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Abstract: Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance,
parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section
of the m−th cylinder, a be its radius and x̂m = (xm1, xm2) be its center, 1 ≤ m ≤ M ,
M = M(a). It is assumed that the points, x̂m, are distributed, so that N (∆) =

1
2πa

∫
∆
N(x̂)dx̂[1 + o(1)], where N (∆) is the number of points, x̂m, in an arbitrary open

subset, ∆, of the plane, xoy. The function, N(x̂) ≥ 0, is a continuous function, which an
experimentalist can choose. An equation for the self-consistent (effective) field is derived
as a → 0. A formula is derived for the refraction coefficient in the medium in which many
thin impedance cylinders are distributed. These cylinders may model nano-wires embedded
in the medium. One can produce a desired refraction coefficient of the new medium by
choosing a suitable boundary impedance of the thin cylinders and their distribution law.
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1. Introduction

There is a large literature on electromagnetic (EM) wave scattering by an array of parallel cylinders
(see, e.g., [1], where there are many references given, and [2]). Electromagnetic wave scattering by
many parallel to the z−axis, thin, circular, of radius a, infinite cylinders, on the boundary of which an
impedance boundary condition holds, is studied in this paper asymptotically as a → 0. The cylinders
are thin in the sense, ka� 1, where k is the wave number in the exterior of the cylinders.

The novel points in this paper include:
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(1) The asymptotically exact, as a → 0, solution of the EM wave scattering problem by one
impedance cylinder is given. The solution to the EM wave scattering problem by many thin impedance
cylinders is given. The limiting behavior of this solution is found in the limit a → 0 when the number,
M = M(a), of the cylinders tends to infinity at a suitable rate. The equation for the limiting (as a→ 0)
effective (self-consistent) field in the medium obtained by embedding into it many thin impedance
cylinders is derived.

(2) This theory is a basis for a method for changing the refraction coefficient in a medium by
embedding into this medium many thin impedance cylinders. The thin cylinders model nano-wires
embedded in the medium. The basic physical result of this paper is the formula, (43), which shows how
the embedded thin cylinders change the refraction coefficient, n2(x). This formula serves for designing
a desired refraction coefficient.

The results of the paper are summarized in three theorems.
The author considered earlier scalar wave scattering by small particles of an arbitrary

shape ([3–9]) and EM wave scattering by many thin perfectly conducting cylinders ([10]). The
introduction of the impedance boundary condition is of principal importance, because it gives much
more flexibility in creating a desired refraction coefficient; see formula (43).

Let Dm, 1 ≤ m ≤M , be a set of non-intersecting domains on a plane, P , which is the xoy plane. Let
x̂m ∈ Dm, x̂m = (xm1, xm2), be a point inside Dm and Cm be the cylinder with the cross-section Dm,
and the axis, parallel to the z-axis, passing through x̂m. We assume that x̂m is the center of the disc Dm,
if Dm is a disc of radius a.

Let us assume that on the boundary of the cylinders, an impedance boundary condition holds; see
Equation (5) below. Let a = 0.5diamDm. Our basic assumptions are

ka� 1 (1)

where k is the wave number in the region exterior to the union of the cylinders and

N (∆) =
1

2πa

∫
∆

N(x̂)dx̂[1 + o(1)], a→ 0 (2)

where N (∆) =
∑

x̂m∈∆ 1 is the number of the cylinders in an arbitrary open subset of the plane P ,
N(x̂) ≥ 0 is a continuous function, which can be chosen as we wish, and 2πa is the arc length of a
circle of radius, a. The points, x̂m, are distributed in an arbitrarily large, but fixed, bounded domain on
the plane P . We denote by Ω the union of domains Dm, by Ω′, its complement in P , and by D′ the
complement of D in P . The complement in R3 of the union C of the cylinders Cm, we denote by C ′.

The EM wave scattering problem consists of finding the solution to Maxwell’s equations:

∇× E = iωµH (3)

∇×H = −iωεE (4)

in C ′, such that:
Et = ζ[n,H] on ∂C (5)

where ∂C is the union of the surfaces of the cylinders Cm, Et is the tangential component of E on the
boundary of C, n is the unit normal to ∂C directed out of the cylinders, µ and ε are constants in C ′, ω is
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the frequency, k2 = ω2εµ and k is the wave number. The ζ in Equation (5) is the boundary impedance.
The boundary impedance satisfies the physical restriction Reζ ≥ 0 (see [1]).

The usual impedance boundary condition is Et = ζ[n,Ht], because we use the unit normal pointing
out of C, but [n,H] = [n,Ht] if H3 = 0, as we assume in this paper.

Denote by n2
0 = εµ, so k2 = ω2n2

0. The solution to Equations (3)–(5) must have the following form:

E(x) = E0(x) + v(x), x = (x1, x2, x3) = (x, y, z) = (x̂, z) (6)

where E0(x) is the incident field and v is the scattered field satisfying the radiation condition:

√
r

(
∂v

∂r
− ikv

)
= o(1), r = (x2

1 + x2
2)1/2 (7)

We assume that
E0(x) = k−1eiκy+ik3z(−k3e2 + κe3), κ2 + k2

3 = k2 (8)

{ej}, j = 1, 2, 3 are the unit vectors along the Cartesian coordinate axes, x, y, z. We consider EM waves
with H3 := Hz = 0, that is, E-waves, or TH waves,

E =
3∑
j=1

Ejej, H = H1e1 +H2e2 =
∇× E
iωµ

(9)

. One can prove (see Appendix) that the components of E can be expressed by the formulas:

Ej =
ik3

κ2
Uxje

ik3z, j = 1, 2, E3 = Ueik3z, U =
κ

k
u (10)

where uxj := ∂u
∂xj

, u = u(x, y) solves the problem:

(∆2 + κ2)u = 0 in Ω′ (11)

(un + iξu)|∂Ω = 0, un := ∇u · n, ξ :=
ωµκ2

ζk2
(12)

u = eiκy + w (13)

and w satisfies the radiation condition, (7).
If k3 = 0, then E0 = e3e

iky,

E1 = E2 = 0, E3 = u; H1 =
uy
iωµ

, H2 = − ux
iωµ

, H3 = 0; ξ =
ωµ

ζ
; κ2 = k2

This is the case of the EM wave incident perpendicular to the axis of the cylinders with the E-field
parallel to this axis

If k3 6= 0, then one takes κ = 0, k3 = k and E0 = eikze2. This is the case of the EM wave incident
along the axis of the cylinders with the E-field parallel to the y-axis.

If k3 6= 0, then Et in the condition (5) does not lead to Equation (12). If Et is approximately replaced
by E3 in condition (5), then Equation (12) holds.

Our main results come from the analysis of problem, (11)–(13).



Mathematics 2013, 1 92

The unique solution to Equations (3)–(8) is given by the formulas:

E1 =
ik3

κ2
Uxe

ik3z, E2 =
ik3

κ2
Uye

ik3z, E3 = Ueik3z (14)

H1 =
k2

iωµκ2
Uye

ik3z, H2 = − k2

iωµκ2
Uxe

ik3z, H3 = 0 (15)

where Ux := ∂U
∂x

, Uy = ∂U
∂y

and u = u(x̂) = u(x, y) solves the scalar two-dimensional problem,
(11)–(13), if k3 = 0. These formulas are derived in the Appendix.

Problem (11)–(13) has a unique solution (see, for example, [11]), provided that Reζ ≥ 0 or,
equivalently, that Imξ ≥ 0. This corresponds to the assumption that the material inside the cylinders
is passive, that is, the energy absorption is non-negative. Our goal is to derive an asymptotic formula
for this solution as a → 0. Our results include formulas for the solution to the scattering problem,
the derivation of the equation for the effective field in the medium obtained by embedding many thin
perfectly conducting cylinders and a formula for the refraction coefficient in this limiting medium. This
formula shows that by choosing a suitable distribution of the cylinders, one can change the refraction
coefficient, for example, one can make it smaller than the original one.

The paper is organized as follows.
In Section 2 we derive an asymptotic formula for the solution to Equations (11)–(13) when M = 1,

that is, for scattering by one cylinder. The result is formulated in Theorem 1.
In Section 3 we derive a linear algebraic system for finding some numbers that define the solution

to problem (11)–(13) with M > 1. This gives a numerical method for solving the EM wave scattering
problem by many thin impedance cylinders.

Furthermore, in Section 3 we derive an integral equation for the effective (self-consistent) field in the
medium with M(a)→∞ cylinders as a→ 0. The result is formulated in Theorem 2.

At the end of Section 3 this result is applied to the problem of changing the refraction coefficient of a
given material by embedding many thin perfectly conducting cylinders into it. An analytic formula for
the refraction coefficient is derived. The result is formulated in Theorem 3.

In Section 4 conclusions are formulated.
In Appendix formulas (14) and (15) are derived.

2. EM Wave Scattering by One Thin Perfectly Conducting Cylinder

Consider problem (11)–(13) with Ω = D1, Ω′ being the complement to D1 in R2. Our theory and the
results formulated in Theorems 1, 2 and 3 are valid for the cylinders with an arbitrary cross-section. We
assume that the point x̂1 is a point inside D1.

Let us look for a solution of the form:

u(x̂) = eiκy +

∫
S1

g(x̂, t)σ(t)dt, g(x̂, t) := g(κ|x̂− t|) =
i

4
H

(1)
0 (κ|x̂− t|) (16)

where S1 is the boundary of D1, H(1)
0 is the Hankel function of the order of one, with index, zero, and σ

is to be found from the boundary condition, (12). Let r = |x̂− t|. It is known that as r → 0, one has:

g(κr) = α(κ) +
1

2π
ln

1

r
+ o(1), α := α(κ) :=

i

4
+

1

2π
ln

2

κ
(17)
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and:

g(κr) =
i

4
H

(1)
0 (kr) =

i

4

√
2

πkr
ei(kr−

π
4

)
(
1 + o(1)

)
, r →∞ (18)

Thus:
u = u0 + g(x̂, 0)Q+ o(

1√
r

), |x̂| = r →∞; Q :=

∫
S1

σ(t)dt (19)

and u0 here is the same plane wave as in Equation (16).
One sees from formula (19) that it is sufficient to find one number, Q, in order to solve the scattering

problem, (11)–(13), for one thin cylinder.
This is the central idea of our work. Below, we derive an explicit analytical formula for the number,

Q. This formula (formula (24)) is asymptotically exact.
Let us explain how to derive formula (19). The asymptotics of the integral term in Equation (16) is:

g(x̂, 0)

∫
S1

e−iκβ·tσ(t)dt, β := x̂/|x̂|

where 0 ∈ D1 is the origin. Since κa� 1, it follows that:

e−iκβ·t = 1 +O(a) a→ 0

The remainder, o( 1√
r
), in Equation (19) comes from the radiation condition for the function, g. When

one studies the scattering problem by a single thin cylinder, one can take an arbitrary point inside D1 as
an origin.

In the usual approach to the scattering problem, one has to find an unknown function, σ(t), rather
than one number, Q, in order to solve the scattering problem, (11)–(13). The function, (16), satisfies
Equations (11) and (13) for any σ, and if σ is such that function (16) satisfies boundary condition
(12), then u solves problem, (11)–(13). We assume σ to be sufficiently smooth (Hölder-continuous
is sufficient).

The solution to problem (11)–(13) is known to be unique (see, e.g., [11]). The exact boundary
condition (12) yields:

− u0n(s)− iξu0 = iξαQ+ iξ

∫
S1

g0(s, t)σ(t)dt+ (Aσ − σ)/2 (20)

where Aσ :=
∫
S1

∂g0(s,t)
∂ns

dt, and the formula for the limiting value on S1 of the exterior normal derivative
of the simple layer potential,

∫
S1
g0(x, t)σ(t)dt, was used and

u0(s) := eiκs2 , s ∈ S1; g0(s, t) :=
1

2π
ln

1

rst
, rst := |s− t| (21)

If ka� 1 and k2 = κ2 + k2
3 , then

u0(s) = 1 +O(κa), u0n = iκn2 +O(κa) (22)

Equation (20) is uniquely solvable for σ if a is sufficiently small (see [11,12]).
We are interested in finding the asymptotic formula for Q as a → 0, because u(x̂) in Equation (16)

can be well approximated in the region, |x̂| � a, by the formula,

u(x̂) = u0(x̂) + g(x̂, 0)Q+ o(1), a→ 0 (23)
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. To find the asymptotic of Q as a → 0, let us integrate Equation (20) over S1; keep the main terms of
the asymptotic as a→ 0, take into account that∫

S1

dtn2(t) = 0,

∫
S1

g0(s, t)ds = O(a| log a|) a→ 0

use formulas (22) and obtain

Q = iξu0(x̂1)|S1|(1 + o(1)), a→ 0 (24)

where x̂1 is a point inside D1, |S1| is the length of S1 and rst = |s − t|. If S1 is the circle of radius, a,
then |S1| = 2πa.

If S1 is an arbitrary curve, we assume that the length |S1| = ca, where a is the same as in Equation (1),
and c > 0 is a constant. The reader can check the estimate,

∫
S1
g0(s, t)ds = O(a| log a|), as a→ 0, where

s, t ∈ S1. From formulas (24) and (19) the asymptotic solution to the scattering problem (11)–(13) in
the case of one circular cylinder of radius a, as a→ 0, is

u(x̂) ∼ u0(x̂) + i2πaξu0(x̂1)g(x̂, x̂1), a→ 0, |x̂− x̂1| > a (25)

Here, the sign, ∼, stands for the asymptotic equivalence as a → 0, the point; x̂ is an arbitrary point on
the plane that cannot be at distances less than a from the point x̂1 ∈ D1.

Let us formulate the result.

Theorem 1. Electromagnetic wave, scattered by a single cylinder, is calculated by formulas (14) and
(15) in which u = u(x̂) := u(x1, x2) is given by formula (25).

If the cylinder is not circular, then formula (25) takes the form:

u(x̂) ∼ u0(x̂) + i|S1|ξu0(x̂1)g(x̂, x̂1), a→ 0, |x̂− x̂1| > a (26)

where |S1| is the length of S1.

3. Wave Scattering by Many Thin Cylinders

Problem (11)–(13) should be solved when Ω is a union of many small domains, Dm, Ω = ∪Mm=1Dm.
We assume that Dm is a circle of radius a centered at the point, x̂m.

Let us look for u of the form

u(x̂) = u0(x̂) +
M∑
m=1

∫
Sm

g(x̂, t)σm(t)dt (27)

We assume that the points, x̂m, are distributed in a bounded domain D on the plane P = xoy by
formula (2). The field u0(x̂) is the same as in Section 2, u0(x̂) = eiκy, and Green’s function, g, is the
same as in formulas (16)–(18). It follows from Equation (2) that M = M(a) = O(ln 1

a
). We define the

effective field, acting on the Dj by the formula

ue = u(j)
e = u(x̂)−

∫
Sj

g(x̂, t)σj(t)dt, |x̂− x̂j| > a (28)
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which can also be written as

ue(x̂) = u0(x̂) +
M∑

m=1,m 6=j

∫
Sm

g(x̂, t)σm(t)dt

We assume that the distance d = d(a) between neighboring cylinders is much greater than a:

d� a, lim
a→0

a

d(a)
= 0 (29)

Let us rewrite Equation (27) as

u = u0 +
M∑
m=1

g(x̂, x̂m)Qm +
M∑
m=1

∫
Sm

[g(x̂, t)− g(x̂, x̂m)]σm(t)dt (30)

where
Qm :=

∫
Sm

σm(t)dt (31)

As a → 0, the second sum in Equation (30) (let us denote it Σ2) is negligible compared with the first
sum in Equation (30), denoted Σ1:

|Σ2| � |Σ1|, a→ 0 (32)

The idea of the proof of this is similar to the one given in [13] for a quite different problem of scalar
wave scattering in R3. Let us sketch this proof.

Let us check that

|g(x̂, x̂m)Qm| � |
∫
Sm

[g(x̂, t)− g(x̂, xm)]σm(t)dt|, a→ 0 (33)

If k|x̂− x̂m| � 1, and k > 0 is fixed, then

|g(x̂, x̂m)| = O(
1

|x̂− x̂m|1/2
), |g(x̂, t)− g(x̂, xm)| = O(

a

|x̂− x̂m|1/2
)

and Qm 6= 0; so, estimate Equation (33) holds.
If

|x̂− x̂m| ∼ d� a

then
|g(x̂, x̂m)| = O(

1

ln 1
a

), |g(x̂, t)− g(x̂, xm)| = O(
a

d
)

as follows from the asymptotic of H1
0 (r) = O(ln 1

r
) as r → 0 and from the formulas

dH1
0 (r)

dr
= −H1

1 (r) = O(1
r
) as r → 0. Thus, Equation (33) holds for |x̂− x̂m| � d� a.

Consequently, the scattering problem is reduced to finding the numbers Qm, 1 ≤ m ≤M .
Let us estimate Qm asymptotically as a → 0. To do this, we use the exact boundary condition on

Sm and an argument similar to the one given in the case of wave scattering by one cylinder. The role
of the incident field, u0, is played now by the effective field, ue. The result is a formula, similar to
Equation (24):

Qj = i2πaξjue(x̂j), a→ 0 (34)
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The formula, similar to Equation (25), is

u(x̂) ∼ u0(x̂) + i2πa
M∑
m=1

g(x̂, x̂m)ξmue(x̂m), a→ 0 (35)

The numbers, ue(x̂m), 1 ≤ m ≤ M , in Equation (35) are not known. Setting x̂ = x̂j in Equation (35),
neglecting the o(1) term and using the definition (28) of the effective field, one gets a linear algebraic
system for finding numbers ue(x̂m):

ue(x̂j) = u0(x̂j) + i2πa
∑
m6=j

g(x̂j, x̂m)ξmue(x̂m), 1 ≤ j ≤M (36)

This system can be solved numerically if the number M is not very large, say M ≤ O(103).
If M is very large, M = M(a) → ∞, a → 0, then we derive a linear integral equation for the

limiting effective field in the medium obtained by embedding many cylinders.
Passing to the limit a → 0 in system Equation (36) is done by the method used in [9] in the problem

of wave scattering by many small bodies. Consider a partition of the domain D into a union of P small
squares ∆p of size b = b(a), b � d � a. For example, one may choose b = O(a1/4), d = O(a1/2), so
that there are many discs Dm in the square ∆p. We assume that squares ∆p and ∆q do not have common
interior points if p 6= q. Let ŷp be the center of ∆p. One can also choose as ŷp any point x̂m in a domain
Dm ⊂ ∆p. Since ue is a continuous function, one may approximate ue(x̂m) by ue(ŷp), provided that
x̂m ⊂ ∆p. The error of this approximation is o(1) as a → 0. Let ξ(x̂) be a continuous function in D,
such that ξ(x̂m) = ξm. Let us rewrite the sum in Equation (36) as follows:

2πa
∑
m6=j

g(x̂j, x̂m)ξmue(x̂m) =
P∑
p=1

xj /∈∆p

g(x̂j, ŷp)ξ(ŷp)ue(ŷp)2πa
∑

xm∈∆p

1 (37)

and use formula (2) in the form

2πa
∑

xm∈∆p

1 = N(ŷp)|∆p|[1 + o(1)], a→ 0 (38)

Here, |∆p| is the area of the square ∆p.
From Equations (37) and (38), one obtains:

2πa
∑
m6=j

g(x̂j, x̂m)ξmue(x̂m) =
P∑
p=1

x̂j /∈∆p

g(x̂j, ŷp)N(ŷp)ξ(ŷp)ue(ŷp)|∆p|[1 + o(1)] (39)

The sum in the right-hand side of formula (39) is the Riemannian sum for the integral,

lim
a→0

P∑
p=1

g(x̂j, ŷp)N(ŷp)ξ(ŷp)ue(ŷp)|∆p| =
∫
D

g(x̂, ŷ)N(ŷ)ξ(ŷ)u(ŷ)dy (40)

where u(x̂) = lima→0 ue(x̂). Therefore, system (36) in the limit, a→ 0, yields the integral equation for
the limiting effective field,

u(x̂) = u0(x̂) + iξ

∫
D

g(x̂, ŷ)N(ŷ)ξ(ŷ)u(ŷ)dŷ (41)
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Note that the function, ξ(ŷ), can be chosen by the experimenter as he wishes. This is an advantage of
having impedance cylinders with the impedance that can be chosen as one wishes.

Let us formulate this result.
Theorem 2. The effective field in the limiting medium satisfies Equation (41).
One obtains system (36) if one solves Equation (41) by a collocation method. Convergence of this

method to the unique solution of Equation (41) is proved in [6]. Existence and uniqueness of the solution
to Equation (41) are proved as in [13], where a three-dimensional analog of this equation was studied.

One has (∆2 + κ2)g(x̂, ŷ) = −δ(x̂ − ŷ). Using this relation and applying the operator ∆2 + κ2 to
Equation (41) yields the following differential equation for u(x̂):

∆2u(x̂) + κ2u(x̂) + iξ(x̂)N(x̂)u(x̂) = 0 x̂ ∈ R2 (42)

This is a Schrödinger-type equation, and u(x̂) is its scattering solution corresponding to the incident
wave, u0 = eiκy.

Let us assume that N(x̂) = N and ξ(x̂) are constants. One concludes from Equation (42) that
the limiting medium, obtained by embedding many perfectly conducting circular cylinders, has new
parameter, κ2

N := κ2 + iξN . This means that k2 = κ2 + k2
3 is replaced by k̃2 := k2 + iξN . The quantity,

k2
3 , is not changed. One has k̃2 = ω2n2, k2 = ω2n2

0. Consequently, n2/n2
0 = (k2 + iξN)/k2. Therefore,

the new refraction coefficient, n2, is

n2 = n2
0(1 + iξNk−2), ξ =

ωµκ2

ζk2
(43)

Let us formulate this result.
Theorem 3. If N(x̂) = N and ξ(x̂) = ξ are constants in D, then the refraction coefficient in the

limiting medium is given by formula (43).
Since the number, N > 0, and the impedance, ζ , are at our disposal, Equation (43) shows that,

choosing suitable N , one can create a medium with a desired refraction coefficient. It is of interest that if
ξ(x̂) is not a constant, one can create a refraction coefficient depending on x̂ in a desired way and having
a desired absorption as a function of the position, x̂.

In practice, one does not go to the limit, a → 0, but chooses a sufficiently small a. As a result,
one obtains a medium with a refraction coefficient n2

a, which differs from Equation (43) a little,
lima→0 n

2
a = n2.

4. Conclusions

Asymptotic, as a → 0, solution is given for the EM wave scattering problem by many perfectly
conducting parallel cylinders of radius, a. The equation for the effective field in the limiting medium
obtained when a → 0 and the distribution of the embedded cylinders is given by formula (2). The
presented theory gives formula (43) for the refraction coefficient in the limiting medium. This formula
shows how the distribution of the cylinders influences the refraction coefficient.
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Appendix

Let us derive formulas, (14) and (15). Look for the solution to Equations (3) and (4) of the form:

E1 = eik3zẼ1(x, y), E2 = eik3zẼ2(x, y), E3 = eik3zu(x, y) (44)

H1 = eik3zH̃1(x, y), H2 = eik3zH̃2(x, y), H3 = 0 (45)

where k3 = const. Equation (3) yields

uy − ik3Ẽ2 = iωµH̃1, −ux + ik3Ẽ1 = iωµH̃2, Ẽ2,x = Ẽ1,y (46)

where, for example, Ẽj,x :=
∂Ẽj
∂x

. Equation (4) yields

ik3H̃2 = iωεẼ1, ik3H̃1 = −iωεẼ2, H̃2,x − H̃1,y = −iωεu (47)
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Excluding H̃j , j = 1, 2, from Equation (46) and using Equation (47), one gets

Ẽ1 =
ik3

κ2
ux, Ẽ2 =

ik3

κ2
uy, Ẽ3 = u (48)

H̃1 =
k2uy
iωµκ2

, H̃2 = − k2ux
iωµκ2

, H̃3 = 0 (49)

Since Ej = Ẽje
ik3z and Hj = H̃je

ik3z, formulas (14) and (15) follow immediately from Equations (48)
and (49).
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