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Abstract: PeptideWitch is a python-based web module that introduces several key graphical and
technical improvements to the Scrappy software platform, which is designed for label-free quantitative
shotgun proteomics analysis using normalised spectral abundance factors. The program inputs are
low stringency protein identification lists output from peptide-to-spectrum matching search engines
for ‘control’ and ‘treated’ samples. Through a combination of spectral count summation and inner
joins, PeptideWitch processes low stringency data, and outputs high stringency data that are suitable
for downstream quantitation. Data quality metrics are generated, and a series of statistical analyses
and graphical representations are presented, aimed at defining and presenting the difference between
the two sample proteomes.

Keywords: label-free shotgun proteomics; false discovery rate; data quality; protein quantitation;
spectral counting

1. Introduction

In the field of discovery proteomics, the aim of an experiment is to take a series of two or more
biological samples and quantify the proteins within each. In its simplest version this experiment takes
the form of a pairwise comparison. The desired output is the identification of all proteins in both
samples as well as a classification of which proteins are more abundant in one sample or the other, and
by how much.

One way to achieve this goal is the use of label-free quantitative shotgun proteomics methodologies.
There are several different approaches available for label-free quantitation, including analysis of area
under the curve (AUC) intensities for peptides and spectral counts (SpCs) [1]. Each method requires
appropriate downstream analysis workflows to ensure the best quantitation takes place. Spectral
counting has become a widely used option when analysing label-free data [2], and produces high-quality
results, as demonstrated in a recent comprehensive comparative analysis between labelling with isobaric
tags for relative and absolute quantification (iTRAQ), exponentially modified protein abundance index
(emPAI), AUC and SpC identification workflows [3]. Since it does not involve expensive labelling
reagents, the use of SpCs in proteomics workflows is a desirable option for researchers interested in
holistic approaches to discovery proteomics.

Using spectral counts for protein identification and quantitation is not without drawbacks.
The main weakness in using SpCs appears to be in clearly differentiating proteins with relatively small
changes in expression, and for experimental samples with low abundance counts or small replicate
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numbers [1,4]. There are, however, several methods available which can help address some of the
limitations of spectral counting for quantitation. One modified form of spectral counting which has
become very widely used is the calculation of normalised spectral abundance factors (NSAFs) as
measures of protein abundance, which takes into consideration the fact that larger proteins will produce
more peptides given their length, and thus will have more chances to be measured in a spectrometer,
and factors this into the identification process [5,6].

Our laboratory employs a modified workflow based on calculation of NSAF values for a
minimum of three replicates for each biological sample. The approach aims to create a list of
high-stringency protein identifications that improve quantitative biological veracity in subsequent
downstream analysis. We achieve this by using NSAFs for quantitation as part of a process known as
minimum spectral counting (MSC) [7,8]. MSC involves filtering low-stringency data outputs from a
peptide-to-spectrum-matching (PSM) search engine, and collating protein identifiers that are present
in all sample replicates of at least one sample, whilst ensuring that their raw spectral counts are
summed to a user-specified minimum value (usually ≥ 5), prior to NSAF calculation. The reproducibly
identified proteins collated as part of the MSC process represent a much higher stringency dataset
since most of the random noise in the low-stringency data is filtered out because it is, by definition, not
reproducible. The combination of MSC and NSAF is implemented in a series of R modules we created
previously, known as Scrappy [7]. The implementation of high-stringency data rules in addition to
NSAF production allows us to create a highly refined dataset that overcomes many of the weaknesses
of using raw spectral counting. This is especially the case regarding the lability of low-fold-change
proteins, where the criteria of minimum spectral counts summed across replicates remove much of
the noise associated with identifying low abundance proteins. This analytical approach has been
widely used in recent years, resulting in a diverse array of publications that span agricultural [9–14],
parasitological [15–18] and medical [7,19–21] proteomics.

Here, we introduce a web module called PeptideWitch that produces high-stringency spectral
counting data and conducts automated downstream quantitation. PeptideWitch not only produces
high-stringency MSC and NSAF data from a range of PSM search engine outputs, it also expands greatly
upon the functionality of the Scrappy R software [7] by producing additional statistical and graphical
outputs for inter-and intra-replicate analysis, including Venn diagrams, volcano plots, heatmaps, and
p-value histograms. PeptideWitch also incorporates a newly developed multiple testing corrections
method [22] that utilises internal replicate permutation analysis of six replicates of a reference sample
to produce an experimentally derived Benjamini-Hochberg (BH) corrected p-value threshold for
subsequent application in control vs. treatment quantitation [23–25]. Lastly, PeptideWitch is freely web
accessible so it can easily be used in any laboratory, since it does not require expertise in R (or Python)
programming and implementation. We outline in the Methods the design of PeptideWitch, and present
in the Results outputs from an example dataset that has been analysed using the platform.

2. Methods

2.1. Software Construction

The PeptideWitch software is currently at version 3.0 and was written in Python and flask, with
pipenv also required for compilation. The code versioning system employed was git, and the legal code
licence applicable is MIT. The permanent link to a code repository, including developer documentation,
is available at [26].

2.2. Software Description

An up-to-date and web-accessible version of PeptideWitch can be found at: http://peptidewitch.
online. For PeptideWitch analysis, users begin with standard output csv files from PSM search engines
including X!Tandem running under Global Proteome Machine (GPM) [27], MetaMorpheus [28], or
Proteome Discoverer [29]. Example data files can be found on peptidewitch.online; input files should
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contain lists of protein identifications alongside spectral counts, scores and protein molecular weights.
Care must be taken with filenames and must conform to the following template: {state}-{R#}.csv, where
R# refers to the replicate number. Files are uploaded to the server and processed, with a zip file output
being returned to the user. Inputting three csv files representing replicates of a control set of data, and
three replicate csv files representing a ‘treatment’ set of data, will yield classes of results as described
in the following subsections, divided into separate subfolders.

A schematic diagram of the processing that occurs, depending on the nature of the inputs,
is presented in Figure 1.
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Figure 1. PeptideWitch works by taking in one of three different kind of input combinations. Depending
on the combination, a different workflow is executed with different results provided to the end-user.
White arrows track the process path for high-stringency data while gray arrows track the parallel
execution of the unfiltered ‘All Protein’ process.

2.2.1. Data Quality Analysis

When three replicates of one sample are submitted, data quality analysis is performed, which
returns two csv output files per test state. The first contains the highly-stringent protein identification
data as determined by the MSC rules applied as described previously, and the second contains a
list of all protein identifiers within that particular state, unfiltered, termed ‘All Proteins’. The MSC
process generates a collated list of reproducibly identified proteins present in all replicates, which
thereby constitutes a high-stringency dataset with random noise filtered out on the basis of being
non-reproducible [7]. The ‘All Proteins’ list contains the high-stringency data as well as those proteins
which are not reproducibly identified. Protein data are represented with a single row corresponding to
a particular protein identifier with the corresponding spectral counts, NSAF Values and scores from
each replicate in individual columns.
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2.2.2. Control vs. Treatment Comparison Data

When at least three replicates each of two sample states are submitted, PeptideWitch performs
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein
identifications of both highly stringent and unfiltered data separately. The data streams are split
this way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake
of transparency so that users can understand why particular proteins of interest may fail to appear in
the high-stringency data, usually because they failed to meet the criteria necessary to be categorised as
highly stringent.

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons
are made relative to the control group, which is user-defined as the first state input to the system.
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and
additional graphical representations are produced as outlined in Results.

2.2.3. Same/Same Analysis Processing and Outputs

If six replicates are provided for each of the two sample states, the replicates of the defined
control state are sorted into triplet non-redundant combinations and iteratively compared against
each other using a BH modified t-test as outlined previously [21]. For each possible combination,
the protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins
that appear to be differentially expressed between biologically identical sets of replicates, which
are then defined as false discoveries at the protein quantitation level. The test is repeated with the
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data
are output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all
ten non-redundant BH tests for each state is produced and those are averaged to produce a single
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be used
as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the control
vs. treatment comparison t-tests using the BH method with the new significance threshold value in
place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, downregulated
and combined results are output as new csv files.

A feature table showing the output files produced, depending on the number and type of the
inputs, is presented in Table 1.

Table 1. Files output by PeptideWitch, depending on the nature of input data files.

Number of States Two + States Upload Single State Upload

Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates

Upregulated Protein ID csv files
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contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

Unique Protein ID csv files
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

Venn Diagrams
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

Top 20 Heatmap
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

p-value Histograms

Proteomes 2020, 8, x FOR PEER REVIEW 4 of 11 

 

2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

Inter-state PCAs of lnNSAF and SpC
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

Same-Same combinatorial PCAs
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 

  

PQ-FDR plot
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
control vs. treatment comparison t-tests using the BH method with the new significance threshold 
value in place of the standard 0.05 cut-off. Finally, refined versions of upregulated, unchanged, 
downregulated and combined results are output as new csv files. 

A feature table showing the output files produced, depending on the number and type of the 
inputs, is presented in Table 1.  

Table 1. Files output by PeptideWitch, depending on the nature of input data files. 

Number of States Two + States Upload Single State Upload 
Number of Replicates <6 Replicates 6 Replicates <6 Replicates 6 Replicates 

Upregulated Protein ID csv files ✅ ✅   
Downregulated Protein ID csv files ✅ ✅   

Unchanged Protein ID csv files ✅ ✅   
Unique Protein ID csv files ✅ ✅   

Venn Diagrams ✅ ✅   
Volcano Plots ✅ ✅   

Top 20 Heatmap ✅ ✅   
p-value Histograms ✅ ✅   

Inter-state PCAs of lnNSAF and SpC   
✅ 

 

✅   

Same-Same combinatorial PCAs  ✅  ✅ 
PQ-FDR plot  ✅  ✅ 

List of All Protein IDs ✅ ✅ ✅ ✅ 
List of High Stringency protein IDs ✅ ✅ ✅ ✅ 
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2.2.2. Control vs Treatment Comparison Data 

When at least three replicates each of two sample states are submitted, PeptideWitch performs 
a control vs. treatment quantitative analysis of the data using a Students t-test for shared protein 
identifications of both highly stringent and unfiltered data separately. The data streams are split this 
way into low- and high-stringency results (All Proteins vs. High Stringency) to demonstrate by 
contrast the effect of minimum spectral counting. Low-stringency data are also presented for the sake 
of transparency so that users can understand why particular proteins of interest may fail to appear 
in the high-stringency data, usually because they failed to meet the criteria necessary to be 
categorised as highly stringent. 

Additionally, outputs are sorted into upregulated, downregulated, unchanged, and ‘unique to 
one state only’ data files, with the latter generated only for the high-stringency data. All comparisons 
are made relative to the control group, which is user-defined as the first state input to the system. 
Shared and unique protein identifiers between the input states are displayed in a Venn Diagram, and 
additional graphical representations are produced as outlined in Results. 

2.2.3. Same/Same Analysis Processing and Outputs 

If six replicates are provided for each of the two sample states, the replicates of the defined 
control state are sorted into triplet non-redundant combinations and iteratively compared against 
each other using a BH modified t-test as outlined previously [21]. For each possible combination, the 
protein-quantitation false discovery rate (PQ-FDR) is calculated—this is the percentage of proteins 
that appear to be differentially expressed between biologically identical sets of replicates, which are 
then defined as false discoveries at the protein quantitation level. The test is repeated with the 
significance cut-off value incrementing over a scale from 0 to 1 in increments of 0.01, and the data are 
output in graphical form as a plot of BH Q value threshold against PQ-FDR. An average from all ten 
non-redundant BH tests for each state is produced and those are averaged to produce a single 
experimentally generated threshold value for the BH test that gives 1% PQ-FDR, which can then be 
used as the threshold for comparisons between multiple states. PeptideWitch then repeats each of the 
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3. Results

The results output by the software are in the form of csv data spreadsheets and graphical outputs,
as described above. These data visualisations are illustrated in the following sections using an example
dataset from a previous research study published by our laboratory, involving identification and
label-free quantitation of proteins from two cultivars of rice subjected to drought stress, Nipponbare
and IAC1131 [11].

The raw data are available from the Pride repository, and PSM algorithm outputs are also available
via the PeptideWitch website for use as an illustrative example. Users can download a zipped file
containing fifteen csv files of protein identification output data. These consist of six replicates of
IAC1131 control, six replicates of Nipponbare control and three replicates of Nipponbare extreme
drought stress. When these are uploaded to the PeptideWitch module and processed, outputs are
generated, as described in Methods.

3.1. Selected Examples of the Graphical Visualisation Data Outputs

3.1.1. Venn Diagrams

The first question in many comparative proteomics analysis experiments involving two samples
is how many proteins are found in either sample state uniquely, and how many are found in both
samples irrespective of relative quantitation. One of the simplest and most informative ways to present
this information is in the form of a proportional Venn diagram, as shown in Figure 2 for the control
and extreme drought stress IAC1131 rice.
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Figure 2. Proportional Venn diagram output by PeptideWitch showing the number of high-stringency
proteins reproducibly identified in either sample, or both.

3.1.2. Volcano Plots

Volcano plots are a widely used representation for comparing protein identification between two
states, showing the fold-change directionally away from a central x-axis, and the statistical significance
of the observed fold change along the y-axis. A volcano plot of NSAF data generated from comparison
between control and extreme drought stress IAC1131 rice is shown in Figure 3.

3.1.3. Heat Maps

Heatmaps are used to display relative quantitation values of identified proteins and how these
differ across replicates and between samples. A heat map of logNSAF data generated from a comparison



Proteomes 2020, 8, 21 6 of 11

between control and extreme drought stress IAC1131 rice, displaying the top 20 most differentially
expressed proteins, is shown in Figure 4.Proteomes 2020, 8, x FOR PEER REVIEW 6 of 11 
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3.1.4. Histograms of p-Value Distributions

Histograms of p-value distributions are becoming more widely used in the proteomics field,
because they provide a readily available assessment of the effect size within a qualitative proteomics
dataset [30]. Histograms of p-values generated for high-stringency data, and all protein data, resulting
from a comparison between control and extreme drought stress in IAC1131 rice are shown in Figure 5.
This demonstrates that in the high-stringency data, the statistically significant differences represent a
higher proportion of the overall population, so it is easier to see discern the effect.
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3.1.5. Protein Quantitation-False Discovery Rate Plot

One additional graphical output conditionally produced by PeptideWitch is a plot showing
the relationship between BH Q value threshold and PQ-FDR for a given dataset with six replicates
submitted, using an iterative permutation approach to compare sets of triplicates against each other. In
the example shown in Figure 6, the results indicate that employing an empirically determined Q value
of 0.274 should generate a PQ-FDR of 1% or less, so that criteria can be applied in subsequent analyses
between controls and different sample states.Proteomes 2020, 8, x FOR PEER REVIEW 8 of 11 
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4. Discussion

There are numerous options already available in the field of proteomics for data analysis and
visualisation, including software such as LFQ-Analyst [31] and PANDA-View [32]. LFQ-Analyst
produces highly useful data visualisations including volcano plots and heat maps, and also incorporates
pathway enrichment tools, but it is designed to work exclusively with outputs from the MaxQuant
PSM search engine. PANDA-View is able to work with outputs from various search engines, and
provides multiple data visualization outputs plus extra features such as normalization and missing
value imputation, but it is currently available only as source code which requires installation prior to
operation. Our intention in the development of PeptideWitch was to combine some of the best features
of software such as these, by making the software able to process data from a variety of different PSM
search engines, and freely available via a simple web-based interface.

While PeptideWitch incorporates many of the underlying Scrappy processes [7] using newly
developed code, the platform adds the following additional functionalities: (1) a proportional Venn
diagram showing distribution of proteins in two-sample comparisons, (2) a volcano plot for two-sample
comparisons, (3) a heatmap of the top 20 differentially expressed proteins, (4) p-value histograms for
two-sample comparisons, and (5) Same-Same MTC analysis when six replicates of a designated control
sample are provided. The facile generation of a coherent series of high-quality visual outputs is a great
improvement and will be of great benefit to researchers in presenting their data.

In addition, the online front-end developed for PeptideWitch allows users anywhere to upload
and process their data without having to clone the code repository. That being said, PeptideWitch is
open for developmental contributions; the manner in which the code is structured allows for a modular
approach in adding or subtracting features so that other users can tweak the platform to suit their
analysis requirements.

Another new feature of the PeptideWitch software is that statistical tests between samples are
carried out on high-stringency data generated using MSC rules, but also on the low-stringency data in
parallel. This is done mainly for transparency reasons, so users can track all of the proteins identified in
each of their replicates. Users are encouraged to use the high-stringency datasets for their subsequent
research and to treat the low-stringency data as demonstrative.

The software also allows for data to be re-analysed using a same-same permutation analysis
to determine experimentally derived BH cut-off values, which can then be applied to a two-sample
comparison. We have shown this method to be a more permissive approach to differential protein
quantitation whilst correcting for the multiple testing problem, allowing researchers to broaden the
scope of potential differentially expressed proteins to be validated by downstream follow-up analysis.

There are several obvious avenues for future improvements to PeptideWitch. The ability to
compare high-stringency data with ‘mixed’-stringency datasets would allow for interesting qualitative
comparisons. At present, the split between high-stringency and low-stringency data means that some
protein identifiers that may conform to one but not both criteria for high-stringency (i.e., minimum
spectral count, presence in all replicates) are excluded from being analysed as part of the high-stringency
data. Implementing this change may allow for the recovery of more potential differentially expressed
proteins, which would also need to be validated by further statistical or experimental means. One other
additional change which is currently in development is to incorporate the use of shared or distributed
NSAF values, which have been shown previously to provide more precise label free quantitation,
especially for lower abundance proteins [33,34].

5. Conclusions

PeptideWitch is a data analysis tool for shotgun proteomic analysis designed to output
high-stringency data based on minimal spectral counting combination of at least three replicates of
a given sample. The program performs statistical analyses and outputs a series of information-rich
images which allow the user to easily visualise data quality and differential protein expression
between samples.
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BH Benjamini-Hochberg
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