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1. Introduction

H. G. Dales and M. E. Polyakov introduced the concept of multi-normed space in
their article [1]. Multi normed space has a relation with ordered vector spaces and operator
spaces. Furthermore, this concept is somewhat similar to that of the operator sequence
space. We have collected some properties of multi-normed spaces which will be used in
this article. We refer readers to [1–4] for more details.

Functional equations and their stability are some of the classical and practical issues
in the area of mathematical analysis. About half a century ago, the stability of functional
equations was raised with the important question of Ulam [5]. It is said that a functional
equation G is stable if each function g satisfying the equation G−approximately is near to
the true solution of G. D. H. Hyers developed Ulam’s question and theorem [6]. He posed
the following theorem:

Suppose that U and V be Banach spaces and let ρ be a function from U to V such that
the following inequality satisfies for some δ > 0 and for every u, v ∈ U,

‖ρ(u + v)− ρ(u)− ρ(v)‖ ≤ δ.

Then there is only one additive function T : U → V so that

‖T(u)− ρ(u)‖ ≤ δ

for any u ∈ U.
Mathematicians developed the results of the Hyers theorem. By changing the space,

the norm, the control function, and functional equation, they could prove more interesting
theorems [7–14]. For example, the Jenson functional equation or the integral and differential
equations were used instead of the functional equation (in the theorem) and the validity
of the theorem was proved. Now, we change the functional equation to a different lattice
functional equation and various control functions in the above theorem are replaced.

Definition 1. Let X be a set. A function d : X2 → [0, ∞] is a called a generalized metric on X if
and only if d satisfies
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(M1) d(x, y) = 0 if and only if x = y;
(M2) d(x, y) = d(y, x), for all x, y ∈ X;
(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We now introduce one of the fundamental results of the fixed point theory.

Theorem 1 ([15,16]). Let (X, d) be a generalized complete metric space. Assume that G : X → X
is a strictly contractive operator with the Lipschitz constant L < 1. If there exists a non-negative
integer n0 such that d(Gn0+1x, Gn0 x) < ∞ for some x ∈ X, then the following statements are held:

(i) The sequence {Gnx} converges to a fixed point x0 of G;
(ii) x0 is the unique fixed point of G in Y = {y ∈ X|d(Gn0 x, y) < ∞};
(iii) If y ∈ Y, then

d(y, x0) ≤
1

1− L
d(Gy, y).

Now, recall the notion of a multi-normed space from [1,4]. Let (E, ||.||) be a complex
normed space and let k ∈ N. We denote by Ek, the linear space E⊕ ...⊕ E consisting of
k-tuples (x1, ..., xk), where x1, ..., xk ∈ E. The linear operations on Ek are defined coordinat-
wise. The zero element of either E or Ek is denoted by 0. We denote by Nk the set {1, 2, ..., k}
and by Gk the group of permutations on k symbols.

Definition 2. Let (E, ||.||) be a complex (real) normed space. A multi-normed on {Ek, K ∈ N}
is a sequence {||.||k}k∈N of norms on Ek(k ∈ N) such that ||x||1 = ||x||, for each x ∈ E and the
following axioms are satisfied for each k ∈ N with k ≥ 2:

(N1) ||(xσ(1), ..., xσ(k))||k = ||(x1, ..., xk)||k (σ ∈ Gk; x1, ..., xk ∈ E);
(N2) ||(α1x1, ..., αkxk)||k ≤ (maxi∈Nk

|αi|)||(x1, ..., xk)||k
(α1, ..., αk ∈ C; x1, ..., xk ∈ E);

(N3) ||(x1, ..., xk−1, 0)||k = ||(x1, ..., xk−1)||k−1 (x1, ..., xk−1 ∈ E);
(N4) ||(x1, ..., xk−1, xk−1)||k = ||(x1, ..., xk−1)||k−1 (x1, ..., xk−1 ∈ E).

In this case, we say that {(Ek, ||.||k), k ∈ N} is a multi-normed space.

Suppose that {(Ek, ||.||k), k ∈ N} is a multi-normed space. The following properties
are almost immediate consequences of the axioms:

(i) ||(x, ..., x)||k = ||x|| (x ∈ E);
(ii) maxi∈Nk

||xi|| ≤ ||(x1, ..., xk)||k ≤ ∑k
i=1 ||xi|| ≤ k maxi∈Nk

||xi||
(x1, ..., xk ∈ E).

Applying (ii) one concludes that if (E, ||.||) is a Banach space, then (EK, ||.||k) is a Banach
space for each k ∈ N; in this case, {(Ek, ||.||k), k ∈ N} is called a multi-Banach space.

Definition 3. Let (E, ||.||) be a normed algebra such that {(EK, ||.||) : k ∈ N} is a multi-normed
space. Then {(EK, ||.||) : k ∈ N} is a multi-normed algebra if

||(x1y1, ..., xkyk)|| ≤ ||(x1, ..., xk)||k||(y1, ..., yk)||k (∀k ∈ N x1, ..., xk, y1, ..., yk ∈ E).

Furthermore, the multi-normed algebra {(EK, ||.||) : k ∈ N} is a multi-Banach algebra if
{(EK, ||.||) : k ∈ N} is a multi-Banach space.

Definition 4 ([17]). Let X be a real vector space. A function N : X×R→ [0, 1] is called a fuzzy
norm on X if for all x, y ∈ X and all s, t ∈ R

(N1) N(x, t) = 0, for all t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
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(N5) N(x, .) is a non-decreasing function of R and lim
t→∞

N(x, t) = 1;

(N6)For x 6= 0, N(x, .) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space.

Definition 5. Let (X, N) be a fuzzy normed vector space.

(1) A sequence {xn} in X is said to be convergent if there exists an x ∈ X such that lim
n→∞

N(xn −
x, t) = 1, ∀t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by
N − lim

n→∞
xn = x.

(2) A sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N
such that for all n ≥ n0 and all p > 0 , we have N(xn+p − xn, t) > 1− ε.

It is known that every convergent sequence in fuzzy normed space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is
called a fuzzy Banach space. We say that a mapping f : X → Y between fuzzy normed vector
spaces X and Y is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X,
then the sequence { f (xn)} converges to f (x0). If f : X → Y is continuous at each x0 ∈ X, then
f : X → Y is said to be continuous on X.

Definition 6 ([18]). Let X be an algebra and (X, N) a fuzzy normed space. The fuzzy normed
space (X, N) is called a fuzzy normed algebra if

N(xx′, st) ≥ N(x, s)N(x′, t) ∀x, x′ ∈ X, s, t ∈ R+.

Complete fuzzy normed algebra is called a fuzzy Banach algebra.

Example 1. Every normed algebra (X, ||.||) defines a fuzzy normed algebra (X, N), where N is
defined by

N(x, t) =
t

t + ||x|| ∀x ∈ X, ∀t > 0.

This space is called the induced fuzzy normed algebra.

Now, we recall the notion of a multi-fuzzy normed space. The readers can consider [19]
for more details about the features of this space.

Definition 7. Let (E, N) be a fuzzy normed space. A multi-fuzzy norm on {Ek, k ∈ N} is a
sequence {Nk} such that Nk is a fuzzy norm on Ek k ∈ N, N1(x, t) = N(x, t) for each x ∈ E
and t ∈ R and the following axioms are satisfied for each k ∈ N with k ≥ 2:

(F1) Nk((xσ(1), ..., xσ(k)), t) = Nk((x1, ..., xk), t)
(∀σ ∈ Gk, ∀x1, ..., xk ∈ E, ∀t ∈ R);

(F2) Nk((α1x1, ..., αkxk), t) ≥ Nk(maxi∈Nk
|αi|(x1, ..., xk), t)

(∀α1, ..., αk ∈ C, ∀x1, ..., xk ∈ E, ∀t ∈ R);
(F3) Nk((x1, ..., xk−1, 0), t) = Nk−1((x1, ..., xk−1), t)

(∀x1, ..., xk−1 ∈ E, ∀t ∈ R);
(F4) Nk((x1, ..., xk−1, xk−1), t) = Nk−1((x1, ..., xk−1), t)

(∀x1, ..., xk−1 ∈ E, ∀t ∈ R).
In this case, we say that {(Ek, Nk), k ∈ N} is a multi-fuzzy normed space.

If (E, N1) is a fuzzy Banach space, then {(Ek, Nk), k ∈ N} is a multi-fuzzy Banach
space (see [19]).

2. Main Result

We begin this section by introducing the notion of multi-fuzzy normed algebra. Then
we develop the subject of the article [20] in multi-fuzzy Banach algebras.
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Definition 8. Let (E, N) be a fuzzy normed algebra, and let {(Ek, Nk), k ∈ N} be a multi-fuzzy
normed space. Then {(Ek, Nk), k ∈ N} is a multi-fuzzy normed algebra if

Nk((x1y1, ..., xkyk), st) ≥ Nk((x1, ..., xk), s)Nk((y1, ..., yk), t),

for all k ∈ N, x1, ..., xk, y1, ..., yk ∈ E and s, t ∈ R+. Furthermore, the multi-fuzzy normed
algebra {(Ek, Nk), k ∈ N} is a multi-fuzzy Banach algebra if {(Ek, Nk), k ∈ N} is a multi-fuzzy
Banach space.

Example 2. Every multi-Banach algebra {(Ek, ||.||k), k ∈ N} defines a multi-fuzzy Banach
algebra {(Ek, Nk), k ∈ N}, where

Nk((x1, ..., xk), t) =
t

t + ||(x1, ..., xk)||k
t ∈ R+, x1, ..., xk ∈ E.

In this article, we assume that m0 is a natural number. We also assume that T1 = {z ∈
C : |z| = 1} and T1

1
m0

:= {eiθ ; 0 ≤ θ ≤ 2π
m0
}. Moreover, we suppose that (E, N) is fuzzy

Banach algebra. For a given mapping f : E→ E, we define

Dλγ f (x, y) = λ̄ f (
x + γy

2
) + λ̄ f (

x− γy
2

)− f (λx) ∀x, y ∈ E and ∀λ, γ ∈ C. (1)

Let us recall some of the necessary definitions.
Let A be an algebra over C. An involution on A is a mapping

? :A→ A

a 7−→ a?

such that

(i) (αa + βb)? = ᾱa? + β̄b? ∀a, b ∈ A, ∀α, β ∈ C;
(ii) (ab)? = b?a? ∀a, b ∈ A;
(iii) a?? = a ∀a ∈ A.

1. A complex algebra with an involution is a ?-algebra.
2. A C?-algebras is a (non-zero) Banach algebra with an involution, such that:

||a?a|| = ||a||2.

Definition 9. Let A be an ?-algebra and (A, N) a fuzzy normed algebra. The fuzzy normed algebra
(A, N) is called a fuzzy normed ?-algebra if

N(a?, t) = N(a, t) ∀a ∈ A, ∀t ∈ R+.

A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.

Definition 10. Let (A, N) be a fuzzy Banach ∗-algebra. Then (A, N) is called a fuzzy C∗-algebra
if

N(a?a, st) = N(a?, s)N(a, t) ∀a ∈ A, ∀s, t ∈ R+.

Theorem 2. Let (E, N) be a fuzzy Banach algebra and {(EK, Nk), k ∈ N} be a multi-fuzzy Banach
algebra. In addition, suppose that ψ : E2k → [0, ∞) is a given function and there exists a constant
L, 0 < L < 1, such that:

ψ(x1, y1, ..., xk, yk) ≤ 2Lψ(
x1

2
,

y1

2
, ...,

xk
2

,
yk
2
), (2)

Nk((Dλγ f (x1, y1), Dλγ f (x2, y2), ..., Dλγ f (xk, yk)), t) ≥ t
t + ψ(x1, y1, ..., xk, yk)

, (3)
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Nk(( f (x1y1)− f (y1) f (x1), ..., f (xkyk)− f (yk) f (xk)), t) ≥ t
t + ψ(x1, y1, ..., xk, yk)

, (4)

N − lim
n→∞

2−n f (2n(N − lim
n→∞

2−n f (2nx))) = x, (5)

for all x1, ..., xk, y1, ..., yk ∈ E, all t > 0 and all λ, γ ∈ T1
1

m0

, then there exists a unique involution

H : E→ E such that
H(x) := N − lim

n→∞
2−n f (2nx)

and

Nk(( f (x1)− H(x1), ..., f (xk)− H(xk)), t) ≥ (1− L)t
(1− L)t + Lψ(x1, 0, ..., xk, 0)

. (6)

Also, if for all x1, ..., xk ∈ E and for all t > 0

Nk(([N( f (x1), t)− N(x1, t)]x1, ..., [N( f (xk), t)− N(xk, t)]xk), t) ≥ t
t + ψ(x1, x1, ..., xk, xk)

, (7)

then (E, N) is a fuzzy Banach ∗-algebra.
Moreover, if for all x1, ..., xk ∈ E and for all s, t > 0

Nk(([N( f (x1)x1, st)− N( f (x1), s)N(x1, t)]x1, ..., (8)

[N( f (xk)xk, st)− N( f (xk), s)N(xk, t)]xk), t) ≥ t
t + ψ(x1, x1, ..., xk, xk)

,

then (E, N) is a fuzzy C∗-algebra with involution x∗ = H(x) for all x ∈ E.

Proof. Consider the set S := {g : E→ E} and introduce the generalized metric on S.

d(g, h) = inf{δ ∈ [0, ∞] : Nk((g(x1)− h(x1), ..., g(xk)− h(xk)), δt) ≥ t
t + ψ(x1, 0, ..., xk, 0)

},

for all x1, ..., xk ∈ E and t > 0. Where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is
complete (see [21]). Now, we define mappings J : S→ S by

Jg(x) :=
1
2

g(2x) ∀x ∈ E.

First, we prove that J is strictly contractive on S. Let g, h ∈ S be given such that
d(g, h) 6= +∞. Then for some ε > 0

Nk((g(x1)− h(xk), ..., g(xk)− h(xk)), εt) ≥ t
t + ψ(x1, 0, ..., xk, 0)

∀x1, ..., xk ∈ E, ∀t > 0.

If we replace xk in the above inequality with 2xk, for k = 1, ..., n, and make use of (2),
then we have

N((Jg(x1)− Jh(x1), ..., Jg(xk)− Jh(xk)), Lεt) (9)

= N((
1
2

g(2x1)−
1
2

h(2x1), ...,
1
2

g(2xk)−
1
2

h(2xk)), Lεt)

= N((g(2x1)− h(2x1), ..., g(2xk)− h(2xk)), 2Lεt)

≥ 2Lt
2Lt + ψ(2x1, 0, ..., 2xk, 0)

≥ 2Lt
2Lt + 2Lψ(x1, 0, ..., xk, 0)

=
t

t + ψ(x1, 0, ..., xk, 0)
,
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for all x1, ..., xk ∈ E and all t > 0. Therefore, using the definition of d metric, we can
conclude that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h) ∀g, h ∈ S.

Next, we assert that d(J f , f ) < ∞. Putting λ = 1 and y1 = ... = yk = 0 in (3), we get

Nk((
1
2

f (2x1)− f (x1), ...,
1
2

f (2xk)− f (xk)), Lt)

= Nk(( f (2x1)− 2 f (x1), ..., f (2xk)− 2 f (xk)), 2Lt)

≥ 2Lt
2Lt + ψ(2x1, 0, ..., 2xk, 0)

≥ 2Lt
2Lt + 2Lψ(x1, 0, ..., xk, 0)

=
t

t + ψ(x1, 0, ..., xk, 0)
,

for any x1, ..., xk ∈ E, that is
d(J f , f ) ≤ L < ∞. (10)

Now, it follows Theorem 1 that there exists a function H : E → E which is a fixed
point of J, i.e,

H(x) =
1
2

H(2x),

such that lim
n→∞

d(Jn f , H) = 0. Therefore, it can be concluded that

N − lim
n→∞

1
2n f (2nx) = H(x) ∀x ∈ E.

Then H ∈ X∗, which:
X∗ = {g ∈ S : d( f , g) < ∞}.

Again, by Theorem 1 and (10), we obtain

d( f , H) ≤ 1
1− L

d(J f , f ) ≤ L
1− L

,

i.e, the inequality (6) is true for all x ∈ E. Suppose λ = γ = 1 in (2), we have

Nk

(
(2−n f (2n(

x1 + y1

2
)) + 2−n f (2n(

x1 − y1

2
))− 2−n f (2nx1), ...,

2−n f (2n(
xk + yk

2
)) + 2−n f (2n(

xk − yk
2

))− 2−n f (2nxk)), 2−nt
)

≥ t
t + ψ(2nx1, 2ny1, ..., 2nxk, ..., 2nyk)

.

Thus,

Nk

(
(2−n f (2n(

x1 + y1

2
)) + 2−n f (2n(

x1 − y1

2
))− 2−n f (2nx1), ...,

2−n f (2n(
xk + yk

2
)) + 2−n f (2n(

xk − yk
2

))− 2−n f (2nxk), t
)

≥ 2nt
2nt + 2nLnψ(x1, y1, ..., xk, ..., yk)

→ 1 as n→ ∞,

for all x1, ..xk, y1, ..., yk in E and for all t > 0. Therefore

Nk((H(
x1 + y1

2
)+ H(

x1 − y1

2
)−H(x1), ..., H(

xk + yk
2

)+ H(
xk − yk

2
)−H(xk)), t) = 1.
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By replacing x1, ..., xk with x and y1, ..., yk with y in the last inequality, we conclude

N(H(
x + y

2
) + H(

x− y
2

)− H(x), t) = 1.

We get

H(x) = H(
x + y

2
) + H(

x− y
2

),

for all x, y ∈ E. If y1 = ... = yk = 0 in (3), then we have

Nk

(
(2−nλ̄ f (2n−1x1) + 2−nλ̄ f (2n−1x1)− 2−n f (λ2nx1), ...,

2−nλ̄ f (2n−1xk) + 2−nλ̄ f (2n−1xk)− 2−n f (λ2nxk)), 2−nt
)

≥ t
t + ψ(2nx1, 0, ..., 2nxk, ..., 0)

.

Thus,

Nk

(
(2−nλ̄ f (2n−1x1) + 2−nλ̄ f (2n−1x1)− 2−n f (λ2nx1), ...,

2−nλ̄ f (2n−1xk) + 2−nλ̄ f (2n−1xk)− 2−n f (λ2nxk)), t
)

≥ 2nt
2nt + 2nLnψ(x1, 0, ..., xk, ..., 0)

→ 1 as n→ ∞,

for all x1, ..., xk ∈ E and t > 0, then

Nk((2λ̄H(
x1

2
)− H(λx1), ..., 2λ̄H(

xk
2
)− H(λxk)), t) = 1,

∀x1, .., xk ∈ E, ∀λ ∈ T1
1

m0

, ∀t > 0.

By replacing x1, ..., xk with x in the last inequality, we conclude

N((2λ̄H(
x
2
)− H(λx), t) = 1 ∀x1, .., xk ∈ E, ∀λ ∈ T1

1
m0

, ∀t > 0.

It follows by the last equation and additivity of H that H(λx) = λ̄H(x), for all x ∈ E
and all λ ∈ T1

1
m0

.

We will use techniques [22] to continue proving. Now, we show that H is conjugate
linear. We have to show that H(αx) = ᾱH(x) for all α ∈ C, x ∈ E. To this end, let α ∈ C.

If α belongs to T1, then there exists θ ∈ [0, 2π] such that α = eiθ . We set α1 = e
iθ

m0 , thus α1
belongs to T1

1
m0

and H(αx) = H(αm0
1 x) = ᾱm0

1 H(x) = ᾱH(x).

If α belong to nT1 = {nz; z ∈ T1} for some n ∈ N, then by additivity of H,
H(αx) = ᾱH(x) for all x ∈ E.
Let t ∈ (0, ∞) then by Archimedes property of C, there exists a positive real number n
such that the point (t, 0) lies in the interior of a circle with centre at origin and radius n.
Putting t1 := t +

√
n2 − t2i, t2 := t−

√
n2 − t2i. Then we have t = t1+t2

2 and t1, t2 ∈ nT1.
It follows that

H(tx) = H(
t1 + t2

2
x) =

t̄1

2
H(x) +

t̄2

2
H(x) = t̄H(x) = tH(x) ∀x ∈ E.
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On the other hand, there exists θ ∈ [0, 2π] such that α = |α|eiθ . It follows that

H(αx) = H(|α|eiθ x) = |α|e−iθ H(x) = ᾱH(x) ∀x ∈ E.

Hence, H : E→ E is conjugate C-linear mapping. By (4)

Nk

(
(4−n f (4nx1y1)− 2−n f (2ny1).2−n f (2nx1), ...,

4−n f (4nxkyk)− 2−n f (2nyk).2
−n f (2nxk)), 4−nt

)
≥ t

t + ψ(2nx1, 2ny1, ..., 2nxk, 2nyk)
x

≥ t
t + 2nLnψ(x1, y1, ..., xk, yk)

,

thus

Nk

(
(4−n f (4nx1y1)− 2−n f (2ny1).2−n f (2nx1), ...,

4−n f (4nxkyk)− 2−n f (2nyk).2
−n f (2nxk)), t

)
≥ 4nt

4nt + 2nLnψ(x1, y1, ..., xk, yk)
→ 1 as n→ ∞,

for all x1, ..., xk, y1, ..., yk ∈ E and all t > 0, so we have

Nk((H(x1y1)− H(y1)H(x1), ..., H(xkyk)− H(yk)H(xk)), t) = 1

∀x1, ..., xk, y1, ..., yk ∈ E, ∀t > 0

By replacing x1, ..., xk with x and y1, ..., yk with y in the last inequality, we conclude

N(H(xy)− H(y)H(x), t) = 1 ∀x, y ∈ E, ∀t > 0

and therefore,
H(xy) = H(y)H(x) ∀x, y ∈ E.

On the other hand, by (5)

H(H(x)) = N − lim
n→∞

2−n f (2n(N − lim
k→∞

2−n f (2nx))) = x,

for all x in E. Hence H : E→ E is an involution satisfying (6).
In addition, we must prove the uniqueness of H. In fact, assume the existence of

another involution H′ satisfies (6), hence H′( x
2k ) =

1
2k H′(x), ∀x ∈ E, so we have

Nk((2
−n f (2nx1)− 2−n H′(2nx1), ..., 2−n f (2nxk)− 2−n H′(2nxk)), t)

= N(( f (2nx1)− H′(2nx1), ..., f (2nxk)− H′(2nxk)), 2nt)

≥ (1− L)2nt
(1− L)2nt + Lψ(2nx1, 0, ..., 2nxk, 0)

=
(1− L)2nt

(1− L)2nt + 2nLn+1ψ(x1, 0, ..., xk, 0)
→ 1 as n→ ∞,

for all x1, ..., xk ∈ E, t > 0, then

Nk((H(x1)− H′(x1), ..., H(xk)− H′(xk)), t) = 1 ∀x1, ..., xk ∈ E, ∀t > 0
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By replacing x1, ..., xk with x in the last inequality, we conclude

N(H(x)− H′(x), t) = 1 ∀x ∈ E, ∀t > 0

Therefore, H(x) = H′(x) for all x ∈ E. Now, suppose that H satisfies (7), then we have

Nk

(
([N(2−n f (2nx1), 2−nt)− N(x1, 2−nt)]x1, ...,

[N(2−n f (2nxk), 2−nt)− N(xk, 2−nt)]xk), 2−nt
)

≥ t
t + ψ(2nx1, 2nx1, ..., 2nxk, 2nxk)

,

thus,

Nk(([N(2−n f (2nx1), t)− N(x1, t)]x1, ...,

[N(2−n f (2nxk), t)− N(xk, t)]xk), t)

≥ 2nt
2nt + 2nLnψ(x1, x1, ..., xk, xk)

→ 1 as n→ ∞,

for all x1, ..., xk ∈ E and t > 0, therefore

Nk(([N(H(x1), t)− N(x1, t)]x1, ...,[N(H(xk), t)− N(xk, t)]xk), t) = 1

for all x1, ..., xk ∈ E and t > 0. Putting x1 = ... = xk := x in the above equality, we get

N([N(H(x), t)− N(x, t)]x, t) = 1 ∀x ∈ E, t > 0

=⇒ [N(H(x), t)− N(x, t)]x = 0 ∀x ∈ E, t > 0

=⇒ N(H(x), t)− N(x, t) = 0 ∀x ∈ E, t > 0

Therefore, N(H(x), t) = N(x, t) and (E, N) is a fuzzy Banach ∗-algebra. Finally, we assume
that H satisfies (8). Then we have

Nk(([N(2−n f (2nx1)x1, 2−2nst)− N(2−n f (2nx1), 2−ns)N(x1, 2−nt)]x1, ...,

[N(2−n f (2nxk)xk, 2−2nst)− N(2−n f (2nxk), 2−ns)N(xk, 2−nt)]xk), 2−nt)

≥ t
t + ψ(2nx1, 2nx1, ..., 2nxk, ..., 2nxk)

.

Thus,

Nk(([N(2−n f (2nx1)x1, st)− N(2−n f (2nx1), s)N(x1, t)]x1, ...,

[N(2−n f (2nxk)xk, st)− N(2−n f (2nxk), s)N(xk, t)]xk), t)

≥ 2nt
2nt + 2nLnψ(x1, x1, ..., xk, ..., xk)

.

Again, similarly to the above it can be concluded
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Nk(([N(H(x1)x1, st)− N(H(x1), s)N(x1, t)]x1, ...,

[N(H(xk)xk, st)− N(H(xk), s)N(xk, t)]xk), t) = 1 ∀x1, ..., xk ∈ E, s, t > 0

=⇒ N([N(H(x)x, st)− N(H(x), s)N(x, t)]x, t) = 1 ∀x ∈ E, s, t > 0

=⇒ [N(H(x)x, st)− N(H(x), s)N(x, t)]x = 0 ∀x ∈ E, s, t > 0

=⇒ N(H(x)x, t)− N(H(x), s)N(x, t) = 0. ∀x ∈ E, s, t > 0.

Therefore, N(H(x)x, st) = N(H(x), s)N(x, t), then E is a C∗-algebra with involution x∗ =
H(x), for all x ∈ E.

Theorem 3. Let (E, N) be a fuzzy Banach algebra and {(EK, Nk), k ∈ N} be a multi-fuzzy Banach
algebra. In addition, suppose that ψ : E2k → [0, ∞) is a given function and there exists a constant
L, 0 < L < 1

2 , such that

ψ(x1, y1, ..., xk, yk) ≤
L
2

ψ(2x1, 2y1, ..., 2xk, 2yk), (11)

Nk((Dλγ f (x1, y1), Dλγ f (x2, y2), ..., Dλγ f (xk, yk)), t) ≥ t
t + ψ(x1, y1, ..., xk, yk)

, (12)

Nk(( f (x1y1)− f (y1) f (x1), ..., f (xkyk)− f (yk) f (xk)), t) ≥ t
t + ψ(x1, y1, ..., xk, yk)

, (13)

N − lim
n→∞

2n f (2−n(N − lim
n→∞

2n f (2−nx))) = x, (14)

for all x1, ..., xk, y1, ..., yk ∈ E, all t > 0 and all λ, γ ∈ T1
1

m0

, then there exists a unique involution

H : E→ E such that
H(x) := N − lim

n→∞
2n f (2−nx)

and

Nk(( f (x1)− H(x1), ..., f (xk)− H(xk)), t) ≥ (1− L)t
(1− L)t + ψ(x1, 0, ..., xk, 0)

. (15)

Further, if for all x1, ..., xk ∈ E and for all t > 0

Nk(([N( f (x1), t)− N(x1, t)]x1, ..., [N( f (xk), t)− N(xk, t)]xk), t) ≥ t
t + ψ(x1, x1, ..., xk, xk)

, (16)

then (E, N) is a fuzzy Banach ∗-algebra.
Moreover, if for all x1, ..., xk ∈ E and for all s, t > 0

Nk(([N( f (x1)x1, st)− N( f (x1), s)N(x1, t)]x1, ..., (17)

[N( f (xk)xk, st)− N( f (xk), s)N(xk, t)]xk), t) ≥ t
t + ψ(x1, x1, ..., xk, xk)

,

then (E, N) is a fuzzy C∗-algebra with involution x∗ = H(x) for all x ∈ E.

Proof. Let (S, d) be the complete generalized metric space defined in the proof of Theorem 2.
Consider the linear mapping J : S→ S by

Jg(x) := 2g(
x
2
) ∀x ∈ E.

Putting λ = 1 and y1 = ... = yk = 0 in (12), we have

Nk((2 f (
x1

2
)− f (x1), ..., 2 f (

x
k
)− f (xk)), t) ≥ t

t + ψ(x1, 0, ..., xk, 0)
,
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for all x1, ..xk ∈ E and all t > 0. Therefore d(J f , f ) ≤ 1 and thus

d( f , H) ≤ 1
1− L

,

which implies that the inequality (15) holds. The rest of the proof is similar to the proof of
Theorem 2.

Corollary 1. Let (E, N) be a fuzzy Banach algebra and {(EK, Nk), k ∈ N} be a multi-fuzzy
Banach algebra. In addition, let p ∈ (0, 1) and θ ∈ [0, ∞) be real numbers. Suppose that
f : E→ E with f (1) = 1, satisfies satisfying

Nk((Dλγ f (x1, y1), Dλγ f (x2, y2), ..., Dλγ f (xk, yk)), t) ≥ t
t + θ ∑k

i=1(||xi||p + ||yi||p)
,

Nk(( f (x1y1)− f (y1) f (x1), ..., f (xkyk)− f (yk) f (xk)), t) ≥ t
t + θ ∑k

i=1(||xi||p + ||yi||p)
,

N − lim
k→∞

2−k f (2k(N − lim
k→∞

2−k f (2kx))) = x,

for all x1, ..., xk, y1, ..., yk ∈ E, all t > 0 and all λ, γ ∈ T1
1

m0

. Then there exists a unique involution

H : E→ E such that
H(x) := N − lim

k→∞

1
2k f (2kx)

and

Nk(( f (x1)− H(x1), ..., f (xk)− H(xk)), t) ≥ (1− 2p−1)t
(1− 2p−1)t + 2p−1θ ∑k

i=1 ||xi||p
.

Further, if

Nk(([N( f (x1), t)− N(x1, t)]x1, ..., [N( f (xk), t)− N(xk, t)]xk), t) ≥ t
t + 2θ ∑k

i=1 ||xi||p
,

for all x1, ..., xk ∈ E and for all t > 0, then (E, N) is a fuzzy Banach ∗-algebra.
Moreover, if

Nk(([N( f (x1)x1, st)− N( f (x1), s)N(x1, t)]x1, ...,

[N( f (xk)xk, st)− N( f (xk), s)N(xk, t)]xk), t) ≥ t
t + 2θ ∑k

i=1 ||xi||p
,

for all x1, ..., xk ∈ E and for all s, t > 0, then (E, N) is a fuzzy C∗-algebra with involution
x∗ = H(x) for all x ∈ E.

Proof. It follows from Theorem 2 by putting

ψ(x1, y1, ..., xk, yk) = θ
k

∑
i=1
||xi||p + ||yi||p),

for all x1, ..., xk, y1, ..., yk ∈ E and L = 2p−1.
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Corollary 2. Let (E, N) be a fuzzy Banach algebra and {(EK, Nk), k ∈ N} be a multi-fuzzy
Banach algebra. In addition, let p ∈ (0, 1) and θ ∈ [0, ∞) be real numbers. Suppose that
f : E→ E with f (1) = 1, satisfies

Nk((Dλγ f (x1, y1), Dλγ f (x2, y2), ..., Dλγ f (xk, yk)), t) ≥ t
t + θ ∑k

i=1 ∑k
j=1 ||xiyj||p

,

Nk(( f (x1y1)− f (y1) f (x1), ..., f (xkyk)− f (yk) f (xk)), t) ≥ t
t + θ ∑k

i=1 ∑k
j=1 ||xiyj||p

,

N − lim
k→∞

2−k f (2k(N − lim
k→∞

2−k f (2kx))) = x,

for all x1, ..., xk, y1, ..., yk ∈ E, all t > 0 and all λ, γ ∈ T1
1

m0

. Then f is an involution on E.

Moreover, if

Nk(([N( f (x1), t)− N(x1, t)]x1, ..., [N( f (xk), t)− N(xk, t)]xk), t) ≥ t

t + θ(∑k
i=1 ||xi||p)

2 ,

for all x1, ..., xk ∈ E and for all t > 0, then (E, N) is a fuzzy Banach ∗-algebra.
Furthermore, if

Nk(([N( f (x1)x1, st)− N( f (x1), s)N(x1, t)]x1, ...,

[N( f (xk)xk, st)− N( f (xk), s)N(xk, t)]xk), t) ≥ t

t + θ(∑k
i=1 ||xi||p)

2 ,

for all x1, ..., xk ∈ E and for all s, t > 0, then (E, N) is a fuzzy C∗-algebra with involution
x∗ = H(x) for all x ∈ E.

Proof. We put

ψ(x1, y1, ..., xk, yk) := θ
k

∑
i=1

k

∑
j=1
||xiyj||p

for all x1, ..., xk, y1, ..., yk ∈ E and L = 22p−1 in Theorem 2, and then, as a result, the sentence
is obtained.

3. Conclusions

We define multi-fuzzy Banach algebra and then prove the Hyers–Ulam–Rassias sta-
bility of involution on multi-fuzzy Banach algebra by fixed point method and find some
conditions for which a multi-Banach algebra with approximate involution is a C∗-algebra.
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