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Abstract: In this paper, exact solutions with a linear velocity field are sought for the gas dynamics
equations in the case of the special state equation and the state equation of a monatomic gas. These
state equations extend the transformation group admitted by the system to 12 and 14 parameters, re-
spectively. Invariant submodels of rank one are constructed from two three-dimensional subalgebras
of the corresponding Lie algebras, and exact solutions with a linear velocity field with inhomo-
geneous deformation are obtained. On the one hand of the special state equation, the submodel
describes an isochoric vortex motion of particles, isobaric along each world line and restricted by
a moving plane. The motions of particles occur along parabolas and along rays in parallel planes.
The spherical volume of particles turns into an ellipsoid at finite moments of time, and as time
tends to infinity, the particles end up on an infinite strip of finite width. On the other hand of the
state equation of a monatomic gas, the submodel describes vortex compaction to the origin and the
subsequent expansion of gas particles in half-spaces. The motion of any allocated volume of gas
retains a spherical shape. It is shown that for any positive moment of time, it is possible to choose
the radius of a spherical volume such that the characteristic conoid beginning from its center never
reaches particles outside this volume. As a result of the generalization of the solutions with a linear
velocity field, exact solutions of a wider class are obtained without conditions of invariance of density
and pressure with respect to the selected three-dimensional subalgebras.

Keywords: gas dynamics equations; state equation; monatomic gas; linear velocity field; inhomoge-
neous deformation; group analysis; exact solution

1. Introduction

Group analysis of differential equations is a powerful tool for obtaining exact solu-
tions to nonlinear differential equations [1,2]. The gas dynamics equations have been well
studied from the point of view of group analysis within the framework of the program “Sub-
models” [3]. This became possible thanks to the outstanding scientist Ovsyannikov, who
sparked interest in this field of research. As a result of the research, a group classification
with respect to the state equation was carried out, and optimal systems of subalgebras [4–9]
and submodels [10,11] were obtained for various state equations. In addition, many types
of motions were investigated, for example, barochronous [12] and isothermal [13], with a
linear velocity field [14–16]. In this paper, new exact solutions with a linear velocity field
are sought.

The motion of a continuous medium with a linear velocity field had been studied
since the XIX century by Dirichlet and Riemann [17,18]. In their works, they considered
motions with the homogeneous deformation of an incompressible fluid. It was assumed
that the liquid moves in a force field caused by the mutual attraction of particles according
to Newton’s law of universal gravitation. Ovsyannikov and Dyson [19,20] independently
showed that for a polytropic gas, the system of the gas dynamics equations is reduced to a
system of nine ordinary differential equations of the second order. Several first integrals of
the system were found. The development of the mathematical theory of these equations
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were obtained in the works of Andreev [21], Bogoyavlensky [22], Nemchinov [23], etc.
Some of the last works were [24–28]. The general form of the solution to the gas dynamics
equations with an arbitrary state equation with a linear velocity field with pressure and
density depending on time is determined by an autonomous system of ordinary differential
equations in [29]. In addition, there is the interesting paper where the author considers a
solution possessing linearity with respect to a part of the space coordinates (one or two
coordinates) [30].

In order to construct exact solutions, it is necessary to construct submodels, which are
the gas dynamics equations written in terms of invariants. The rank of the submodel is the
number of independent variables. In this paper, the gas dynamics equations are considered
in the case of the special state equation (a pressure equals to the sum of two arbitrary
functions of density and entropy) and in the case of the state equation of a monatomic
gas. 12-dimensional Lie algebra L12 and the 14-dimensional Lie algebra L14 correspond
to the transformation groups admitted by the gas dynamics equations with specified
state equations. All subalgebras of these Lie algebras up to internal automorphisms were
listed in optimal systems of nonsimilar subalgebras [6,7]. The constructed submodels and
description of particle motion for small-dimensional subalgebras are given in [31–37]. In
order to construct submodels, two three-dimensional subalgebras are selected from the Lie
algebras L12 and L14, and invariant submodels of rank one are constructed. Exact solutions
of the gas dynamics equations with a linear velocity field are obtained from the submodels.
Particle motion is investigated for the obtained exact solutions.

A different approach is also used to obtain exact solutions. If, initially, for the gas
dynamics equations with an arbitrary state equation, a representation of the solution
with a linear velocity field is specified, then a classification of submodels according to
the state equations is obtained. In this paper, the submodel is selected which generalizes
representations of velocities of obtained invariant submodels for the two types of state
equations. Exact solutions are obtained and particle trajectories are plotted.

2. Symmetries of Gas Dynamics Equations and Solutions with a Linear Velocity Field

We consider the gas dynamics equations as follows [38]:

~ut + (~u · ∇)~u + ρ−1∇p = 0,

ρt + (~u · ∇)ρ + ρ∇ · ~u = 0,

St + (~u · ∇)S = 0 or pt + (~u · ∇)p + ρa2
c∇ · ~u = 0,

(1)

where t and ~x are independent variables; ~u is a velocity; p is a pressure; ρ is a density; and
S is an entropy, with an arbitrary state equation:

p = f (ρ, S). (2)

In Equation (1) in the Cartesian coordinate system, we have:

~x = x~i + y~j + z~k, ∇ =~i∂x +~j∂y +~k∂z, ~u = u~i + v~j + w~k,

where~i,~j, and~k is the orthonormal basis.
The sound velocity ac > 0 is defined by formula [38]:

a2
c =

dp
dρ
|S=const = fρ(ρ, S). (3)

The gas dynamics Equation (1) with an arbitrary state Equation (2) are invariant under
the action Galilean group extended by uniform dilatation:
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~x ′ = ~x +~a (space translations);

t ′ = t + a0 (time translation);

~x ′ = O~x,~u ′ = O~u, OOT = E, det O = 1 (rotations);

~x ′ = ~x + t~b,~u ′ = ~u +~b (Galilean translations);

t ′ = ct,~x ′ = c~x (uniform dilatation).

(4)

The transformation group (4) corresponds to an 11-dimensional Lie algebra L11 with
the basis generators in the Cartesian coordinate system [3,39]:

X1 = ∂x, X2 = ∂y, X3 = ∂z,

X4 = t∂x + ∂u, X5 = t∂y + ∂v, X6 = t∂z + ∂w,

X7 = y∂z − z∂y + v∂w − w∂v, X8 = z∂x − x∂z + w∂u − u∂w,

X9 = x∂y − y∂x + u∂v − v∂u, X10 = ∂t,

X11 = t∂t + x∂x + y∂y + z∂z.

(5)

In the case of special state equation [3]:

p = f (ρ) + h(S) (6)

the group (4) also includes the following transformation:

p ′ = p + p0 (pressure translation). (7)

The Lie algebra L11 is extended to a 12-dimensional Lie algebra L12, and the generator

Y1 = ∂p

is added to the basis generators of L11 (5). The Lie algebra L12 decomposes into the direct
sum of two ideals L12 = L11 ⊕Y1.

In the case of a monatomic gas [3], we have the state equation:

p = f (S)ρ
5
3 . (8)

Remark 1. The system (1), (2) admits the equivalence transformation S′ = K(S), therefore, in
what follows, we will assume in (6), (8) instead of h(S), f (S) just S [40].

For the state Equation (8), the group (4) also includes the following transformations:

t′ = c1t, ~u′ =
~u
c1

, ρ′ =
ρ

c3
1

, p′ =
p
c5

1
(dilatations);

ρ′ = gρ, p′ = gp, S′ = S

g
2
3

(dilatations of thermodynamic parameters of the gas);

t′ =
t

1− f t
, ~x′ =

~x
1− f t

, ~u′ = f~x + (1− f t)~u,

ρ′ = (1− f t)3ρ, p′ = (1− f t)5 p (projective transformation);

(9)

and the Lie algebra L11 is extended to a 14-dimensional Lie algebra L14. In this case,
generators
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X12 = t2∂t + tx∂x + ty∂y + tz∂z + (x− tu)∂u + (y− tv)∂v + (z− tw)∂w−
−3tρ∂ρ − 5tp∂p,

X13 = t∂t − u∂u − v∂v − w∂w − 3ρ∂ρ − 5p∂p,

X14 = ρ∂ρ + p∂p − 2
3 S∂S

(10)

are added to basis generators of L11 (5).
A solution with a linear velocity field has the form:

~u = A(t)~x + ~u0(t), (11)

where A(t) is matrix 3× 3, and ~u0(t) is a 3-dimensional vector. If ~u0 = 0, then (11) is a
solution with uniform deformation. If ~u0 6= 0, then (11) is a solution with an inhomoge-
neous deformation. It is assumed that the state equation is (2). Many of the solutions with
a linear velocity field are obtained from invariants for 4-dimensional subalgebras. In [14], a
complete classification of submodels with a solution in the form of a linear velocity field
was carried out according to the types of state equations.

3. Exact Solutions of the Gas Dynamics Equations with Special State Equation

We consider the basis generators of a 3-dimensional subalgebra 3.36 from the optimal
system of nonsimilar subalgebras of Lie algebra L12 [6]:

X1 = ∂x, X3 + X4 = ∂z + t∂x + ∂u,

aX2 + bX3 + γY1 = a∂y + b∂z + γ∂p, a2 + b2 = 1.
(12)

The coefficient γ is equal to 1 in the case of Lie algebra L12 and equal to 0 in the case
of Lie algebra L11. For γ = 0, we have the case of subalgebra 3.44 from L11 [41].

The invariants of subalgebra (12) are as follows:

t, u +
b
a

y− z, v, w, ρ, p− γ
y
a

, a 6= 0. (13)

The case a = 0 gives us a partially invariant submodel of rank 2 and defect 1.
Representation of the invariant solution from (13) has the form

u = u1(t)−
b
a

y + z, v = v(t), w = w(t), ρ = ρ(t),

p = p1(t) + γ
y
a

, S = S1(t) + γ
y
a

, γ = 0∨ 1, a2 + b2 = 1.
(14)

Substituting (14) into (1) and (6), we obtain the invariant submodel:

u1t =
b
a

v− w, vt = −ρ−1 γ

a
, wt = 0, ρt = 0, S1t = −

γ

a
v. (15)

The exact solution of the system of Equations (1) and (6) from (14) and (15) is:

u = − b
a

y + z− γb
2a2ρ0

t2 +

(
b
a

v0 − w0

)
t + u0,

v = − γ

aρ0
t + v0, w = w0, ρ = ρ0, p = γ

y
a
+

γ2

2a2ρ0
t2 − γ

a
v0t− p0,

S = γ
y
a
+

γ2

2a2ρ0
t2 − γ

a
v0t + S0.

(16)

On applying Galilean translations (4) with~b = (−u0,−v0,−w0) and pressure transla-
tion (7) to the solution (16), we have that u0 = v0 = w0 = p0 = 0.
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The motion of the particles is given by the following equation [38]:

d~x
dt

= ~u(~x, t). (17)

Integral curves of the equation (17) are the world lines of particles in space R4(t,~x),
the projection of which in R3(~x) are particle trajectories. From Equations (16) and (17),
world lines have the form:

x = (aC3 − bC2)t + aC1, y = − γ

2aρ0
t2 + aC2, z = aC3. (18)

From the generators of subalgebra (12) and Lie equations [1]

∂x̄
∂a

= ξ(x̄), x̄|a=0 = x (19)

it follows that:
x̄ = x + ξ;

x̄ = x + ηt, z̄ = z + η, ū = u + η;

ȳ = y + aζ, z̄ = z + bζ, p̄ = p + ζ.

(20)

Applying the superposition of transformations (20) to Equation (18) with parameters

ξ = −aC1, η = bC2 − aC3, ζ = −C2,

we obtain:
x = 0, y = − γ

2aρ0
t2, z = 0. (21)

The trajectories (21) describe Oy axis with y ≤ 0 for a > 0. From this, we can reproduce
the following formulas using (20):

x = ηt + ξ, y = − γ

2aρ0
t2 + aζ, z = bζ + η. (22)

Jacobian J = |∂~x/∂~x0| [41] of transformation (22) is equal to a 6= 0, where~x0 = (ξ, ζ, η).
This means that the world lines of particles do not intersect. The vortex is ~ω = (wy −
vz, uz −wx, vx − uy) = (0, 1, b/a) [38]. The motion of particles is vortex and is restricted by

moving plane y = − γ

2aρ0
t2 for p ≥ 0. The pressure is constant along the world line and

has the value p = γζ.
For η = 0, the trajectories (22) are rays. If the t variable is eliminated in (22) for η 6= 0,

we obtain the following formulas of trajectories:

y = −γ(x− ξ)2

2aρ0η2 + aζ, z = bζ + η. (23)

The trajectories (23) are parabolas in each plane z = const, in which the vertex of
the parabola is the point (ξ, aζ). The parabolas (22) are illustrated in the Figure 1. For
subalgebra 3.44 from L11, the world lines of particles are straight lines in a uniformly
moving coordinate system [41].

Let the formulas (22) satisfy the initial conditions

x(t0) = x0, y(t0) = y0, z(t0) = z0,
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where x0, y0, z0 are local Lagrangian coordinates. In this case, the formulas (22) have
the form:

x =

(
z0 −

b
a

y0 −
γbt2

0
2a2ρ0

)
t + x0 − t0z0 +

b
a

t0y0 +
γbt3

0
2a2ρ0

,

y = − γt2

2aρ0
+ y0 +

γt2
0

2aρ0
, z = z0.

(24)

Figure 1. The trajectories (22) with γ = 1, a = 1, b = 0, ρ0 =
1
2

, ξ = 1; 2; 3, η = 1, ζ = 1. For
t = −1..0, the trajectories are indicated by a dotted line; for t = 0..1, the trajectories are indicated by a
solid line.

From now on, we make the following assumption: b = 0, then a = 1. Let the
particles (24) be on the sphere with radius r and centre (x1, y1, z1) at time t = t0:

(x0 − x1)
2 + (y0 − y1)

2 + (z0 − z1)
2 = r2. (25)

We obtain from Equations (24) and (25) location of the particles

x2 + y2 +
(
(t− t0)

2 + 1
)
z2 − 2xz(t− t0)− 2x1x + Ay + Bz = C,

A =
γ(t2 − t2

0)

ρ0
− 2y1, B = 2x1(t− t0)− 2z1,

C = r2 − x2
1 − y2

1 − z2
1 +

γ(t2 − t2
0)

ρ0
y1 −

γ2(t2 − t2
0)

2

4ρ2
0

.

(26)

Let us rotate the coordinate axes by the α angle

x = x̃ cos α− z̃ sin α, z = x̃ sin α + z̃ cos α. (27)

After substituting (27) into (26), we find the angle α equating the coefficient at x̃z̃
to zero

tan 2α =
2

t− t0
⇒ α =

1
2

arctan
2

t− t0
+

π

2
n, n ∈ Z. (28)

If t→ ∞, then α→ 0. Let us choose α =
1
2

arctan
2

t− t0
from (28), then Equation (26)

may be written in the following form:
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A1 x̃2 + y2 + B1z̃2 + A2 x̃ + B2z̃ + Ay = C,

A1 = (t− t0)
2 sin2 α− (t− t0) sin 2α + 1,

B1 = (t− t0)
2 cos2 α + (t− t0) sin 2α + 1,

A2 = B sin α− 2x1 cos α,

B2 = B cos α + 2x1 sin α;

sin α =
1√
2

√
1− t− t0√

(t− t0)2 + 4
, cos α =

1√
2

√
1 +

t− t0√
(t− t0)2 + 4

,

sin 2α =
2√

(t− t0)2 + 4
, cos 2α =

t− t0√
(t− t0)2 + 4

,

sin2 α =
1
2
− t− t0

2
√
(t− t0)2 + 4

, cos2 α =
1
2
+

t− t0

2
√
(t− t0)2 + 4

.

(29)

From Equation (29), the canonical form of a second-order surface has the follow-
ing form: (

x̃ +
A2

2A1

)2

K
A1

+

(
y +

A
2

)2

K
+

(
z̃ +

B2

2B1

)2

K
B1

= 1,

K = C +
A2

2
4A1

+
B2

2
4B1

+
A2

4
.

(30)

Equation (30) defines the ellipsoid at t 6= t0 (Figure 2). Calculations by the MAPLE
computer mathematics system give us the following limits:

lim
t→∞

√
K
A1

= +∞, lim
t→∞

√
K = r, lim

t→∞

√
K
B1

= 0,

lim
t→∞

(
− A2

2A1

)
= sign(z1)∞, lim

t→∞

(
− B2

2B1

)
= 0,

lim
t→∞

(
−A

2

)
= −sign

(
γ

ρ0

)
∞.

(31)

Figure 2. (left) The motion of the particles volume (26) with x1 = 0.1, y1 = 0.1, z1 = 0.1, r = 1,
t0 = −2, ρ0 = 1, γ = 1; t = −2;−1 (grey sphere and ellipsoid); t = 0 (black ellipsoid); and t = 1; 2; 3
(red ellipsoids). (right) The motion of the particles volume (26) with x1 = 0.1, y1 = 0.1, z1 = 4,
r = 1, t0 = −2, ρ0 = 1, γ = 1; t = −2;−1 (grey sphere and ellipsoid); t = 0 (black ellipsoid); and
t = 1; 2; 3; 4 (red ellipsoids).

Thus, according to formulas (31), if t→ ∞, the ellipsoid (30) turns into the plane strip.

The volume of the ellipsoid (30) is V =
4
3

πr3 at t→ ∞.
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4. Exact Solutions of the Gas Dynamics Equations with Monatomic Gas State Equation

We consider the basis generators of 3-dimensional subalgebra 3.4* from the optimal
system of nonsimilar subalgebras of Lie algebra L14 for Equation (8) [42]:

−X3 + X5 = −∂z + t∂y + ∂v,

a(X2 + X6) + X7 + X10 + X12 =

= a(∂y + t∂z + ∂w) + y∂z − z∂y + v∂w − w∂v + (1 + t2)∂t+

+tx∂x + ty∂y + tz∂z + (x− tu)∂u + (y− tv)∂v + (z− tw)∂w − 3tρ∂ρ − 5tp∂p,

X2 + X6 + bX14 = ∂y + t∂z + ∂w + b(ρ∂ρ + p∂p − 2
3 S∂S).

(32)

Invariants have the following form:

x1 =
x√

1 + t2
, u
√

1 + t2 − tx√
1 + t2

, v + tw− 2yt + z(t2 − 1)
1 + t2 ,

w− tv− 2zt− y(t2 − 1)
1 + t2 , ρ(1 + t2)

3
2 exp

(
b(aτ − y + tz

1 + t2 )

)
,

p(1 + t2)
5
2 exp

(
b(aτ − y + tz

1 + t2 )

)
, τ = arctan t.

The representation of the invariant solution is given as follows:

u =
u1(x1)√

1 + t2
+

tx
1 + t2 , v =

v1(x1)− w1(x1)t + yt− z
1 + t2 ,

w =
w1(x1) + v1(x1)t + y + zt

1 + t2 ,

ρ =
ρ1(x1)

(1 + t2)
3
2

exp
(

b(−aτ +
y + tz
1 + t2 )

)
, p =

p1(x1)

(1 + t2)
5
2

exp
(

b(−aτ +
y + tz
1 + t2 )

)
,

S = S1(x1)exp
(
−2

3
b(−aτ +

y + tz
1 + t2 )

)
, S1(x1) =

p1(x1)

ρ1(x1)
5
3

.

(33)

Substituting (33) in (1) and (8), we obtain the invariant submodel:

u1u1x1 +
p1x1

ρ1
= −x1,

u1v1x1 = 2w1 − b
p1

ρ1
,

u1w1x1 = −2v1,
u1ρ1x1 + ρ1u1x1 = bρ1(a− v1),

u1S1x1 = −2
3

bS1(a− v1), S1 = p1ρ
− 5

3
1 .

(34)

The system (34) has an integral ρ1u1S
3
2
1 =

(
p1

ρ1

) 3
2
u1 = K0 and admits reflection

a→ −a, b→ −b, v1 → −v1, w1 → −w1.
If the condition u1 = 0 is satisfied, then there is a solution:

ab = 0, u1 = 0, v1 = 0, w1 =
bp1

2ρ1
, ρ1 = −

p1x1

x1
,

where p1(x1) is an arbitrary function.

Let us distinguish among them solutions with a linear velocity field w1 = − bx1 p1

2p1x1

=

a3x1 + b3:

1) b = 0, u1 = 0, v1 = 0, w1 = 0, ρ1 = −
p1x1

x1
; p1(x1) is arbitrary function, (35)
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2) a = 0, bb3 > 0, u1 = 0, v1 = 0, w1 = b3,

ρ1 = ρ0e−
b

4b3
x2

1 , p1 =
2b3

b
ρ0e−

b
4b3

x2
1 ;

(36)

3) a = 0, a3 6= 0, b(a3x1 + b3) > 0, u1 = 0, v1 = 0, w1 = a3x1 + b3,

ρ1 = ρ0|a3x1 + b3|
bb3
2a2

3
−1

e−
b

2a3
x1 , p1 =

2
|b|ρ0|a3x1 + b3|

bb3
2a2

3 e−
b

2a3
x1 .

(37)

If u1 6= 0 and we assume ~u1 = (u1, v1, w1) = (a1x1 + b1, a2x1 + b2, a3x1 + b3) with a
linear velocity field, then there are no solutions.

Solution (35) produces solution to the gas dynamics Equations (1) and (8):

u =
tx

1 + t2 , v =
yt− z
1 + t2 , w =

y + zt
1 + t2 ,

ρ = −
p1x1

x1(1 + t2)
3
2

, p =
p1(x1)

(1 + t2)
5
2

,

S = pρ−
5
3 ; p1(x1) is arbitrary function of x1 =

x√
1 + t2

,

(38)

which was investigated in the work [43].

Analysis of the Exact Solution

Invariant solution (36) produces exact solution to the gas dynamics Equations (1) and (8):

u =
tx

1 + t2 , v =
yt− z− b3t

1 + t2 , w =
y + zt + b3

1 + t2 ,

ρ =
ρ0

(1 + t2)
3
2

exp
(

b
1 + t2 (−

x2

4b3
+ y + tz)

)
,

p =
2b3ρ0

b(1 + t2)
5
2

exp
(

b
1 + t2 (−

x2

4b3
+ y + tz)

)
,

S =
2b3

b
ρ
− 2

3
0 exp

(
− 2b

3(1 + t2)
(− x2

4b3
+ y + tz)

)
, bb3 > 0.

(39)

The vortex is ~ω = (wy − vz, uz − wx, vx − uy) =

(
2

1 + t2 , 0, 0
)

. The motion of the

particles is vortex.
Equations (17) and (39) give the world lines:

x(t) = x0
√

1 + t2,
y(t) = −(b3τ + z0)t + y0,

z(t) = y0t + b3τ + z0,
(40)

which are space curves for x0 6= 0.
Here, x0, y0, z0 are the particle coordinates at the moment t = 0 (the global Lagrange

coordinates). The Jacobian of transformation (40) is J = (1 + t2)
3
2 6= 0. The motion of the

particles occurs without blow-up. The particles lying in the plane x = 0 do not leave it
(plane curves). The motion of particles occurs in half-spaces symmetrically relative to the
plane x = 0.

The velocity components (39) along world lines (40) are as follows:

u =
tx0√
1 + t2

, v = −z0 − b3τ − b3t
1 + t2 , w = y0 +

b3

1 + t2 .

At t = 0, we have ~u(x0; y0; z0) = (0;−z0; y0 + b3); at t→ ±∞, we have ~u(x0; y0; z0) =
(±x0;−z0 ∓ b3

π
2 ; y0).

We introduce new axes in the plane Oyz:

ξ =
y + zt√
1 + t2

, η =
z− ty√
1 + t2

,
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which, at the time t = 0, coincide with the axes Oy and Oz (ξ0 = y0 and η0 = z0,
respectively), and at any other time t, they are rotated by an angle τ = arctan t counter-
clockwise relative to the axes Oy and Oz. If t→ ±∞, then ξ → ±z, η → ∓y, τ → ±π

2 .
Thus, the formulas (40) are given by:

x(t) = x0
√

1 + t2,
ξ(t) = ξ0

√
1 + t2,

η(t) = (η0 + b3τ)
√

1 + t2.
(41)

In the space (x, ξ, η), trajectories (41) are plane curves. In polar coordinates x = r cos φ,
ξ = r sin φ, Equations (41) have the following form:

r(t) = r0
√

1 + t2,
φ(t) = φ0,

η(t) = (η0 + b3τ)
√

1 + t2.
(42)

In the plane (r, η), the trajectories (42) are given by the equation η =
(

η0 ± b3 arccos
r0

r

) r
r0

,

which define the curves with oblique asymptotes ηa =
η0 + 0.5sign(t)b3π

r0
r − b3sign(t)

at t → ±∞. If we consider the curve as r = r(η), then it has a derivative r′η =
rt

ηt
=

r0t
tη0 + b3(1 + tτ)

and an extremum at t = 0 in the point (η0, r0). For any φ0, its graph is

shown in the Figure 3.

Figure 3. The trajectory (42) in the plane (r, η) at r0 = 2, η0 = 1, b3 = 1.

Thus, the motion of particles can be represented as a complex motion consisting
of the condensation of gas particles to the origin, followed by scattering and successive
(uneven) rotation in the plane Oyz by an angle π. Figure 4 represents the trajectories of the
same particles in spaces (x, ξ, η) (or (r, φ, η)) and (x, y, z), showing how the rotation of the
coordinate system around the axis Ox changes the trajectories particles motion.
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Figure 4. (left) The trajectories (41), (42) in the space (x, ξ, η) at b3 = 2, t = 0..4 with coordinates
(x0; y0; z0) = (1; 1; 1); (3; 3; 1); (5; 5; 1). (right) The trajectories (40) in the space (x, y, z) with the
same parameters.

If the particle has coordinates (xt0 ; yt0 ; zt0) at the moment of time t = t0, then the
Equation (40) may be rewritten as follows:

x(t) =
xt0√
1 + t2

0

√
1 + t2,

y(t) = −b3t(τ − τ0)−
zt0 − yt0 t0

1 + t2
0

t +
yt0 + zt0 t0

1 + t2
0

,

z(t) = b3(τ − τ0) +
yt0 + zt0 t0

1 + t2
0

t +
zt0 − yt0 t0

1 + t2
0

.

(43)

If at t = t0 the particle with coordinates (xt0 , yt0 , zt0) is on a sphere with a center
(x1, y1, z1) and radius R0 > 0

(xt0 − x1)
2 + (yt0 − y1)

2 + (zt0 − z1)
2 = R2

0,

then at time moment t, it will be on the spherex− x1√
1 + t2

0

√
1 + t2

2

+

(
y + b3t(τ − τ0) +

z1 − y1t0

1 + t2
0

t− y1 + z1t0

1 + t2
0

)2

+

+

(
z− b3(τ − τ0)−

y1 + z1t0

1 + t2
0

t− z1 − y1t0

1 + t2
0

)2

=
R2

0
1 + t2

0
(1 + t2),

(44)

which has a radius
R0√
1 + t2

0

√
1 + t2 and the center moves according to the law of motion (43).

The sound surface is given by the equation u2 + v2 + w2 = a2
c [38](

a2
c =

5p
3ρ

=
10b3

3b(1 + t2)
from (3)

)
. It has the following form from (39):

t2x2

1 + t2 +

(
y + b3

1− t2

1 + t2

)2

+

(
z + b3

2t
1 + t2

)2
=

10b3

3b
. (45)
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For t 6= 0, Equation (45) defines an ellipsoid with a center
(

0;−b3
1− t2

1 + t2 ;−b3
2t

1 + t2

)
,

one semiaxis is equal to

√
10b3(1 + t2)

3bt2 , and the other two semiaxes are equal to rc =

√
10b3

3b
.

For t = 0, Equation (45) defines a circular cylinder (y + b3)
2 + z2 =

10b3

3b
with radius

rc and an axis parallel to the Ox, passing through a point (0;−b3; 0).

For t→ ±∞, Equation (45) defines a sphere x2 + (y− b3)
2 + z2 =

10b3

3b
with a center

(0, b3, 0) and radius rc.
The motion of the volume of particles (44) has been considered. The surface of the

volume of particles (sphere) is the contact characteristic of the gas dynamics equations. For
a normal gas, the gas dynamics equations also have two sound characteristics C±.

We consider the equations of sound characteristics [38]:

C± : ht + uhx + vhy + whz ± a
√

h2
x + h2

y + h2
z = 0.

The equations of the bicharacteristics have the following form:

d~x
dt

= ~u± a
∇h
|∇h| , (46)

dhj

dt
= −~uj · ∇h∓ aj|∇h|, j = t, x, y, z. (47)

Equations (39) and (47) arrive at the following formulas:

hx =
hx0√
1 + t2

, hy =
hy0 − thz0

1 + t2 , hz =
hz0 + thy0

1 + t2 ,

|∇h| = |∇h0|√
1 + t2

, |∇h0| =
√

h2
x0 + h2

y0 + h2
z0.

(48)

Equations (39), (46), and (48) give:

x =

±√10b3

3b
hx0

|∇h0|
(τ − τ0) +

xt0√
1 + t2

0

√1 + t2,

y =
yt0 + t0zt0

1 + t2
0

+
t0yt0 − zt0

1 + t2
0

t− b3t(τ − τ0)±
√

10b3

3b
hy0 − thz0

|∇h0|
(τ − τ0),

z =
zt0 − t0yt0

1 + t2
0

+
yt0 + t0zt0

1 + t2
0

t + b3(τ − τ0)±
√

10b3

3b
thy0 + hz0

|∇h0|
(τ − τ0).

(49)

Let us construct a characteristic conoid K(P) with a vertex P—a characteristic surface
formed by all the bicharacteristics coming out of a given point P(~xt0 , t0). In order to
represent all such bicharacteristics, it is necessary to take into account the initial conditions
to the system (46), (47) [38]:

~x(t0) = ~xt0 , hj(t0) = hjo (j = t, x, y, z). (50)

In order to satisfy (50), it is necessary to make a replacement hx0 → hx0

√
1 + t2

0; hy0 →

hy0 + t0hz0; hz0 → hz0 − t0hy0; |∇h0| → |∇h0|
√

1 + t2
0 in (48), (49), but still, we exclude

hx0, hy0, hz0, |∇h0| from (49) and obtain the following equation:
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x− xt0√
1 + t2

0

√
1 + t2

2

+

(
y− yt0 + t0zt0

1 + t2
0
− t0yt0 − zt0

1 + t2
0

t + b3t(τ − τ0)

)2

+

+

(
z− zt0 − t0yt0

1 + t2
0
− yt0 + t0zt0

1 + t2
0

t− b3(τ − τ0)

)2

=
10b3

3b
(τ − τ0)

2(1 + t2).

(51)

The section of the conoid (51) by hyperplane t = const is a sphere in R3(~x), the
center of which moves according to the law of motion (43), and the radius is equal to√

10b3

3b
(1 + t2)|τ − τ0|.

At t → ∞, the sound velocity ac → 0 and sound characteristic tends to the contact
characteristic. Indeed, the conoid (51) tends to the sphere (44), which has a radius equal to

R0 =

√
10b3

3b
(1 + t2

0)|
π
2 − τ0|. Thus, for any moment of time t > 0, the characteristic conoid

with a vertex P(~xt0 , t0) beginning from the center of a spherical volume with a radius

R0 =

√
10b3

3b
(1 + t2

0)|
π
2 − τ0| never reaches particles outside this volume. Figure 5 shows

the propagation of a characteristic conoid (51) with a vertex P(~xto , t0) and the motion of a
spherical volume of gas (44) with the center at the same point at t = t0 and radius R0.

Figure 5. The characteristic conoid (51) with a vertex P(2; 2; 1; 1) is represented in green color, the

motion of the sphere (44) with center (x1, y1, z1) = (2, 2, 1) and with the radius R0 =

√
15π

6
at t0 = 1

is red color; b3 = 1, b = 1; t = 1; 4; 15.

Depending on where the point P(~xt0 , t0) is located (in the subsonic region, on the
sound surface, or in the supersonic region), the sections of the characteristic conoid by
planes t = const are nested into each other, touch at the point, or intersect each other,
respectively (Figure 6).
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Figure 6. (left) The characteristic conoid with a vertex P(0; 1;−1; 1) in the subsonic region is rep-
resented at t = 1.2; 1.6; 2.0; 2.5; 3.0; b3 = 3, b = 1. (right) The characteristic conoid with a vertex
P(2; 2; 1; 1) in the supersonic region is represented at t = 1.2; 1.6; 2.0; 2.5; 3.0; b3 = 3, b = 1.

At t = const, the pressure and density have the same values on parabolic cylinders.

5. Generalization of Exact Solutions of the Gas Dynamics Equations with a Linear
Velocity Field

We consider the solution of the gas dynamics equations with a linear velocity field (11).
Let us substitute the velocity representation (11) into the gas dynamics Equations (1) and (2)
and express the time derivative and the gradient of the pressure function. On equating the
shifted derivatives, we obtain a classifying relation for the matrix B = A′ + A2. Matrix B
is decomposed into the sum of symmetric S and antisymmetric parts. We obtain one or
another submodel, depending on the rank of the matrix S . It is shown in [14] that there are
11 such submodels. Let us choose one of them so that the state Equations (6) and (8) satisfy
the state equation of the selected submodel:

S ′ + 2SA = (1− γ)StrA, A′ + A2 = S , S = ST ,

~v′ + AT~v + S~u0 = (1− γ)~vtr A, ~u′0 + A~u0 = ~v,

ρ = 2e−
∫

trAdtR′(I),

I = (~x · S~x + 2~v ·~x)e−(1−γ)
∫

trAdt − 2
∫
~u0 ·~ve−(1−γ)

∫
trAdtdt,

p = ργh0(S) + P0
1− ργ

γ
,

(52)

where γ, P0 are arbitrary constants; R, h0 are arbitrary function; trA is matrix trace A.

5.1. Generalization of Exact Solution of the Gas Dynamics Equations with Special State Equation

We consider an invariant solution (14) for the velocity components from subalgebra
3.36 (12), then matrix A and vector ~u0 from (11) have the form:

A =

0 − b
a

1

0 0 0
0 0 0

, ~u0 =

u1(t)
v1(t)
w1(t)

.

The state equation from (52) at γ→ 0 tends to:

p = h0(S)− P0 ln ρ. (53)

Since S = A′ + A2 ≡ 0, substituting the matrix A into the differential equations of
the submodel (52), the differential equation for the matrix S is fulfilled. After substituting
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the matrices A and S into the differential equation for vector ~u0(t) from (52), we obtain a
system of six-order differential equations for unknown functions u1(t), v1(t), w1(t):

u′′1 −
b
a

v′1 + w′1 = 0,

v′′1 −
b
a

v′1 +
b2

a2 v1 −
b
a

w1 = 0,

w′′1 + u′1 −
b
a

v1 + w1 = 0.

The solution of the last system has the form:

u1 = − 1
a3

(
ũ03

t3

6
+ (u04 − abu01)

t2

2
+ (u05 − u03a2)t

)
+

u06

a
,

v1 = − b
a2 ũ03

t2

2
+

(
u01

a
− b

a2 u04

)
t + u02 −

b
a2 u05, w1 =

1
a

(
u04t + ũ03

t2

2
+ u05

)
,

where u01, u02, u03, u04, u05, u06 are arbitrary constants; ũ03 = bu02 − u03.
Let us write the components of the velocity vector using the last formulas for u1, v1,

and w1 (14) and apply the Galilean translations with~b = (u06a−1,−u05ba−2, u05a−1) and
dilatation from (4) with c = a:

u = az− by− ũ03
t3

6
−
(

u04

a
− bu01

)
t2

2
+ u03t,

v = −bũ03
t2

2
+

(
u01 −

b
a

u04

)
t + u02,

w = u04t + aũ03
t2

2
.

(54)

The density function from the formulas (52) has the form:

ρ = 2R′(I), (55)

where variable I has the form:

I = −2ũ03x− 2
(

b
a
(aũ03t + u04)− u01

)
y + 2(aũ03t + u04)z−

ũ2
03
3

t4+

+
4
3

ũ03

a
(abu01 − u04)t3 −

(
u2

03 − b2u2
02 + u2

04 + (u01 −
b
a

u04)
2
)

t2−

−2u02

(
u01 −

b
a

u04

)
t.

(56)

We need to solve the system of differential equations for the function p from the gas
dynamics equations in order to define the function of pressure:

∇p = −ρ(S~x +~v),
pt = ρ(A~x + ~u0) · (S~x +~v)− ρa2

c (p, ρ)trA.
(57)

Substituting the known function ρ, matrix S, and vector~v into the first equation in (57),
we obtain:

∇p = −2R′(I)~v

or
∇p = −R′(I)∇I.
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The integration one of the two last differential equations gives us the form of the
pressure:

p = −R(I) + p0(t), (58)

where p0 is an arbitrary function. Without loss of generality, we can assume in (58) that
p0(t) is equal to zero because after substituting (58) in the second differential equation
from (57), we find that p0(t) is constant p0. Then, the pressure (58) has the form:

p = −R(I). (59)

Thus, the solution of the gas dynamics Equations (1) with the state Equation (53) is
given by the formulas (54), (55), (56), and (59).

Remark 2. The solution (54), (55), (56), and (59) coincides with the solution (16) after using
uniform dilatation from (4) with c = a and if u01 = −γρ−1

0 , u02 = u03 = u04 = ũ03 = 0,
R(I) = 2−1ρ0 I, and P0 = 0.

The world lines of gas particles (17) are defined from solution (54):

x = − ũ03t2

2
+ (az0 − by0)t + x0,

y = −b
ũ03

6
t3 + (u01 −

b
a

u04)
t2

2
+ u02t + y0,

z =
aũ03

6
t3 +

u04

2
t2 + z0,

(60)

where x0, y0, and z0 are global Lagrangian coordinates. The Jacobian J = |∂~x/∂~x0| [41] of
transformations (60) is equal to 1, where ~x0 = (x0, y0, z0). This fact means that the motion
of particles does not have singularities. Trajectories of the gas particles (60) are built in
the Figure 7.

Figure 7. The trajectories (60) with parameters a = 1, b = 0, u0i = 1, i = 1..4, x0 = 1, 2, 3; y0 = z0 = 1,
and t = −3..3.
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5.2. Generalization of Exact Solution of the Gas Dynamics Equations with State Equation of the
Monatomic Gas

We consider the representation of invariant solution (33) for subalgebra 3.4* (32) when
the functions u1, v1, and w1 are linear

u1 =
a1x√
1 + t2

+ b1, v1 =
a2x√
1 + t2

+ b2, w1 =
a3x√
1 + t2

+ b3,

where a1, a2, a3, b1, b2, and b3 are arbitrary constants. Then, matrix A and ~u0 from submodel
(52) have the form:

A =


a1 + t
1 + t2 0 0

a2 − a3t
(1 + t2)3/2

t
1 + t2 − 1

1 + t2

a3 + a2t
(1 + t2)3/2

1
1 + t2

t
1 + t2

, ~u0 =


b1√

1 + t2
b2 − tb3

1 + t2
b3 + b2t
1 + t2

. (61)

The state equation from (52) with γ =
5
3

, P0 = 0 is equal to p = ρ5/3h0(S). Matrix

A′ + A2 has the form:

A′ + A2 =


a2

1 + 1
(1 + t2)2 0 0

−2a2t + a2a1 − 2a3 − a3a1t
(1 + t2)5/2 0 0

2a2 − 2a3t + a3a1 + a2a1t
(1 + t2)5/2 0 0


From the symmetry condition of the matrix A′ + A2, we obtain that a2 = a3 = 0. After

substituting matrices S and A into the submodel Equation (52), we obtain a relation from
which it follows that a1 = 0.

Next, we substitute the known matrices into a vector differential equation for vector
~u0 from the submodel (52). The vector form ~u0 is taken from (61). From the three obtained
relations, we find that b1 = 0 and b2 and b3 are arbitrary constants. The components of the
velocity vector have the form:

u =
tx

1 + t2 , v =
t(y− b3)− z + b2

1 + t2 , w =
y + b3 + t(z + b2)

1 + t2 . (62)

Let us define the type of density function from (52). We receive:

ρ =
2R′(I)

(1 + t2)3/2 , (63)

where

I =
x2 − 4y(b3 + tb2)− 4z(b3t− b2)

1 + t2 . (64)

From (57), we obtain the pressure

p = − R(I)
(1 + t2)5/2 + p0(t).

Function p0(t) is defined from the second Equation (57), where a2
c (p, ρ) = 5

3 pρ−1

from (3). As a result, the pressure function is:

p = − R(I)
(1 + t2)5/2 . (65)
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Thus, the solution of the gas dynamics Equations (1) with the state Equation (8) is
given by the formulas (62), (63), (64), and (65).

Remark 3. The solution (62), (63), (64), and (65) coincides with the solution (38) if b2 = b3 = 0,
R(I) = −p(x1), I = x2

1.

Remark 4. The solution (62), (63), (64), and (65) coincides with the solution (39) if b2 = 0,

R(I) = −2b3ρ0

b
e−

b
4b3

I .

Remark 5. The solution (62), (63), (64), and (65) does not coincide with the solution (33), (37)
because the matrix B = A′ + A2 has an antisymmetrical part which contradicts the formulas (52).

The world lines of gas particles (17) are defined from solution (62):

x = x0
√

1 + t2, y = (b2 − tb3)τ − z0t + y0,

z = (tb2 + b3)τ + y0t + z0,
(66)

where x0, y0, and z0 are global Lagrangian coordinates.
The Jacobian J = |∂~x/∂~x0| [41] of transformations (66) is equal to (1 + t2)

3
2 6= 0. At

the initial moment of time t = 0, the gas particle is located at the point with coordinates
(x0, y0, z0). The trajectories of the gas particles (66) are built in the Figure 8.

Figure 8. The trajectories (66) are represented with b2 = −5, b3 = 2, (x0, y0, z0) = (1, 1, 1); (3, 3, 1);
(5, 5, 1), and t = 0..4.

6. Conclusions

In this work, the gas dynamics equations have been considered in the case of the state
equation of a monatomic gas and the special state equation (a pressure equals to the sum
of two arbitrary functions of density and entropy). One three-dimensional subalgebra has
been selected for each specified state equation. Invariant submodels of rank one have been
constructed for them, and exact solutions with a linear velocity field with inhomogeneous
deformation have been obtained.

In the case of the special state equation, the submodel describes the isochoric motion
of particles with constant pressure along each world line. The motion is vortex, limited
by a moving plane. The motion of particles occurs along parabolas and along rays in
parallel planes. The motion of the particles volume in the case of the subalgebra without
one parameter is considered. The spherical volume of particles turns into an ellipsoid at
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finite moments of time, and as time tends to infinity, the particles end up on an infinite
strip with a width equals to the diameter of the original sphere.

In the case of the state equation of a monatomic gas, the submodel describes a complex
vortex condensation (compaction) to the origin and subsequent expansion of gas particles
in half-spaces relative to the plane x = 0. The motion of any allocated spherical volume
of gas retains a spherical shape and expands (narrows) for t > 0 (for t < 0). An equation
defining a characteristic conoid with an arbitrary vertex in R4 is obtained. Its projection
into R3 at each moment of time gives the equation of the sphere. It is shown that for any
point R3 at time t = t0 > 0, it is possible to obtain a radius of the sphere depending on t0.
The perturbation coming from the center does not reach the particles outside this sphere.

The obtained exact solutions with a linear velocity field are generalized if the represen-
tations for the velocities are chosen according to the considered invariant solutions. From
the previously performed classification of submodels, a submodel with a state equation
including the above is selected. As a result, exact solutions of a wider class have been
obtained, since density and pressure may not be invariant with respect to the generators of
the selected three-dimensional subalgebras.
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