ̂), DA ←DA(θ̂);
2 evaluate A′

θ̂i
← A′θi

∣∣∣
θi=θ̂i

, (DA)′θ̂i
← (DA)′θi

∣∣∣
θi=θ̂i

;

3 compute [U , DU , W]←MWGS-UD(A,DA);
. FOR i = 1, . . . , p DO

4 compute X←WTDAA′θ̂i
U−T ;

5 split X into three parts [L̄0 +D0 + Ū0]← X;
6 compute V ←WT(DA)′θ̂i

W;

7 split V into three parts [ŪT
2 +D2 + Ū2]← V;

8 obtain result (DU )′θ̂i
← 2D0 +D2;

9 obtain result U ′
θ̂i
← U

(
L̄T

0 + Ū0 + Ū2
)
D−1
U .

. END FOR

. END.

. OUTPUT DATA: U ∈ Rs×s, DU ∈ Rs×s;
{
U ′

θ̂i
, (DU )′θ̂i

}
.

3. Main Result
The New MWGS-Based Array Algorithm for Computing the Information Matrix
Sensitivity Equations

Now, we are ready to present the main result—the new MWGS-based array algorithm
for computing the information matrix sensitivity equations. We are extending the function-
ality of Algorithm 1 so that it is able to calculate not only the values of information matrix
Y using MWGS-based arrays, but also the values of their derivatives.

Let us consider the given value of parameter θ = θ̂.
The new Algorithm 4 naturally extends any MWGS-based IKF implementation on the

information matrix sensitivities evaluation.
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Algorithm 4. The differentiated MWGS-based array.

INITIALIZATION. Let θ = θ̂. Evaluate the initial value of information matrix Y0 = Y0(θ̂). Find (Y0)
′
θ̂i

, i = 1, . . . , p.

Apply the modified Cholesky factorization Y0 = BY0 DY0 BT
Y0

. Find
{
(BY0 )

′
θ̂i

, (DY0 )
′
θ̂i

}
, i = 1, . . . , p. Set the

initial values {BY0|0 = BY0 , DY0|0 = DY0} and {(BY0|0 )
′
θ̂i
= (BY0 )

′
θ̂i

, (DY0|0 )
′
θ̂i
= (DY0 )

′
θ̂i
}.

. FOR k = 0, . . . , K− 1 DO
I. TIME UPDATE.
I.1 Evaluate matrices F̂k = Fk(θ̂), Ĝk = Gk(θ̂), and Q̂k = Qk(θ̂). Find (Fk)

′
θ̂i

, (Gk)
′
θ̂i

, and (Qk)
′
θ̂i

, i = 1, . . . , p.

I.2 Use the modified Cholesky decomposition for matrices Q̂k and (Qk)
′
θ̂i

to find {BQ̂k
, DQ̂k

}, and{
(BQk )

′
θ̂i

, (DQk )
′
θ̂i

}
, i = 1, . . . , p.

I.3 Given the MWGS factors {BYk|k , DYk|k} and their derivatives
{(BYk|k )

′
θ̂i

, (DYk|k )
′
θ̂i
}, find their predicted values {BYk+1 , DYk+1} and their derivatives {(BYk+1 )θ̂i

, (DYk+1 )
′
θ̂i
}

(i = 1, . . . , p) as follows:
I.A. In the case of the forward MWGS-LD factorization (i.e., B = L), the following steps should be taken:

1. Form the pre-arrays {AT
TU ,DATU } and their derivatives {(AT

TU)
′
θ̂i

, (DATU )
′
θ̂i
}, (i = 1, . . . , p):

AT
TU =

[
L−T

Q̂k
ĜT

k F̂−T
k LYk|k

0 F̂−T
k LYk|k

]
, DATU =

[
D−1

Q̂k
0

0 DYk|k

]
; (26)

(AT
TU)

′
θ̂i
=

[
(L−T

Q̂k
)′

θ̂i
(ĜT

k F̂−T
k LYk|k )

′
θ̂i

0 (F̂−T
k )′

θ̂i
(LYk|k )

′
θ̂i

]
, (DAMU )

′
θ̂i
=

[
(D−1

Q̂k
)′

θ̂i
0

0 (DYk|k )
′
θ̂i

]
. (27)

2. Apply Algorithm 2 where A := AT
TU , DA := DATU ; L := LTU , DL := DLTU .

3. Obtain the post-arrays {LTU ,DLTU } and their derivatives {(LTU)
′
θ̂i

, (DLTU )
′
θ̂i
}, (i = 1, . . . , p):

LTU =

[
LCk 0(

Lk LCk

)
LYk+1

]
, DLTU =

[
DCk 0

0 DYk+1

]
; (28)

(LTU)
′
θ̂i
=

[
(LCk )

′
θ̂i

0
(Lk LCk )

′
θ̂i

(LYk+1 )
′
θ̂i

]
, (DLTU )

′
θ̂i
=

[
(DCk )

′
θ̂i

0
0 (DYk+1 )

′
θ̂i

]
. (29)

4. Extract matrices {LYk+1 , DYk+1} and {(LYk+1 )
′
θ̂i

, (DYk+1 )
′
θ̂i
} (i = 1, . . . , p) from the post-arrays.

I.B. In the case of the backward MWGS-LD factorization (i.e., B = U), one has to take the next steps:

1. Form the pre-arrays {AT
TU ,DATU } and their derivatives {(AT

TU)
′
θ̂i

, (DATU )
′
θ̂i
}, (i = 1, . . . , p):

AT
TU =

[
F̂−T

k UYk|k 0
ĜT

k F̂−T
k UYk|k U−T

Q̂k

]
, DATU =

[
DYk|k 0

0 D−1
Q̂k

]
; (30)

(AT
TU)

′
θ̂i
=

[
(F̂−T

k UYk|k )
′
θ̂i

0

(ĜT
k F̂−T

k UYk|k )
′
θ̂i

(F̂−T
k )′

θ̂i
(U−T

Q̂k
)′

θ̂i

]
, (DAMU )

′
θ̂i
=

[
(DYk|k )

′
θ̂i

0

0 (D−1
Q̂k

)′
θ̂i

]
. (31)

2. Apply Algorithm 3, where A := AT
TU , DA := DATU ; L := UTU , DU := DUTU .

3. Obtain the post-arrays {UTU ,DUTU } and their derivatives {(UTU)
′
θ̂i

, (DUTU )
′
θ̂i
}, (i = 1, . . . , p):

UTU =

[
UYk+1

(
LkUCk

)
0 UCk

]
, DUTU =

[
DYk+1 0

0 DCk

]
; (32)

(UTU)
′
θ̂i
=

[
(UYk+1 )

′
θ̂i

(LkUCk )
′
θ̂i

0 (UCk )
′
θ̂i

]
, (DUTU )

′
θ̂i
=

[
(DYk+1 )

′
θ̂i

0
0 (DCk )

′
θ̂i

]
. (33)

4. Extract matrices {UYk+1 , DYk+1} and {(UYk+1 )
′
θ̂i

, (DYk+1 )
′
θ̂i
} (i = 1, . . . , p) from the post-arrays.

II. MEASUREMENT UPDATE.
II.1 Evaluate matrices Ĥk = Hk(θ̂) and R̂k = Rk(θ̂). Find (Hk)

′
θ̂i

and (Rk)
′
θ̂i

, i = 1, . . . , p.

II.2 Use the modified Cholesky decomposition for matrices R̂k and (Rk)
′
θ̂i

to find {BR̂k
, DR̂k

}, and{
(BRk )

′
θ̂i

, (DRk )
′
θ̂i

}
, i = 1, . . . , p.

II.3 Given the MWGS factors {BYk+1 , DYk+1} and their derivatives {(BYk+1 )
′
θ̂i

, (DYk+1 )
′
θ̂i
}, find the corresponding

pairs of matrices {BYk+1|k+1
, DYk+1|k+1

} and {(BYk+1|k+1
)θ̂i

, (DYk+1|k+1
)′

θ̂i
} (i = 1, . . . , p) as follows:



Mathematics 2022, 10, 126 9 of 16

Algorithm 4. Cont.

1. Form the pre-arrays {AT
MU ,DAMU } and their derivatives {(AT

MU)
′
θ̂i

, (DAMU )
′
θ̂i
}, (i = 1, . . . , p):

AT
MU =

[
BYk+1 ĤT

k+1B−T
R̂k+1

]
, DAMU =

[
DYk+1 0

0 D−1
R̂k+1

]
; (34)

(AT
MU)

′
θ̂i
=
[
(BYk+1 )

′
θ̂i

(ĤT
k+1B−T

R̂k+1
)′

θ̂i

]
, (DAMU )

′
θ̂i
=

[
(DYk+1 )

′
θ̂i

0

0 (D−1
R̂k+1

)′
θ̂i

]
. (35)

2. Apply Algorithm 2 in Case 1 or Algorithm 3 in Case 2, where A := AT
MU , DA := DAMU ; B := BMU ,

DB := DBMU .
3. Obtain the post-arrays {BMU ,DBMU } and their derivatives {(BMU)

′
θ̂i

, (DBMU )
′
θ̂i
}, (i = 1, . . . , p):

BMU =
[

BYk+1|k+1

]
, DBMU =

[
DYk+1|k+1

]
; (36)

(BMU)
′
θ̂i
=
[
(BYk+1|k+1

)′
θ̂i

]
, (DBMU )

′
θ̂i
=
[
(DYk+1|k+1

)′
θ̂i

]
. (37)

4. Extract matrices {BYk+1|k+1
, DYk+1|k+1

}, {(BYk+1|k+1
)′

θ̂i
, (DYk+1|k+1

)′
θ̂i
} (i = 1, . . . , p) from the post-arrays.

. END.

4. Discussion
4.1. Implementation Details of Algorithm 4

Let us consider the computational scheme of the constructed algorithm in detail. The
new Algorithm 4 is built based on one of two variants of the MWGS transformation and the
corresponding method of algorithmic differentiation of such an orthogonal transformation.
Therefore, Algorithms 2 and 3 can be considered as basic computational tools (or tech-
nologies) for the implementation of Algorithm 4. From this point of view, the technology
of software implementation of the new algorithmic differentiation algorithm seems to be
simple and understandable. It consists of only three simple steps:

1. Fill in block pre-arrays with available data.
2. Execute an algorithm for calculating derivatives in a matrix MWGS transformation of

one of the types corresponding to Case 1 or Case 2.
3. As a result, get block post-arrays and read off the required results from them in the

form of matrix blocks.

The implementation scheme of the measurement update step in Algorithm 4 based on
the MWGS-UD transformation is shown in Figure 1. Similarly, a general scheme for the
MWGS-LD transformation can also be represented.

The computational complexity of the novel Algorithm 4 is mainly determined by the
computational complexity of Algorithm 1, i.e., the MWGS-based information-form Kalman
filtering algorithm. A detailed analysis of its computational complexity is given in ([18],
Section 5.2).

It was shown that conventional IKF and Algorithm 1 have the complexity of the same
order. However, IKF requires four full matrix inversions while calculating the information
matrix Y. At the same time, Algorithm 1 requires only one full matrix inversion of the
matrix Fk. Besides, if the matrices Qk and Rk are positively definite and do not depend
on k, then the modified Cholesky decomposition needs to be performed only once at the
initialization step of the MWGS-based algorithm. If matrix Fk is not singular and also does
not depend on k, then the inversion of matrix F also needs to be performed only once, i.e.,
at the initialization step of the MWGS-based algorithm. Algorithm 4 requires additionally
only one inversion of the unit triangular matrix and one inversion of the diagonal matrix
(see Algorithm 2 or 3). Therefore, no additional inversions of the full matrices are required.
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bla

pre-arrays

{A, DA} bla

post-arrays

{U, DU}

MWGS-UD

Input:pre-arrays {A, DA},{A′, D′A}

A>

UYk+1
Ĥ>k+1U

−>
R̂k+1

DADYk+1
D−1

R̂k+1

(A>)′
(UYk+1

)′ (Ĥ>k+1U
−>
R̂k+1

)′

D′AD′Yk+1
(D−1

R̂k+1
)′

Output:post-arrays {U, DU},{U ′, D′U}

U
UYk+1|k+1

DUDYk+1|k+1

U ′
U ′Yk+1|k+1

D′UD′Yk+1|k+1

Diff UD

Figure 1. Implementation scheme of the measurement update step in Algorithm 4 based on the
MWGS-UD transformation.

To summarize, the information matrix sensitivity evaluation based on the conventional
IKF (Equations (5)–(7) and (19)–(23)) requires eight inversions of the full matrices, while
the new Algorithm 4 avoids the full matrix inversion operations and requires the inverse
of the unit triangular and diagonal matrices, only. Thus, we can conclude that the newly
proposed algorithm is computationally efficient compared to the conventional IKF.

4.2. Application of the Results Obtained to the Problem of Parameter Identification

In practice, the matrices characterizing discrete-time linear stochastic system (1)–(2)
are often known up to certain parameters. Consider an important problem of parameter
identification [21]. Assume that the elements of system matrices Fk ∈ Rn×n, Gk ∈ Rn×q,
Hk ∈ Rm×n, Qk ∈ Rq×q, Rk ∈ Rm×m, and Π0 ∈ Rn×n are functions of unknown system
parameters vector θ ∈ Rp. It needs to be identified. For the sake of simplicity, instead of
Fk(θ), Gk(θ), Hk(θ) etc., we will write Fk, Gk, Hk, etc.

We wish to demonstrate how the new Algorithm 4 can be applied to solve the parame-
ter identification problem of the practical stochastic system model.

Consider the instrument error model for one channel of the INS (Inertial Navigation
System) given as follows [25]:

∆vx
β

mAx
nGy


k+1

=


1 −τg τ 0

τ/a 1 0 τ
0 0 b1 0
0 0 0 1




∆vx
β

mAx
nGy


k

+


0
0
a1
0

wk, (38)

zk+1 = (∆vx)k+1 + vk+1 (39)

where wk ∼ N (0, 1), vk ∼ N (0, 0.01), x0 ∼ N (0, I4) and subscripts x, y, A, G denote “axis
Ox”, “axis Oy”, “Accelerometer”, and “Gyro”, respectively.

The state vector xk =
[
∆vx, β, mAx, nGy

]T where the first element is the random
error in reading velocity along axis Ox of a GSP, the second element is the angular error in
determining the local vertical, the third one is the accelerometer reading random error, and
the fourth one is the gyro constant drift rate.
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The constants τ, g, a are, respectively, equal to the rate of data arrival and pro-
cessing, the gravity acceleration, and the semi-major axis of the Earth. The quantities

a1 = H1

√
1− b2

1 ' H1
√

2γτ and b1 = e−γτ ' 1− γτ. The constants H1 and γ are el-

ements of the accepted model of the correlation function RmAx = H2
1 e−γ|τ|. Numerical

values of the model parameters are given in Table 1.

Table 1. Numerical values of parameters.

Parameter Value

τ 1 s
g 9.81 m/s2

a 0.6378245 · 107 m
b1 e−γτ ' 1− γτ

a1 H1

√
1− b2

1 ' H1
√

2γτ

nGy 0.48 · 10−6 rad/s
H1 0.10 · 10−3 m/s2

γ 0.20 · 10−3 s−1

vk σξk , ξk ∼ N (0, 1)
σ 0.1 m/s
wk wk ∼ N (0, 1)

Equations (38) and (39) correspond to the general model (1)–(2). Note that, in our case,
all system model matrices do not depend on k.

Let us suppose that parameter γ is unknown and needs to be identified. This means
that the model parameter θ = γ, and therefore F = F(θ), G = G(θ).

Solving the problem of parameter identification, we use the Active Principle of Adap-
tation (APA) [26–29], which consists of constructing an Auxiliary Performance Index
(API) [23,28,30] and minimizing it with the use of a gradient-based numerical procedure.

The APA approach to system adaption within the parameter uncertainty differs in
the fact that it suggests an indirect state prediction error control in the API form. It has to
satisfy two main requirements:

• it depends on the system observable values only;
• it attains its minimum coincidently with the Original Performance Index (OPI).

The API satisfies a relation

API = OPI + const,

if the OPI is defined as the expected (Euclidean) norm of the state prediction error. Thus
API and OPI have the one and the same minimizing argument θ†.

In order to construct the API, we build a Standard Observable Model (SOM), i.e.,
we perform the corresponding transformation of the basis in the state space from the
representation (1)–(2). Model

x∗k+1 = F∗(θ)x∗k + G∗(θ)wk, k ≥ 0, (40)

zk+1 = H∗x∗k+1 + vk+1 (41)

is equivalent to the original model (1)–(2) and is its canonical representation, where x∗k is
the new state vector; F∗(θ), G∗(θ), and H∗ are matrices of the following form:

G∗ = τa1


0
1

1 + b1
1− ρ + b1 + b2

1

, H∗ =
[

1 0 0 0
]
, ρ = τ2g/a , (42)
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F∗ =


0 1 0 0
0 0 1 0
0 0 0 1
−α4 −α3 −α2 −α1

,

α4 = b1(1 + ρ),
α3 = −b1(3 + ρ)− (1 + ρ),
α2 = 3b1 + (3 + ρ),
α1 = −b1 − 3.

(43)

From representation (42), (43) it follows that the maximum observability index of the system
is s = 4.

Using the results of [26–28], we construct the auxiliary performance index (API)

Jε(θ) ,
1
2
E
{

εk(θ )
Tεk(θ )

}
, (44)

for which the auxiliary process is written in the form:

εk = S(Zk
k+1−s)− x̂k+1−s = [zk−3, zk−2, zk−1, zk]

T − x̂k−3 (45)

where x̂k is the prediction state estimate obtained in an adaptive filter.
Next, to get a reasonable estimate for (44), we replace it by the realizable (workable)

performance index

Jε(θ, K) =
1

2K

k

∑
j=k−K+1

ε j(θ )
Tε j(θ ). (46)

With the purpose of finding the optimal value θ† of the unknown parameter θ and to
minimize the API (46), we can use existing methods of numerical optimization. Moreover,
all non-search methods require the calculation of the API gradient. Assume that the
gradient-based optimization method is chosen for the parameter identification procedure.
Then, from (46), we can write the expression for calculating the API gradient:

∂Jε(θ, K)
∂θ

=
1
K

k

∑
j=k−K+1

εT
j (θ)

∂ε j(θ)

∂θ
. (47)

Evaluating (47) requires the computation of sensitivities (partial derivatives) of the auxiliary
process ε j with respect to the adjustable parameter θ. Various methods for calculating the
sensitivities based on the standard Kalman filter are discussed in detail in [8].

Now, we are ready to demonstrate how the new Algorithm 4 can be applied for
constructing a computational scheme for the numerical identification of the parameter θ
based on the API approach.

Consider again the system model (42)–(43). Denote for simplicity F = F∗(θ), G =
G∗(θ), H = H∗, x̄0 = x̄∗0(θ), Π0 = Π∗0(θ). Let θ = γ, Y0 = Π−1

0 , d̂0|0 = Y0 x̄0.
The identification of unknown parameter θ and the estimation of state vector xk of the

system (38)–(39) according to the criterion

θ† = θ̂min = argmin
D(θ)

Jε(θ, K) (48)

can be performed simultaneously by the following algorithm.
Let us consider the practical application of Algorithm 5 to identify the unknown value

of γ in the model (38)–(39). We have simulated the sequence of output signals Z200
1 with

the “true” value of γ† = 0.0002. All computer codes were constructed in MATLAB.
In order to conduct our numerical experiments, we have implemented Algorithms 1–5

as the corresponding MATLAB functions. Then, we have calculated the API (46) and the API
gradient (47) depending on different values of γ. Results are illustrated by Figures 2 and 3.
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Algorithm 5. The API-based parameter identification computational scheme.

BEGIN
X Assign an initial parameter estimate θ̂i for i = 0.

REPEAT
1◦ Take the current point θ̂i .
2◦ Evaluate the system matrices for (42)–(43) at θ̂i :

F∗ := F?(θ̂i) , G? := G∗(θ̂i).
3◦ Evaluate the matrix derivatives (F∗)′θ and (G∗)′θ at θ̂i .
4◦ Given the output data ZK

1 = [ z1, · · · , zK ]T , compute a value of the API at θ̂i using (46)
where the auxiliary process ε j(θ̂

i) (45) can be evaluated as follows:

ε j(θ̂
i) = Zj

j−3 − x̂j−3 = Zj
j−3 −Yj−3

−1 d̂j−3. (49)

The information matrix Yj = BYj DYj B
T
Yj

and information state estimate d̂j can be computed

according to Algorithm 1 (the MWGS-based array IKF).
5◦ Evaluate the API gradient (47) at θi using the results of Step 3◦ and the Algorithm 4. Wherein

∂ε j(θ)

∂θ
= −

(
∂Yj−3

∂θ

)−1

d̂j−3 − (Yj−3)
−1 ∂d̂j−3

∂θ
, (50)

∂Yj

∂θ
=

∂(BYj DYj B
T
Yj
)

∂θ
are partial derivatives of information matrix Yj. The partial derivative

vector
∂d̂j

∂θ
can be evaluated by direct differentiation of (16).

6◦ Find θi+1 by the gradient-based optimization procedure

θ̂i+1 = θ̂i − βi
∂Jε(θ, K)

∂θ

∣∣∣∣
θ=θ̂i

(51)

where scalar step size parameter β j is designed to ensure that Jε(θ̂i+1, K) ≤ Jε(θ̂i , K) + e
(small e > 0).

7◦ i := i + 1
UNTIL a stopping criterion is satisfied.

END

Figure 2. The values of the API identification criterion Jε(θ, K) depending on values of parameter θ,
calculated using Algorithms 1 and 5.
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Figure 3. The values of the API gradient
∂Jε(θ, K)

∂θ
depending on values of parameter θ, calculated

using Algorithms 4 and 5.

As can be seen from these figures, the minimum point of the API coincides with the
true value of parameter θ = γ†. Furthermore, a plot of the API gradient has negative
values to the left and positive values to the right of the zero point, which correspond to the
minimum of the API. All this evidence substantiates our theoretical derivations.

Further to solve a parameter identification problem, we apply the MATLAB Opti-
mization Toolbox with the built-in function fminunc, which implements the gradient-type
method. Algorithm 5 was incorporated into the optimization method fminunc to compute
the API and its gradient. We have chosen the initial value θ̂0 = 0.001 and the stopping
criteria epsf=10−6, epsx=10−6.

Results summarized in Table 2 show that the computed estimate θ̂ comes close to the
true parameter value γ†.

Table 2. Performance of the API-based identification of the model parameter γ.

“True” value γ† 0.0002
Resulting estimate θ̂min 1.9999 · 10−4

Jε(θ̂min, K) 0.0196
Relative estimation error ||γ† − θ̂min||/||θ̂min|| 7.8173 · 10−6

So, we conclude that the newly constructed Algorithm 4 can be efficiently applied to
solve the parameter identification problem when the gradient-based optimization method
is used.

5. Conclusions

This paper presents the new MWGS-based array algorithm for computing the informa-
tion matrix sensitivity equations. We have extended the functionality of the MWGS-based
information-form Kalman filtering methods so that they are able to calculate not only the
values of the information matrix using the MWGS-based arrays, but also the values of
their derivatives. The proposed algorithm is robust to machine round-off errors due to the
application of the MWGS orthogonalization procedure at each step.

Moreover, we have demonstrated how the new Algorithm 4 can be applied for solving
the parameter identification problem of the one practical stochastic system model, i.e., a
simplified version of the instrument error model of the INS. We also have suggested the
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new API-based parameter identification computational scheme. Numerical experiments
conducted in MATLAB confirm the efficiency of the proposed solution.
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