
����������
�������

Citation: Battikh, M.S.; Lenskiy, A.A.

Latent-Insensitive Autoencoders for

Anomaly Detection. Mathematics

2022, 10, 112. https://doi.org/

10.3390/math10010112

Academic Editor: Bo-Hao Chen

Received: 14 November 2021

Accepted: 21 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Latent-Insensitive Autoencoders for Anomaly Detection

Muhammad S. Battikh 1 and Artem A. Lenskiy 2,*

1 Systems and Computer Engineering Department, Al-Azhar University, Cairo 11651, Egypt;
muhammad.saeed.batikh@azhar.edu.eg

2 School of Computing, The Australian National University, Canberra 2601, Australia
* Correspondence: Artem.Lenskiy@anu.edu.au

Abstract: Reconstruction-based approaches to anomaly detection tend to fall short when applied
to complex datasets with target classes that possess high inter-class variance. Similar to the idea of
self-taught learning used in transfer learning, many domains are rich with similar unlabeled datasets
that could be leveraged as a proxy for out-of-distribution samples. In this paper we introduce the
latent-insensitive autoencoder (LIS-AE) where unlabeled data from a similar domain are utilized
as negative examples to shape the latent layer (bottleneck) of a regular autoencoder such that it is
only capable of reconstructing one task. We provide theoretical justification for the proposed training
process and loss functions along with an extensive ablation study highlighting important aspects of
our model. We test our model in multiple anomaly detection settings presenting quantitative and
qualitative analysis showcasing the significant performance improvement of our model for anomaly
detection tasks.

Keywords: anomaly detection; autoencoders; one-class classification; principal components analysis;
self-taught learning; negative examples

1. Introduction

Anomaly detection is a classical machine learning field which is concerned with the
identification of in-distribution and out-of-distribution samples that finds applications
in numerous fields [1,2]. Unlike traditional multi-label classification where the goal is to
find decision boundaries between classes present in a given dataset, the goal of anomaly
detection is to find one-versus-all boundaries for classes that are not in the dataset, which
is significantly more challenging compared to standard classification. Autoencoders [3]
have been used extensively for anomaly detection [1,4,5] under the assumption that recon-
struction error incurred by anomalies is higher than that of normal samples [6,7]. However,
it has been observed that this assumption might not hold as standard autoencoders might
generalize so well even for anomalies [7,8]. In practice, this issue becomes more relevant
in two important settings, namely, when the normal data are relatively complex they re-
quire high latent dimensions for good reconstitution, and when anomalies share similar
compositional features and are from a close domain to the normal data [9].

To mitigate these issues we present latent-insensitive autoencoder (LIS-AE), a new
class of autoencoders where the training process is carried out in two phases. In the first
phase, the model simply reconstructs the input as a standard autoencoder, and in the second
phase the entire model except the latent layer is "frozen". We then train the model in such a
way that it forces the latent layer to only keep reconstructing the target task. We use the
concept of a negative dataset from one-class classification [10] whereby an auxiliary dataset
of non-examples from similar domains is used as a proxy for out-of-distribution samples.
In Figure 1, We change the training objective such that the autoencoder keeps its low
reconstruction error for the target dataset while pushing the error of the negative dataset
to exceed a certain value. In some cases, minimizing and maximizing the reconstruction
loss at the same time becomes contradictory, especially for negative classes that are very
similar to the target class. To resolve this issue we introduce another variant with modified

Mathematics 2022, 10, 112. https://doi.org/10.3390/math10010112 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10010112
https://doi.org/10.3390/math10010112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4553-5231
https://orcid.org/0000-0002-4745-6756
https://doi.org/10.3390/math10010112
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10010112?type=check_update&version=2

Mathematics 2022, 10, 112 2 of 22

first phase loss that ensures that the input of the latent layer is linearly separable for
positive and negative examples during the second phase. This linearly separable variant
(LinSep-LIS-AE) almost always performs better than directly using LIS-AE. Details of
architecture, training process, theoretical analysis, and experiments are discussed in detail
in the following sections.

ℰ 𝒟
𝐗! "𝐗!

𝐙!

(a)

ℰ 𝒟
𝐗!, 𝐗" #𝐗!, #𝐗"

𝐙!, 𝐙"

(b)

Figure 1. The two phases of training. (a) The first diagram shows the feature extraction phase. (b) The
second phase starts by freezing the model except the latent layer. Negative examples x− are used to
fine-tune the latent layer to be only responsive to x+.

2. Related Work

Many reconstruction-based anomaly detection approaches have been proposed start-
ing with classical methods such as PCA [11]. Robust-PCA mitigates the issue of outlier
sensitivity in PCA by decomposing the data matrix into a sum of two low-rank and sparse
matrices using nuclear norm and L1 norms as convex relaxation for the objective loss [12].
Autoencoders address the issue of PCA only considering linear relations in feature-space by
introducing non-linearities benefiting from multiple layers of representations [13]. We elab-
orate further on the shortcomings of PCA and autoencoders in the theoretical section and
use that to motivate our approach.

Other methods try to improve on base autoencoders by endowing the latent code
with particular properties. In the case of VAE [14], it does so by having the latent code
follow a prior distribution (usually normal) which also allows sampling from the decoder.
However, in the context of anomaly detection, it introduces scaling issues since minimizing
KL-divergence for the high latent dimensions required for complex tasks is quite chal-
lenging. Another approach is the replicator neural network (RepNN) [15] which is an
autoencoder with a staircase activation function positioned on the output of the bottleneck
layer (latent Layer). This is mainly used in order to quantize the latent code into a number
of discrete values which also aids in forming clusters [16]. Unfortunately, a discrete stair-
case function is non-differentiable which prevents learning via backpropagation. Instead,
a differentiable approximation involving the sum of N hyperbolic tangent functions tanh
was introduced in place of the otherwise non-differentiable discrete staircase function.
However, as discussed in [17], despite the theoretical appeal of having a quantized latent
code via smooth approximation, in practice, having such an activation function makes it
significantly difficult for the gradient signal to flow. We also note that when increasing
the number of levels using the aforementioned N, tanh sum approximation presents a
significant overhead during training and testing since N activation functions have to be
computed for each batch and, moreover, it suffered from scaling issues similar to that
of VAE.

Another approach is memorizing normality of a given dataset using a memory-augmented
autoencoder [8]. This approach limits the effective space of possible latent codes by con-
structing a memory module that takes in the output of the encoder as an address and passes
to the decoder the most relevant memory items from a stored reservoir of prototypical
patterns that have been learned during training.

Mathematics 2022, 10, 112 3 of 22

Other non-reconstruction-based approaches include one-class classification which
is tightly connected to anomaly detection in the sense that both problems are concerned
with finding one-versus-all boundaries. One-class SVM is a variation of the classical SVM
algorithm [18] where the objective is to find a hyper-plane that best separates samples from
outliers [19]. Support vector data description (SVDD) [20] tries to find a circumscribing
hyper-sphere that contains all samples while having optimal margins for outliers. It is
worth noting that for kernels where k(x, x) = 1 such as RBF and Laplacian, OC-SVM and
OC-SVDD learn identical decision functions [21]. To address the lack of representation
learning and bad computational scalability of OC-SVM and OC-SVDD, deep SVDD (OC-
DSVDD) employs a deep neural network that learns useful representation while mapping
outputs to a hyper-sphere of minimum volume [22]. However, due to its sole reliance on
optimizing for minimum volume, this approach is prone to hyper-sphere collapse which
leads to finding uninformative features [23].

Other approaches have been proposed where an auxiliary dataset of non-examples
(negative dataset) is drawn from similar domains as a proxy for the otherwise intractable
complement for the target class. In [10], a collection called the “Universum”, allows learn-
ing useful representation to the domain of the problem via maximizing the number of
contradictions on an equivalence class. Similar to OC-DSVDD, [23] leverages a labeled
dataset from a close domain to fine-tune two pre-trained CNNs in order to learn new
good features. The goodness of these features is quantified by the compactness (inter-class
variance) for the target class and descriptiveness (cross-entropy) for the labeled dataset.
Despite avoiding hyper-sphere collapse and outperforming OC-SVDD, this approach re-
quires two pre-trained neural networks and a large labeled dataset along with the target
dataset. Another approach that also makes use of a large auxiliary dataset is outlier ex-
posure (OE) [24], which is a supervised approach that trains a standard neural network
classifier while exposing it to a diverse set of non-examples on which the output of the
classifier is optimized to follow a uniform distribution using another cross-entropy loss.

3. Proposed Method
3.1. Architecture

An undercomplete deep autoencoder is a type of unsupervised feed-forward neural
network for learning a lower-dimensional feature representation of a particular dataset via
reconstructing the input back at the output layer. To prevent autoencoders from converging
to an uninformative solution such as the identity mapping, a bottleneck layer with output
z such that its dimension is less than the dimension of the input x. The forward pass is
computed as:

s = E (x),

z = Z (s),

x̂ = D(z),

where x is the input, Z is the bottleneck layer, E and D are convolutional neural networks
representing the encoder and the decoder modules, respectively. Typically, such models are
trained to minimize the L2-norm of the difference between the input and the reconstructed
output ‖x̂− x‖2. As previously discussed, the choice of the activation function of z plays
an important rule in anomaly detection. Activation functions that quantize the latent code
or encourage forming clusters are preferable. In our experiments, we find that confining the
latent code to have values between [−1, 1] with a tanh activation function as we maximize
the loss over the negative dataset during the latent-shaping phase has a regularizing
effect. We also note that unbounded activation functions such as ReLU tend to have
poor performance.

3.2. Terminology

Positive Dataset (D+): This is the dataset that contains the normal class(es), for example,
the plane class from CIFAR-10.

Mathematics 2022, 10, 112 4 of 22

Negative Dataset (D−): This is a secondary unlabeled dataset containing negative exam-
ples from a similar domain as D+. The choice of D− depends on D+. For example, if D+

is the digit 0 from MNIST, D− might be random strokes or another dataset with similar
features such as Omniglot [25]. It is important to note that the model should not be tested
on D− since this violates the assumption of not knowing anomalies.
Anomaly Dataset (Da): This is a test dataset that contains classes that are neither in D+

nor in D−.
Feature Extraction Phase: This is the first phase of training. The model is simply trained
to reconstruct its input.
Latent-Shaping Phase: This is the second phase of training. The encoder and decoder
networks are frozen and only the latent layer is active.

3.3. Training for Anomaly Detection

Given a dataset D+ and a negative dataset D− from a similar domain to D+, we
divide the training process into two phases; the first phase is reconstructing samples from
D+ by minimizing the loss function L = ‖x̂+ − x+‖2 until convergence, where x+ is the
input drawn from D+ and x̂+ is the output of the autoencoder. In the second phase, we
freeze the model except for the latent layer and minimize the following loss function:

L = ‖x̂+ − x+‖2 + β‖γ− ‖x̂− − x−‖2‖2 (1)

where x− is a sampled batch from D−, x̂− is its reconstruction, β is a hyper-parameter that
controls the effect of the two parts of the loss function and γ is another hyper-parameter
indicating that we are satisfied if the reconstruction error ‖x̂−− x−‖2 of the negative dataset
exceeds a certain value. Details of training are provided in Algorithm 1.

Algorithm 1 Anomaly Detection Training.

Input: Positive (D+) and Negative (D−) datasets
// E : Encoder, Z : Latent Layer, D: Decoder

Output: Trained model
// Feature extraction phase
// Sample mini batches from D+

for x+ ∈ D+ until convergence do
x̂+ = D(Z (E (x+))
L = ‖x̂+ − x+‖2
// backpropagation step

Minimize L
end
FreezeEncoder()
FreezeDecoder()
// Latent-shaping phase
// Sample mini batches from (D+,D−)

for (x+, x−) ∈ (D+,D−) until convergence do
[z+, z−] = Z (E ([x+, x−]))
[x̂+, x̂−] = D([z+, z−])
L = ‖x̂+ − x+‖2 + β‖γ− ‖x̂− − x−‖2‖2
// backpropagation step

Minimize L
end

3.4. Predicting Anomalies

We use reconstruction error L(x) = ‖x̂− x‖2 to distinguish between anomalies and
normal data where x is the test sample and x̂ is the reconstructed output. More specifically,
we set a threshold α such that if L(x) > α, the output is considered to be anomalous.

Mathematics 2022, 10, 112 5 of 22

4. Theoretical Justification
4.1. Formulation

In this section, we present theoretical justification for the reasoning behind selective
freezing and the second phase loss function. We would like to show that the process
described in algorithm 1 implies that the second stage reconstruction loss for a latent-
insensitive autoencoder (LLIS) remains equivalent to the reconstruction loss of a standard
autoencoder (LAE) for normal (positive) samples but is larger for anomalies. More for-
mally, under certain assumptions for negative dataset (D−), LLIS(x+) = LAE(x+) and
LLIS(xa) ≥ LAE(xa) where xa is an anomalous sample.

From optimality of autoencoders [13], we know that in the absence of any non-linear
activation functions, a linear autoencoder corresponds to singular value decomposition
(SVD); henceforth, we use SVD interchangeably with linear autoencoders. Given an m× n
data matrix X+, we decompose Rm into X|| ⊕ X⊥, where X|| := Col(X+) and X⊥ is its
orthogonal complement Null(X+T

).
We further decompose X+ using SVD:

X+ = UΣVT ,

where U and V are orthonormal matrices and Σ is a diagonal matrix such that Σ = [σ1 ... σrank |0].
However, in practice it is rarely separated this neatly, especially when dealing with a
large number of samples of a high-dimensional dataset; therefore, we resort to reduced-
SVD where we take the first r columns of U with the caveat that the choice of r is a
hyper-parameter.

U =

 u1 . . . ur ur+1 . . . un

The U matrix can be divided thus: U = [Ur|Uc], and from the Eckart–Young low-rank

approximation theorem [26], columns of Ur ≈ Basis(X||) and columns of Uc ≈ Basis(X⊥).
A linear autoencoder with an r-dimensional latent layer is equivalent to the following

transform:
x̂ = UrUT

r x

where Ur and UT
r represent the decoder and the encoder, respectively. Furthermore, any

data point x ∈ Rm can be represented as x = Urz + Ucc, where c and z are (m− r) and
r-dimensional real vectors. By orthonormality, we have the following identities: UT

r Ur = Ir
and UT

r Uc = 0, where Ir is an r-identity matrix. As a shorthand, we write ‖.‖ instead of
‖.‖2

2. Using these two identities, we rewrite the reconstruction loss ‖x̂− x‖ as the following:

UrUT
r x = UrUT

r [Urz + Ucc] = Ur[UT
r Urz + UT

r Ucc] = Urz

LAE(x) = ‖UrUT
r x− x‖ = ‖Urz−Urz−Ucc‖ = ‖Ucc‖ = ‖c‖

We note that the loss function is agnostic to the nature of c and is only concerned
with its magnitude. The assumption for anomaly detection under this setting is that
‖ca‖ > ‖c+‖, where ca and c+ correspond to orthogonal components for anomalies and
positive data, respectively. We posit that while this agnosticism is desirable for potential
generality, it is not optimal for anomaly detection; hence, we modify the loss score to
depend on the nature of c:

LLIS(x) = ‖BTc‖+ ‖c‖

where B is an r× (m− r) matrix such that the loss is small for normal data but large for
anomalies. In other words, we want ‖BTc+‖ = 0 and ‖BTca‖ to be large.

We define C|| := orthonormal basis for Col(C+) and C⊥ := orthonormal basis for
Null(C+T

), where C+ is the matrix of all positive orthogonal components c+. We decom-

Mathematics 2022, 10, 112 6 of 22

pose C⊥ further into C−⊥ and Co⊥ where columns of C−⊥ are the basis of Col(C−) that
are not in C|| and columns of Co⊥ are the remaining columns of C⊥.

Since Rm−r = Col(C+) ⊕ Col(C−⊥) ⊕ Col(Co⊥), any c ∈ Rm−r can be written as
c = C||p + C−⊥q + Co⊥s, where p, q, and s are real vectors.

Despite the fact that we do not have access to ca, we can utilize other negative examples
from a similar domain and use c− as a proxy for ca. Since ca = C||p + C−⊥q + Co⊥s,
maximizing ‖BTC−⊥‖ implies maximizing ‖BTca‖ assuming that ‖C−⊥q‖ 6= 0. The later
assumption hinges on the fact that X− is from a similar domain. Therefore, we end up with
the goal of finding B such that ‖BTc+‖ = 0 and ‖BTc−‖ is large.

B̂ = argmin(‖BTc+‖ − β‖BTc−‖)
where β controls the importance of the second term.

= argmin(‖UrBTc+‖ − β‖UrBTc−‖)
since orthonormal transformations preserve the dot product.

= argmin(‖UrBTc+‖+ ‖ −Ucc+‖ − β‖UrBTc−‖ − β‖ −Ucc−‖)
since adding constant to argmin does not affect the objective.

= argmin(‖UrBTc+ −Ucc+‖ − β‖UrBTc− −Ucc−‖)
= argmin(‖Urz+ + UrBTc+ −Urz+ −Ucc+‖

− β‖Urz+ + UrBTc− −Urz− −Ucc−‖)
= argmin(‖Urz+ + UrBTc+ − x+‖ − β‖Urz− + UrBTc− − x−‖)
= argmin(‖UrUT

r x+ + UrBTUT
c x+ − x+‖

− β‖UrUT
r x− + UrBTUT

c x− − x−‖)
= argmin(‖Ur(UT

r + BTUT
c)x

+ − x+‖
− β‖Ur(UT

r + BTUT
c)x
− − x−‖)

E := Ur + UcB

Ê = argmin(‖UrETx+ − x+‖ − β‖UrETx− − x−‖)

In practice, we cannot maximize ‖UrETx− − x−‖ indefinitely and we are satisfied if it
reaches a certain large γ:

Ê = argmin(‖UrETx+ − x+‖+ β‖γ− ‖UrETx− − x−‖‖)

We notice that in order for this to work, the decoder Ur has to be known and remain
fixed (frozen). This suggests a two-phase training where we first compute the decoder and
encoder networks, and in the second phase the decoder is fixed while the encoder ET is
modified using the new loss. In Figure 2, a linear version of LIS-AE is trained on digit-8
from MNIST with Omniglot as a negative dataset. We perform orthogonal decomposition
on each input by projecting it onto digit-8 subspace to obtain its projection and orthogonal
vectors. We then feed each vector separately to a regular linear AE and linear LIS-AE. We
observe that the regular autoencoder outputs zero images for the orthogonal part of each
sample regardless of the class it belongs to. However, in the case of LIS-AE, it behaves
differently for a normal class than for anomalous classes.

We also notice that orthogonal projections do not form a semantically meaningful
representation in pixel space. In order to gain a better representation we use a deep
AE. For this non-linear case, we treat the middle part of the network as an inner linear
autoencoder which is operating on a more semantically meaningful transformed version of
the data.

Mathematics 2022, 10, 112 7 of 22

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Comparison between linear AE and LIS-AE. Digit-8 is the normal task. (a) Inputs. (b) Or-
thogonal vector. (c) AE reconstruction of orthogonal vectors(zero images). (d) LIS-AE reconstruction
of orthogonal vectors. (e) AE reconstruction of inputs. (f) LIS-AE reconstruction of inputs.

This suggests a stacked autoencoder architecture where another loss term for the inner
autoencoder is added in the first phase to make sure that the output of the layer after
the latent layer is similar to the latent input. In the second phase we freeze the entire
network except for the encoder of the inner autoencoder (latent layer of the entire model)
and minimize the reconstruction error of positive examples while maximizing the loss for
negative examples. However, in our experiments we observed that adding these loss terms
was not necessary and a similar loss to the linear case produced similar results since we
only considered reconstruction scores of the outer model. Therefore, we keep the entire
network frozen except for the latent layer while directly minimizing the loss (1) as before.

Mathematics 2022, 10, 112 8 of 22

4.2. Intuition

For concreteness, we consider the following simple, supervised case where x− = xa.
Given a dataset X+ such that for each x+ ∈ X+ distributed as a Gaussian,

x+ ∼ N

0
0
0

,

1 0 0
0 0.2 0
0 0 0.01

,

we notice that most of the variance in data is along the x-axis. Training a linear
autoencoder with latent dimension r = 1 results in DT =

[
1 0 0

]
and ET =

[
1 0 0

]
where D and E are the decoder and encoder networks, respectively.
Given input xT =

[
x y z

]
,

x̃ = DETx =

1
0
0

[1 0 0
]x

y
z

 =

x
0
0

,

the loss score is L = ‖x − x̃‖2 = y2 + z2. Training a LIS-AE on negative samples that
have only non-zero values along the z-axis, we end up with the same D and a modified
ÊT =

[
1 0 γ

]
, where γ is a large number and, then,

ˆ̃x = DÊTx =

1
0
0

[1 0 γ
]x

y
z

 =

x + γz
0
0

,

that results in L̂ = ‖x− ˆ̃x‖ ≈ y2 + γ2z2 with x+ having the form
[
x+ y+ 0

]T , xa having

the form
[
xa ya za

]T where ya, za 6= 0. The new loss scores for x+ and xa are:

L(x+) = y2
+, L(xa) = y2

a + γ2z2
a

In the case of a regular linear-AE (PCA), given x+ = (x+, y+, 0), for each point
(xa, ya, za) ∈ the cylinder

(√
y2

a + z2
a ≤ y+, xa ∈ R

)
the following holds: L(xa) = L(x+),

making the two samples indistinguishable. In the case of LIS-AE, L̂(xa) = L̂(x+) holds

only for the elliptic cylinder
(√

y2
a +

z2
a

1/γ2 ≤ y+, xa ∈ R
)

, and since γ is a large number,

the cross-section of the cylinder is squashed in the z dimension, resulting in heavily penalized
loss in the z dimension but a regular loss in the y dimension. In this case, the two samples
become indistinguishable only for very small values of za.

We note that the new Ê is merely a rotated and stretched version of the old E in the
xz-plane. Thus, we can think of linear LIS-AE as a regular PCA with its eigenvectors
(columns of Ur) stretched and tilted in the directions of the orthogonal complement of the
eigenspace. This is done in such a way that keeps the column space of normal examples
invariant under the new transformation UrET. By itself, this formulation remains ill-
posed since there is an infinite number of solutions that do not necessarily help with
anomaly detection. More formally, given E := Ur + UcB, we can choose any matrix B such
that Null(BT) = Col(UT

c X+) since UrETx+ = Ur(UT
r x+ + BTUT

c x+) = UrUT
r x+ ≈ x+.

However, this does not guarantee any advantage for anomaly detection on similar data
and, even worse, in practice, this modification process might result in a slightly worse
performance if done arbitrarily since the model usually has to sacrifice some extreme
samples from the normal data to balance the two losses. Thus, the negative dataset is used
to properly determine the directions of the tilt and hyper-parameters (γ and β) to determine
the importance and amount of stretching (or shrinking), changing the normal case as little
as possible. For deep LIS-AE, the same analogy holds albeit in a latent space.

Mathematics 2022, 10, 112 9 of 22

Deep architectures are not only useful for learning good representation, but can learn a
non-linear transformation with useful properties for our objective such as linear separability
of negative and positive samples. By adding a standard binary cross-entropy loss before the
non-linear activation of the latent layer during the first phase, we ensure that the input of
the latent layer is linearly separable for positive and negative examples during the second
phase. This linearly separable variant (LinSep-LIS-AE) almost always performs better than
directly using LIS-AE. We investigate the effect of this property on the second phase in
Section 5.2.

5. Experiments

We report results on the following datasets: MNIST [27], Fashion-MNIST [28], SVHN [29],
and CIFAR-10 [30]. Results of our approach are compared to baseline models with the same
capacity for autoencoder-based methods.

5.1. Anomaly Detection

In this section, we test LIS-AE for anomaly detection on image data in unsupervised
settings. Given a standard classification dataset, we group a set of classes together into
a new dataset and consider it the “normal” dataset. The rest of the classes that are not in the
normal nor in the negative datasets are considered anomalies. During training, our model is
presented only with the normal dataset and the additional negative dataset. We evaluate
the performance on test data comprising both the “normal” and “anomalous” groups.

For MNIST and Fashion-MNIST, the encoder network consists of two convolutional
layers with LeakyReLU non-linearities followed by a fully connected bottleneck layer with
a tanh activation function. The decoder network consists of a fully connected layer followed
by a LeakyReLU and two deconvolution layers with LeakyReLU activation functions and a
final convolution layer with sigmoid situated at the final output. For SVHN and CIFAR-10
we use latent layers with larger sizes and higher capacity networks with the same depth.
It is worth noting that the choice of latent layer size has the most effect on performance for
all models (compared to other hyper-parameters). We report the best performing latent
dimension for all models.

In Table 1, we compare LIS-AE with several autoencoder-based anomaly detection
models as baselines, all of which share the exact same architecture. It is worth noting that
the most direct comparison is between LIS-AE and AE since not only do they have the same
architecture, they have the exact same encoder and decoder weights and their performance
is merely measured before and after the latent-shaping phase. We use a different variant
of RepNN with a sigmoid activation function σ(x) = 1/(1 + exp(−x)) placed before the
tanh staircase function approximation described in Section 2. This is mainly used because
“squashing” the input between 0 and 1 before passing it to the staircase function gives a
more robust and easy-to-train network. We only report the best results for Sig-RepNN
with 4 activation levels. For anomaly GAN (AnoGAN) [31], we follow the implementation
described in [32]. We train a W-GAN [33] with gradient penalty and report performance
for two anomaly scores, namely, encoder-generator reconstruction loss and additional
feature-matching distance score in the discriminator feature space (AnoGAN-FM).

For AnoGAN, Linear-AE, AE, VAE, RepNN, MemAE, and LIS-A, we use reconstruc-
tion error L(x) such that if L(x) > α the input is considered an anomaly. Varying the
threshold α, we are able to compute the area under the curve (AUC) as a measure of perfor-
mance. Similarly, for OC-SVDD (equivalently OC-SVM with rbf kernel) and OC-DSVDD,
we vary the inverse length scale γ and use a predicted class label. For kernel density
estimation (KDE) [34], we vary the threshold α over the log-likelihood scores. For isolation
forest (IF) [35], we vary the threshold α over the anomaly score calculated by the isolation
forest algorithm.

Mathematics 2022, 10, 112 10 of 22

Table 1. Average AUC for 10 tasks sampled from MNIST, Fashion-MNIST, and 5 2-class tasks sampled
from MNIST.

Model MNIST Fashion-MNIST 2-Class MNIST

KDE 0.9568 0.9183 0.9206
IF 0.8624 0.9144 0.73018

OC-SVM 0.9108 0.8608 0.8741
OC-DSVDD 0.9489 0.8577 0.8972

AnoGAN 0.9579 0.9098 0.8406
AnoGAN-FM 0.9544 0.9072 0.8353

Linear-AE 0.9412 0.8845 0.8915
VAE 0.9642 0.9092 0.9263

Mem-AE 0.9714 0.9131 0.9352
Sig-RepNN (N=4) 0.9661 0.9124 0.9261

AE 0.9601 0.9076 0.9221
LIS-AE 0.9768 0.9256 0.9457

The datasets tested in Table 1 are MNIST and Fashion-MNIST. To train LIS-AE on
MNIST we use Omniglot [36] as our negative dataset since it shares similar compositional
characteristics with MNIST. Since Omniglot is a relatively small dataset, we diversify the
negative examples with various augmentation techniques, namely, Gaussian blurring,
random cropping, and horizontal and vertical flipping. We test two settings for MNIST,
a 1-class setting where the normal dataset is one particular class and the rest of the dataset
classes are considered anomalies. The process is repeated for all classes and the average
AUC for 10 classes is reported. Another setting is 2-class MNIST where the normal dataset
consists of two classes and the remaining classes are considered anomalies. For example,
the first task contains digits 0 and 1 and the remaining digits are considered anomalies,
the second task contains digit 2 and 3, and so forth. This setting is more challenging since
there is more than one class present in the normal dataset. For Fashion-MNIST, the choice
of the negative example is different. We use the next class as the negative dataset and we do
not include it with anomalies (i.e., the remaining classes) during test time.

We note that LIS-AE achieves superior performance to all compared approaches,
however, we also notice that these settings are comparatively easy and all tested models
performed adequately including classical non-deep approaches.

In Table 2, we show performance on SVHN and CIFAR-10 which are more complex
dataests compared to MNIST and Fashion-MNIST. To train LIS-AE, we split each dataset
into two datasets, and each split is used as negative examples for the other one. Note that
we only test on the remaining classes which are not in the normal nor the negative datasets.
For example, the first dataset from CIFAR-10 has five classes, namely, airplane, automobile,
bird, cat, and deer while the second one has dog, frog, horse, ship, and truck.

Training on airplane as the first normal task, LIS-AE maximizes the loss for samples
drawn from the negative dataset (dog, frog, ship, and so forth). We then test its performance
on airplane as the normal class and only on automobile, bird, cat, and deer as anomalies.
Note that we do not test on dog, frog, and other classes in the negative dataset. This process
is repeated for all 10 classes and the average AUC is reported. As mentioned in Section 4.2,
we introduce LinSep-LIS-AE as an improvement over base standard LIS-AE. The difference
between the two models is only in the first phase where a binary cross-entropy loss is added
to ensure that positive and negative examples are linearly separable during the second
phase. The last two entries of the table are supervised upper bounds for each variant where
the negative dataset is the same as outliers. In Figure 3, we see that standard AE is prone
to generalize well for other classes which is not a desired property for anomaly detection.
In contrast, LIS-AE only reconstructs normal data faithfully which translates to the large
performance gap we see in Figure 4.

Mathematics 2022, 10, 112 11 of 22

Table 2. Average AUC for 10 anomaly detection tasks sampled from SVHN and CIFAR-10 are shown.

Model SVHN CIFAR-10

KDE 0.5648 0.5752
IF 0.5112 0.6097

OC-SVM 0.5047 0.5651
OC-DSVDD 0.5681 0.6411

AnoGAN 0.5598 0.5843
AnoGAN-FM 0.5645 0.5880

Linear-AE 0.5702 0.5753
VAE 0.5692 0.5734

Mem-AE 0.5720 0.5931
Sig-RepNN (N=4) 0.5684 0.5719

AE 0.5698 0.5703
LIS-AE 0.6886 0.8145

LinSep-LIS-AE 0.7701 0.8858

Sup. LIS-AE 0.7573 0.8384
Sup. LinSep-LIS-AE 0.8479 0.9170

Figure 3. Top row is test input from CIFAR-10 and SVHN, middle row is the output of a standard
AE (first phase), and the bottom row is the output of LIS-AE. Trained on normal “car” and “digit-0”
classes, LIS-AE only reconstructs samples of the normal class correctly.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

Figure 4. Each line represents a trade-off between accuracy of anomalies and normal data for CIFAR10.
The left pane shows accuracies on tasks 0–4 and the right shows accuracies on tasks 5–9. Note that as
the threshold value α increases, the model favors accepting anomalies over misclassifying normal
examples. LIS-AE gives a significant margin compared to base AE.

Mathematics 2022, 10, 112 12 of 22

We also notice that despite CIFAR-10 being more complex than SVHN, most reconstruction-
based models perform better on CIFAR-10 than on SVHN. This is due to the fact that the
difference between SVHN classes in terms of reconstruction is not as large since they share
similar compositional features and appear in samples from other classes while, for CIFAR-10,
classes vary significantly (e.g., digit-2 and digit-3 on a wall vs. truck and bird).

5.2. Ablation

In this section, we investigate the effect of the nature of negative dataset and linear
separability of positive and negative examples. In Table 3 we train LIS-AE on different
negative and positive datasets. Similar to Table 2, we split each positive dataset into two
datasets and follow the same settings as before with the exception of “None” and “Supervised”
cases. The “None” case indicates that no negative examples have been used whereas the
Supervised case indicates that both outliers and negative datasets share the same classes.
Note that this case is different from the case where the positive and negative datasets come
from the same dataset. Unless stated otherwise, we only test on classes (outliers) that are
not in the positive nor in the negative datasets. For example, when MNIST is used as a
source for both positive and negative datasets, the positive data starts with class 0 and the
negative dataset consists of classes 5 to 9 where the outliers are classes 1 to 4. This process is
repeated for all 10 classes present in each dataset and the average AUC is reported. Overall,
using a negative dataset resulted in a significant increase in performance in every case
except for two important cases, namely, when Fashion-MNIST and CIFAR-10 were used as
negative datasets for MNIST and SVHN, respectively. This could be explained by the fact
that the model was not capable of reconstructing Fashion-MNIST and CIFAR-10 classes in
the first place. Moreover, shaping the latent layer in such a way that maximizes the loss
for Fashion-MNIST and CIFAR-10 classes does not guarantee any advantage for anomaly
detection of similar digit classes present in MNIST and SVHN. This, coupled with the
fact that this process in practice forces the model to ignore some samples from the normal
dataset to balance the two losses, results in the performance degradation we observe in
these two cases.

Table 3. Average AUC for 10 anomaly detection tasks sampled from two 5-class MNIST, Fashion-
MNIST, SVHN, and CIFAR-10 datasets where a regular LIS-AE is trained with different negative splits.

Negative Positive Data
Data MNIST Fashion SVHN CIFAR-10

None 0.9485 0.8740 0.5698 0.5703
Omni 0.9605 0.9013 - -

MNIST 0.9778 0.8942 - -
Fashion 0.9482 0.9106 - -

SVHN - - 0.6886 0.7065
CIFAR-10 - - 0.5481 0.8145

Same (Sup.) 0.9901 0.9623 0.7573 0.8384

Table 4 is an excerpt of the complete table in Appendix A.1 where we examine the
effect of each class present in the negative dataset on anomaly detection performance for
other test classes from the CIFAR-10 dataset. We split CIFAR-10 into two separate datasets,
the first split is used for selecting classes as negative datasets and the other split is used
as outliers. For each class in CIFAR-10 we train eight models in different settings, the first
setting is None where we train a standard autoencoder with no negative examples as the
base model. The remaining seven settings differ in the second phase, and we select one
class as our negative dataset and test the model performance on each individual class from
the outlier dataset. The combined setting is similar to the setting described in Section 5.1
where we combine all negative classes in one 5-class negative dataset. Note that these
classes are not the same as the classes in the outlier test dataset except for the final setting,
which is an upper-bound supervised setting where the negative dataset comprises classes

Mathematics 2022, 10, 112 13 of 22

that are in the outlier dataset except for the positive class. This process is then repeated
for all 10 classes in CIFAR-10. Overall, we observe a significant performance increase over
the base model with the general trend of negative classes significantly increasing anomaly
detection performance for similar outliers. For example, the dog class drastically improves
performance on the cat class but not so much for the plane class. However, we also notice
two important exceptions, namely, when the horse class is used as the negative dataset for
the car class, we notice a significant performance increase for the relatively similar deer class
as expected, however, when the horse class is used as the negative dataset for the same
deer class, we notice that the performance does not improve as in the first case and even
degrades for the car class.

Table 4. AUC for LIS-AE trained on individual positive and negative classes is reported.

Positive Negative Outliers
Class Class Plane Car Bird Cat Deer Avg.

Car

None 0.32 - 0.34 0.33 0.33 0.330
Dog 5 0.67 - 0.89 0.93 0.90 0.848
Frog 6 0.58 - 0.90 0.90 0.91 0.823

Horse 7 0.66 - 0.88 0.90 0.92 0.840
Ship 8 0.83 - 0.59 0.51 0.50 0.608

Truck 9 0.51 - 0.44 0.49 0.44 0.470
Comb. (5–9) 0.81 - 0.92 0.92 0.94 0.898
Sup. (0–4) 0.89 - 0.93 0.90 0.95 0.918

Deer

None 0.56 0.80 0.52 0.54 - 0.605
Dog 5 0.72 0.85 0.63 0.80 - 0.750
Frog 6 0.66 0.86 0.60 0.75 - 0.718

Horse 7 0.71 0.58 0.58 0.71 - 0.645
Ship 8 0.93 0.94 0.63 0.72 - 0.805

Truck 9 0.84 0.97 0.62 0.72 - 0.773
Comb. (5–9) 0.87 0.95 0.61 0.73 - 0.790
Sup. (0–4) 0.93 0.97 0.63 0.72 - 0.813

Other notable examples of this observation can be found in the appendices where,
for instance, the dog class improves performance on cat outliers, but causes noticeable degra-
dation when used as the negative dataset for the same cat class. The gained performance,
in the first case, is due to the fact that these classes share similar compositional features and
backgrounds. However, in the second case, the same property makes it difficult to balance
the minimization and maximization loss during the latent-shaping phase. For example,
car and truck images are very similar in this scenario so that minimizing and maximizing
the loss at the same time becomes contradictory. As posited in Section 4.2, we mitigate
this issue by adding a binary cross-entropy loss while training in the first phase to ensure
that the input of the latent layer is linearly separable for positive and negative examples.
Notice that, unlike other approaches [23,24], this does not require a labeled positive or
negative dataset and relies only on the fact that we have two distinct datasets. This linear
separability makes the second phase of training relatively easier and less contradictory.
In Table 5, we see that LinSep-LIS-AE mitigates this issue for the aforementioned cases and
gives the AUC increase we observe in Table 2.

Mathematics 2022, 10, 112 14 of 22

Table 5. AUC for LinSep-LIS-AE trained on individual positive and negative classes is reported.

Positive Negative Outliers
Class Class Plane Car Bird Cat Deer Avg.

Car

None 0.32 - 0.34 0.33 0.33 0.330
Dog 5 0.67 - 0.94 0.97 0.95 0.883
Frog 6 0.58 - 0.93 0.96 0.96 0.858

Horse 7 0.69 - 0.95 0.97 0.97 0.895
Ship 8 0.90 - 0.78 0.79 0.76 0.808

Truck 9 0.59 - 0.77 0.82 0.73 0.728
Comb. (5–9) 0.90 - 0.97 0.97 0.98 0.955
Sup. (0–4) 0.95 - 0.98 0.98 0.98 0.9725

Deer

None 0.56 0.80 0.52 0.54 - 0.605
Dog 5 0.67 0.86 0.71 0.89 - 0.783
Frog 6 0.68 0.87 0.62 0.79 - 0.740

Horse 7 0.70 0.84 0.61 0.72 - 0.718
Ship 8 0.94 0.95 0.63 0.73 - 0.813

Truck 9 0.84 0.97 0.61 0.76 - 0.795
Comb. (5–9) 0.90 0.97 0.66 0.80 - 0.833
Sup. (0–4) 0.97 0.98 0.76 0.83 - 0.885

6. Conclusions

In this paper we introduced a novel autoencoder-based model called latent-insensitive
autoencoder (LIS-AE). With the help of negative samples drawn from a similar domain as
the normal data we tune the weights of the bottleneck part of a standard autoencoder such
that the resulting model is able to reconstruct the target task while penalizing anomalous
samples. We also presented theoretical justification for the reasoning behind our two-phase
training process and the latent-shaping loss function along with a more powerful variant.
Multiple ablation studies were conducted to explain the effect of negative classes and high-
light other important aspects of our model. We tested our model in a variety of anomaly
detection settings with multiple datasets of varying degrees of complexity. Experimental
results showed significant performance improvement over compared methods. Future
research will focus on possible ways to synthesize negative examples for domains with lim-
ited data. We also hope to further study and employ various manifold learning approaches
for latent space representation.

Author Contributions: Conceptualization, A.A.L.; Data curation, M.S.B; Formal analysis, A.A.L.
and M.S.B; Methodology, A.A.L. and M.S.B; Software, M.S.B; Supervision,A.A.L.; Validation, M.S.B;
Visualization, A.A.L. and M.S.B; Writing—original draft, M.S.B; Writing—review and editing, A.A.L.
and M.S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets are publicly available as part of the torchvision.datasets
module.

Acknowledgments: Artem Lenskiy was funded by Our Health in Our Hands (OHIOH), a strategic
initiative of the Australian National University, which aims to transform healthcare by develop-
ing new personalized health technologies and solutions in collaboration with patients, clinicians,
and health care providers.

Conflicts of Interest: The authors declare no conflict of interest.

https://pytorch.org/vision/stable/datasets.html

Mathematics 2022, 10, 112 15 of 22

Appendix A

Appendix A.1. Effect of Individual Classes as Negative Examples

As discussed in Section 5.2, we examine the effect of each class present in the negative
dataset on anomaly detection performance for other test classes from the CIFAR-10 dataset.
The first table shows results for standard LIS-AE while the second table shows results for
LinSep-LIS-AE.

Table A1. Complete results of standard LIS-AE trained on individual positive and negative classes of
the first 5-class split of CIFAR-10.

Positive Negative Outliers
Class Class Plane Car Bird Cat Deer Avg.

Plane

None - 0.78 0.58 0.62 0.61 0.648
Dog 5 - 0.83 0.87 0.95 0.91 0.890
Frog 6 - 0.83 0.86 0.94 0.90 0.883

Horse 7 - 0.82 0.86 0.94 0.91 0.883
Ship 8 - 0.83 0.86 0.92 0.90 0.878

Truck 9 - 0.84 0.86 0.95 0.91 0.890
Comb. (5–9) - 0.83 0.85 0.93 0.91 0.880
Sup. (0–4) - 0.81 0.88 0.94 0.92 0.888

Car

None 0.32 - 0.34 0.33 0.33 0.330
Dog 5 0.67 - 0.89 0.93 0.9 0.848
Frog 6 0.58 - 0.9 0.9 0.91 0.823

Horse 7 0.66 - 0.88 0.9 0.92 0.840
Ship 8 0.83 - 0.59 0.51 0.5 0.608

Truck 9 0.51 - 0.44 0.49 0.44 0.470
Comb. (5–9) 0.81 - 0.92 0.92 0.94 0.898
Sup. (0–4) 0.89 - 0.93 0.90 0.95 0.918

Bird

None 0.52 0.78 - 0.54 0.52 0.590
Dog 5 0.59 0.75 - 0.71 0.49 0.635
Frog 6 0.53 0.78 - 0.69 0.54 0.635

Horse 7 0.63 0.80 - 0.66 0.57 0.665
Ship 8 0.86 0.89 - 0.61 0.45 0.703

Truck 9 0.76 0.94 - 0.64 0.72 0.765
Comb. (5–9) 0.78 0.90 - 0.62 0.49 0.698
Sup. (0–4) 0.82 0.94 - 0.60 0.48 0.710

Cat

None 0.55 0.76 0.50 - 0.50 0.578
Dog 5 0.54 0.73 0.52 - 0.52 0.578
Frog 6 0.56 0.72 0.60 - 0.62 0.625

Horse 7 0.70 0.75 0.59 - 0.68 0.680
Ship 8 0.91 0.89 0.53 - 0.46 0.678

Truck 9 0.82 0.94 0.50 - 0.48 0.685
Comb. (5–9) 0.89 0.91 0.55 - 0.52 0.718
Sup. (0–4) 0.93 0.93 0.58 - 0.54 0.745

Deer

None 0.56 0.80 0.52 0.54 - 0.605
Dog 5 0.72 0.85 0.63 0.80 - 0.750
Frog 6 0.66 0.86 0.60 0.75 - 0.718

Horse 7 0.71 0.58 0.58 0.71 - 0.645
Ship 8 0.93 0.94 0.63 0.72 - 0.805

Truck 9 0.84 0.97 0.62 0.72 - 0.773
Comb. (5–9) 0.87 0.95 0.61 0.73 - 0.790
Sup. (0–4) 0.93 0.97 0.62 0.72 - 0.810

Mathematics 2022, 10, 112 16 of 22

Table A2. Complete results of standard LIS-AE trained on individual positive and negative classes of
the second 5-class split of CIFAR-10.

Positive Negative Outliers
Class Class Dog Frog Horse Ship Truck Avg.

Dog

None - 0.69 0.66 0.57 0.77 0.673
Plane 0 - 0.53 0.66 0.92 0.89 0.750
Car 1 - 0.56 0.68 0.95 0.91 0.775
Bird 2 - 0.63 0.63 0.77 0.78 0.703
Cat 3 - 0.67 0.65 0.66 0.81 0.698

Deer 4 - 0.73 0.69 0.70 0.76 0.720
Comb. (0–4) - 0.58 0.67 0.95 0.94 0.785
Sup. (5–9) - 0.56 0.73 0.95 0.95 0.798

Frog

None 0.40 - 0.53 0.49 0.67 0.523
Plane 0 0.73 - 0.81 0.96 0.93 0.858
Car 1 0.74 - 0.83 0.96 0.97 0.875
Bird 2 0.80 - 0.84 0.91 0.85 0.850
Cat 3 0.84 - 0.80 0.87 0.86 0.843

Deer 4 0.75 - 0.86 0.88 0.87 0.840
Comb. (0–4) 0.75 - 0.84 0.97 0.95 0.877
Sup. (5–9) 0.82 - 0.88 0.97 0.96 0.907

Horse

None 0.41 0.58 - 0.46 0.66 0.528
Plane 0 0.55 0.50 - 0.93 0.83 0.703
Car 1 0.56 0.58 - 0.90 0.93 0.743
Bird 2 0.62 0.73 - 0.80 0.71 0.715
Cat 3 0.77 0.76 - 0.65 0.66 0.710

Deer 4 0.62 0.83 - 0.57 0.60 0.655
Comb. (0–4) 0.51 0.57 - 0.89 0.88 0.713
Sup. (5–9) 0.59 0.66 - 0.95 0.92 0.780

Ship

None 0.62 0.74 0.73 - 0.77 0.715
Plane 0 0.75 0.75 0.82 - 0.74 0.765
Car 1 0.84 0.89 0.90 - 0.88 0.878
Bird 2 0.94 0.96 0.94 - 0.78 0.905
Cat 3 0.95 0.95 0.93 - 0.8 0.908

Deer 4 0.92 0.96 0.94 - 0.78 0.900
Comb. (0–4) 0.95 0.97 0.96 - 0.83 0.928
Sup. (5–9) 0.94 0.96 0.96 - 0.88 0.935

Truck

None 0.35 0.53 0.46 0.30 - 0.41
Plane 0 0.61 0.52 0.58 0.80 - 0.628
Car 1 0.51 0.57 0.53 0.47 - 0.520
Bird 2 0.92 0.90 0.84 0.73 - 0.848
Cat 3 0.95 0.90 0.82 0.61 - 0.820

Deer 4 0.91 0.92 0.86 0.63 - 0.830
Comb. (0–4) 0.93 0.91 0.83 0.76 - 0.858
Sup. (5–9) 0.94 0.95 0.90 0.78 - 0.893

Mathematics 2022, 10, 112 17 of 22

Table A3. Complete results of LinSep-LIS-AE trained on individual positive and negative classes of
the first 5-class split of CIFAR-10.

Positive Negative Outliers
Class Class Plane Car Bird Cat Deer Avg.

Plane

None - 0.78 0.58 0.62 0.61 0.648
Dog 5 - 0.84 0.88 0.97 0.93 0.905
Frog 6 - 0.84 0.86 0.95 0.93 0.895

Horse 7 - 0.83 0.85 0.95 0.92 0.888
Ship 8 - 0.80 0.57 0.74 0.56 0.668

Truck 9 - 0.92 0.71 0.87 0.74 0.810
Comb. (0–4) - 0.90 0.85 0.96 0.94 0.913
Sup. (5–9) - 0.93 0.90 0.96 0.95 0.935

Car

None 0.32 - 0.34 0.33 0.33 0.330
Dog 5 0.67 - 0.94 0.97 0.95 0.883
Frog 6 0.58 - 0.93 0.96 0.96 0.858

Horse 7 0.69 - 0.95 0.97 0.97 0.895
Ship 8 0.90 - 0.78 0.79 0.76 0.808

Truck 9 0.59 - 0.77 0.82 0.73 0.728
Comb. (0–4) 0.90 - 0.97 0.97 0.98 0.955
Sup. (5–9) 0.95 - 0.98 0.98 0.98 0.973

Bird

None 0.52 0.78 - 0.54 0.52 0.590
Dog 5 0.56 0.78 - 0.81 0.55 0.675
Frog 6 0.53 0.80 - 0.71 0.56 0.650

Horse 7 0.63 0.81 - 0.72 0.59 0.688
Ship 8 0.86 0.93 - 0.64 0.47 0.725

Truck 9 0.74 0.95 - 0.68 0.48 0.713
Comb. (0–4) 0.82 0.95 - 0.76 0.60 0.783
Sup. (5–9) 0.89 0.97 - 0.70 0.56 0.773

Cat

None 0.55 0.76 0.50 - 0.50 0.578
Dog 5 0.50 0.71 0.51 - 0.46 0.545
Frog 6 0.52 0.76 0.58 - 0.64 0.625

Horse 7 0.65 0.79 0.56 - 0.64 0.660
Ship 8 0.93 0.92 0.56 - 0.48 0.723

Truck 9 0.81 0.96 0.52 - 0.48 0.693
Comb. (5–9) 0.88 0.95 0.62 - 0.68 0.783
Sup. (5–9) 0.95 0.97 0.75 - 0.76 0.860

Deer

None 0.56 0.80 0.52 0.54 - 0.605
Dog 5 0.67 0.86 0.71 0.89 - 0.783
Frog 6 0.68 0.87 0.62 0.79 - 0.740

Horse 7 0.70 0.84 0.61 0.72 - 0.718
Ship 8 0.94 0.95 0.63 0.73 - 0.813

Truck 9 0.84 0.97 0.61 0.76 - 0.795
Comb. (0–4) 0.90 0.97 0.66 0.80 - 0.833
Sup. (5–9) 0.97 0.98 0.76 0.83 - 0.885

Mathematics 2022, 10, 112 18 of 22

Table A4. Complete results of LinSep-LIS-AE trained on individual positive and negative classes of
the second 5-class split of CIFAR-10.

Positive Negative Outliers
Class Class Dog Frog Horse Ship Truck Avg.

Dog

None - 0.69 0.66 0.57 0.77 0.673
Plane 0 - 0.62 0.68 0.98 0.94 0.805
Car 1 - 0.67 0.7 0.96 0.97 0.825
Bird 2 - 0.73 0.68 0.94 0.86 0.803
Cat 3 - 0.65 0.68 0.8 0.85 0.745

Deer 4 - 0.81 0.74 0.89 0.81 0.8125
Comb. (0–4) - 0.80 0.76 0.97 0.96 0.874
Sup. (5–9) - 0.90 0.85 0.97 0.98 0.925

Frog

None 0.40 - 0.53 0.49 0.67 0.523
Plane 0 0.7 - 0.58 0.98 0.96 0.841
Car 1 0.7 - 0.83 0.98 0.98 0.930
Bird 2 0.86 - 0.91 0.96 0.93 0.933
Cat 3 0.88 - 0.87 0.94 0.92 0.912

Deer 4 0.81 - 0.92 0.95 0.92 0.929
Comb. (0–4) 0.91 - 0.95 0.98 0.98 0.956
Sup. (5–9) 0.94 - 0.97 0.98 0.98 0.968

Horse

None 0.41 0.58 - 0.46 0.66 0.0531
Plane 0 0.53 0.59 - 0.96 0.87 0.806
Car 1 0.57 0.67 - 0.96 0.95 0.860
Bird 2 0.33 0.75 - 0.93 0.79 0.823
Cat 3 0.78 0.81 - 0.9 0.77 0.826

Deer 4 0.67 0.85 - 0.87 0.68 0.800
Comb. (0–4) 0.75 0.91 - 0.97 0.93 0.891
Sup. (5–9) 0.82 0.96 - 0.98 0.96 0.930

Ship

None 062 0.74 0.73 - 0.77 0.717
Plane 0 0.84 0.89 0.93 - 0.85 0.890
Car 1 0.86 0.91 0.93 - 0.92 0.920
Bird 2 0.96 0.97 0.97 - 0.85 0.930
Cat 3 0.97 0.98 0.97 - 0.85 0.933

Deer 4 0.95 0.97 0.97 - 0.84 0.927
Comb. (0–4) 0.97 0.98 0.98 - 0.90 0.956
Sup. (5–9) 0.97 0.98 0.98 - 0.94 0.968

Truck

None 0.35 0.53 0.46 0.30 - 0.412
Plane 0 0.69 0.70 0.67 0.87 - 0.733
Car 1 0.54 0.61 0.53 0.61 - 0.573
Bird 2 0.93 0.89 0.88 0.73 - 0.858
Cat 3 0.96 0.91 0.88 0.63 - 0.845

Deer 4 0.90 0.88 0.91 0.67 - 0.840
Comb. (0–4) 0.97 0.96 0.91 0.82 - 0.914
Sup. (5–9) 0.98 0.98 0.96 0.89 - 0.953

Appendix A.2. Detailed Results for All 10 Tasks

The following graphs are detailed results for some experiments in various settings
described in Sections 5.1 and 5.2. Each curve represents a trade-off between accuracy on
anomalies and on normal data for each dataset. The two left panes are an upper-bound
supervised setting where the negative dataset is the same as outliers. The top pane shows
accuracies on tasks 0 to 4 and the bottom shows accuracies on tasks 5 to 9. Note that as
the threshold value α increases, the model favors accepting anomalies over misclassifying
normal examples. In almost all cases, we observe that LIS-AE gives a significant margin
compared to normal AE.

Mathematics 2022, 10, 112 19 of 22

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

Figure A1. LIS-AE trained on CIFAR-10: (left) outliers as negative dataset (supervised), (right) SVHN
as negative dataset .

Mathematics 2022, 1, 0 20 of 23

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

Figure A2. Results of LinSep-LIS-AE variant on SVHN: (left) outliers as negative dataset (supervised),
(right) unsupervised.

Figure A2. Cont.

Mathematics 2022, 10, 112 20 of 22

Mathematics 2022, 1, 0 20 of 23

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

Figure A2. Results of LinSep-LIS-AE variant on SVHN: (left) outliers as negative dataset (supervised),
(right) unsupervised.
Figure A2. Results of LinSep-LIS-AE variant on SVHN: (left) outliers as negative dataset (supervised),
(right) unsupervised.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

Figure A3. MNIST classes as positive datasets: (left) outliers as negative dataset (supervised), (right)
Omniglot as negative dataset.

Mathematics 2022, 10, 112 21 of 22

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-0
LIS-AE-1
LIS-AE-2
LIS-AE-3
LIS-AE-4

AE-0
AE-1
AE-2
AE-3
AE-4

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Normal accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
no

m
al

y
ac

cu
ra

cy

LIS-AE-5
LIS-AE-6
LIS-AE-7
LIS-AE-8
LIS-AE-9

AE-5
AE-6
AE-7
AE-8
AE-9

Figure A4. Fashion-MNIST classes as positive datasets: (left) outliers as negative dataset (supervised),
(right) Omniglot as negative dataset.

References

1. Zhou, C.; Paffenroth, R.C. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 665–674.

2. Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 2017,
262, 134–147. [CrossRef]

3. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst.
2007, 19, 153.

4. Zimek, A.; Schubert, E.; Kriegel, H.P. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal.
Data Mining ASA Data Sci. J. 2012, 5, 363–387. [CrossRef]

5. Chalapathy, R.; Menon, A.K.; Chawla, S. Robust, deep and inductive anomaly detection. In Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia, 18 September 2017; 2017; pp. 36–51.

6. Hasan, M.; Choi, J.; Neumann, J.; Roy-Chowdhury, A.K.; Davis, L.S. Learning temporal regularity in video sequences. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 733–742.

7. Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for
unsupervised anomaly detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April–3 May 2018.

8. Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.v.d. Available online: https://arxiv.org/abs/1904.02639
(accessed on 13 November 2021).

9. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
10. Weston, J.; Collobert, R.; Sinz, F.; Bottou, L.; Vapnik, V. Inference with the universum. In Proceedings of the 23rd International

Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 1009–1016.

http://doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1002/sam.11161
https://arxiv.org/abs/1904.02639
http://dx.doi.org/10.1145/1541880.1541882

Mathematics 2022, 10, 112 22 of 22

11. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1901,
2, 559–572. [CrossRef]

12. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM (JACM) 2011, 58, 1–37. [CrossRef]
13. Bourlard, H.; Kamp, Y. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 1988,

59, 291–294. [CrossRef] [PubMed]
14. An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18.
15. Hawkins, S.; He, H.; Williams, G.; Baxter, R. Outlier detection using replicator neural networks. In Proceedings of the International

Conference on Data Warehousing and Knowledge Discovery, DaWaK, France, 4–6 September 2002; pp. 170–180.
16. Williams, G.; Baxter, R.; He, H.; Hawkins, S.; Gu, L. A comparative study of RNN for outlier detection in data mining.

In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 709–712.
17. Tóth, L.; Gosztolya, G. Replicator neural networks for outlier modeling in segmental speech recognition. In Proceedings of the

International Symposium on Neural Networks, Dalian, China, 19–21 August 2004; pp. 996–1001.
18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
19. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.

Neural Comput. 2001, 13, 1443–1471. [CrossRef] [PubMed]
20. Tax, D.M.; Duin, R.P. Support vector data description. Mach. Learn. 2004, 54, 45–66. [CrossRef]
21. Lampert, C.H. Kernel Methods in Computer Vision; Now Publishers Inc.: Delft, The Netherlands, 2009.
22. Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep one-class classification.

In Proceedings of the International Conference on Machine Learning; Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018;
pp. 4393–4402.

23. Perera, P.; Patel, V.M. Learning deep features for one-class classification. IEEE Trans. Image Process. 2019, 28, 5450–5463. [CrossRef]
[PubMed]

24. Hendrycks, D.; Mazeika, M.; Dietterich, T. Deep anomaly detection with outlier exposure. arXiv 2018, arXiv:1812.04606.
25. Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle detection in aerial images based on region convolutional neural networks and

hard negative example mining. Sensors 2017, 17, 336. [CrossRef]
26. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [CrossRef]
27. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist/

(accessed on 13 November 2021).
28. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747.
29. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature

Learning. 2011. Available online: http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf (accessed on 13
November 2021).

30. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 13 November 2021).

31. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery. In Proceedings of the International Conference on Information Processing in
Medical Imaging, Boone, NC, USA, 25–30 June 2017; pp. 146–157.

32. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast unsupervised anomaly detection with
generative adversarial networks. Med. Image Anal. 2019, 54, 30–44. [CrossRef] [PubMed]

33. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein gans. arXiv 2017,
arXiv:1704.00028.

34. Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
35. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.
36. Lake, B.M.; Salakhutdinov, R.; Tenenbaum, J.B. Human-level concept learning through probabilistic program induction. Science

2015, 350, 1332–1338.

http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1007/BF00332918
http://www.ncbi.nlm.nih.gov/pubmed/3196773
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1162/089976601750264965
http://www.ncbi.nlm.nih.gov/pubmed/11440593
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1109/TIP.2019.2917862
http://www.ncbi.nlm.nih.gov/pubmed/31144635
http://dx.doi.org/10.3390/s17020336
http://dx.doi.org/10.1007/BF02288367
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1016/j.media.2019.01.010
http://www.ncbi.nlm.nih.gov/pubmed/30831356
http://dx.doi.org/10.1214/aoms/1177704472

	Introduction
	Related Work
	Proposed Method
	Architecture
	Terminology
	Training for Anomaly Detection
	Predicting Anomalies

	Theoretical Justification
	Formulation
	Intuition

	Experiments
	Anomaly Detection
	Ablation

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A

	References

