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Abstract: De novo sequencing of tandem (MS/MS) mass spectra represents the only way to determine
the sequence of proteins from organisms with unknown genomes, or the ones not directly inscribed
in a genome—such as antibodies, or novel splice variants. Top-down mass spectrometry provides
new opportunities for analyzing such proteins; however, retrieving a complete protein sequence from
top-down MS/MS spectra still remains a distant goal. In this paper, we review the state-of-the-art
on this subject, and enhance our previously developed Twister algorithm for de novo sequencing of
peptides from top-down MS/MS spectra to derive longer sequence fragments of a target protein.
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1. Introduction

De novo sequencing of peptides and proteins from tandem (MS/MS) mass spectrometry data
is an important and challenging problem, which has been attracting the attention of specialists
in the field for a few decades. Most of the effort has been invested in retrieving target peptide
sequences from bottom-up MS/MS data, leading to several handy software tools such as PEAKS [1],
PepNovo [2], pNovo [3], Lutefisk [4], Sherenga [5], Vonode [6], Novor [7], the ALPS system [8], and a
special-purpose program UVnovo [9], as well as a few alternative strategies that benefit from multiple
enzyme digest [10–14], or pairs [15–19] or triples [20] of spectra acquired using different fragmentation
techniques. Despite those achievements, database search is commonly considered as a substantially
more reliable approach to protein identification, and remains the choice of preference if a database is
available; the most widely-used tools to this end in the bottom-up and top-down case are Sequest [21]
and Mascot [22], and ProSightPC/ProSight PTM [23,24] and MS-Align+ [25], respectively. However,
the de novo strategy represents the only option for sequencing complementarity determining regions
(CDRs) of antibodies, proteins from organisms with unknown genomes, and novel splice variants.

Top-down mass spectrometry opened new horizons in the analysis of intact proteins, particularly
antibodies [26–28], but the number of algorithmic solutions developed for processing this kind of data
still remains very limited. Until the last year, the only method for de novo sequencing of proteins
solely from top-down MS/MS data was the one by Horn et al. [29] capitalizing on the complementarity
of collisionally activated dissociation (CAD) and electron capture dissociation (ECD), which has
never become publicly available as a software program. The next algorithm, somehow profiting
from top-down MS/MS spectra, was TBNovo [30], which exploited those as a scaffold to assemble
overlapping peptides reconstructed from bottom-up data. Very recently, the Twister approach [31,32],
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which allows for the retrieval of long and highly accurate sequence fragments of the target protein(s)
from a set of top-down MS/MS spectra, has been presented and implemented in a software tool freely
available on the web.

In this work, we apply the concept of tag convolution introduced in [33] for the case of bottom-up
MS/MS data to develop a method for combining sequence fragments of the proteins from the sample
into even longer, possibly gapped, amino acid sequences matching those of the proteins being analyzed.
Its performance is illustrated on top-down data sets for carbonic anhydrase 2 (CAH2) and the Fab region
of alemtuzumab; the sequence fragments passed to it as input comprise the amino acid sequences of
the aggregated paths generated by Twister from the respective data set. The corresponding extended
version of the Twister software tool can be downloaded from http://bioinf.spbau.ru/en/twister.

2. Results

We benchmarked the proposed approach on top-down data sets for CAH2 and alemtuzumab
(see Section 4.1) using the following values of the parameters introduced in Section 4.6:

• tag length: k = 4;
• maximum gap size: Gmax = 3000 Da;
• minimum multiplicity of a binned distance: Bmin = 20;
• minimum number of amino acids supporting a reliable binned distance (see Section 4.6): Amin = 6;
• tolerance for comparing mass offsets: εabs = 10 ppm.

The input amino acid strings represented the sequences of the aggregated paths generated from
those data sets by Twister as described in Sections 4.3 and 4.4; further details can be found in [31,32].
In total, 70 and 92 strings were obtained for the CAH2 and alemtuzumab data set, respectively; the lists
of those are provided in the supplementary file Aggregated-strings-Twister.xls. Note that some
strings were due to contaminant proteins from the respective samples.

Upon the processing of the input amino acid sequences, three and five gapped strings were formed
for the CAH2 and alemtuzumab data set, respectively; see the supplementary file Gapped-strings.xls.
The correct (up to the substitution I/L) sequence fragments, of at least four in length, are highlighted in
color. The positions in the protein sequence of the first and last correct amino acids are provided in the
fields “from” and “to”; if the former exceeds the latter, the gapped string matches the respective protein
sequence in reverse. For each gap, its theoretical value is indicated; the latter is computed taking into
account spurious amino acids immediately before and/or after the gap (if any). For example, the second
gapped string for alemtuzumab, which corresponds to the heavy chain of the latter, contains a single
gap followed by a spurious dimer GY, while the subsequence of the heavy chain of alemtuzumab that
separates the respective two correct fragments is PSQT. Consequently, the theoretical estimate on the
gap is calculated as Mass(PSQT)−Mass(GY). The alignment of the gapped strings corresponding
to the light chain of alemtuzumab or ubiquitin against the respective protein sequence is provided
in Figure 1.

The input strings grouped together always corresponded to the same protein. Out of the
eight gapped strings, seven appropriately mapped to the respective protein sequence. The only
exception was the fourth gapped string for alemtuzumab, which appeared due to a fully correct (up
to reversal) sequence fragment PVGTQLNNTNYLLL and a spurious prolongation SQTMENLQTGV
of its reversed 6-mer VGTQLN (in the respective gapped string, the latter input string occurs in the
reversed form). In this case, the value of 365.3568 showed up in the output of tag convolution for the
corresponding strings with a convincingly high multiplicity due to correlation between the correct
tags defined by b- and y-ions, respectively (as well as their counterparts brought forth through peak
reflection during preprocessing of the deconvoluted input spectra), which supported the fragment
NLQTGV of the light chain of alemtuzumab. Consequently, it was interpreted as the gap estimate.

http://bioinf.spbau.ru/en/twister
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Figure 1. The alignment of the gapped strings against the respective protein sequence: (a) for the
light chain of alemtuzumab; (b) for ubiquitin (a contaminant from the CAH2 sample). The matching
fragments (up to the I/L substitution) of the gapped strings and protein sequences are marked in red;
the spurious amino acids of the gapped strings are shown in gray. The gap sizes (in Da), along with the
corresponding fragments of the protein sequences, are depicted in green. The zero-size gap between
two adjacent fragments of ubiquitin that appeared as part of the input is indicated with the green
vertical bar. The gap in the second gapped string for the light chain of alemtuzumab, labeled with the
green asterisk, comprises 253.15 Da, and thus, approximately equals the mass of its corresponding
dimer RP. All the other gaps accurately match the respective theoretical estimates as well.

For all the other gapped strings, the reported estimates on the gaps accurately approximate the
respective theoretical values, except for the second gap in the gapped string for CAH2 corresponding
to ubiquitin (a contamination in the CAH2 data set): in this case, the estimate 1582.8486 is
roughly 1 Da below the theoretical gap of 1583.842 Da. This discrepancy should be attributed to
a ±1 Da error introduced at the time of deconvolution. The estimate on the first gap in this string is
nearly zero, which appropriately reflects the fact that its first and second fragment are adjacent in the
sequence of ubiquitin. The portion of this gapped string between the first and last correct amino acid
spreads from the third to 66th position in the ubiquitin sequence, thus covering 63 out of 76 (82.9%) of
its amino acids (see Figure 1b), which points to the ability of the method to almost fully reconstruct the
sequence of a small protein.

3. Discussion

We have proposed a method for combining sequence fragments of proteins from the sample
being analyzed into their longer subsequences containing gaps, for each of which, an accurate estimate
is reported. The approach is based on the concept of tag convolution recently introduced in [33]
for the case of high-resolution bottom-up MS/MS spectra. The performance of the algorithm was
illustrated on the top-down data sets for CAH2 and the Fab region of alemtuzumab; the input sequence
fragments comprised the amino acid strings of the aggregated paths generated from the respective
data set using Twister [31,32]. In total, eight gapped string were obtained, out of which only one was
incorrect. The only error was due to a simultaneous presence in the input of the correct sequence
fragment PVGTQLNNTNYLLL and its incorrect alternative VGTQLNEMTQS; the latter appeared
as an erroneous prolongation of the 6-mer VGTQLN of the former at the time of construction of the
aggregated strings by Twister. However, this kind of spurious output can be easily recognized through
visual inspection of the gapped strings produced by the algorithm.

It should be possible to further reduce, and probably eliminate, the remaining gaps through
aligning the input spectra against the obtained sequences and more thoroughly examining their parts
matched to the gaps. From this point of view, using the aggregated paths generated by Twister as input
is clearly beneficial, since the alignment of the underlying spectra against those is naturally obtained
in the process of their generation.
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Consequently, the algorithm for constructing gapped sequences from the aggregated paths was
implemented within Twister, the extended version of which is freely available online. Development of
a method for closing the gaps in those is an essential follow-up task that we intend to address in our
future research.

4. Materials and Methods

4.1. Data Sets

The computational experiments were carried out on the top-down datasets for CAH2 and the
Fab region of alemtuzumab published in [31] and are available at http://bioinf.spbau.ru/en/twister.
In brief, intact CAH2 was analyzed by a reversed-phase liquid chromatography (RPLC) system coupled
online with a Thermo LTQ Orbitrap Elite; MS and MS/MS spectra were collected at a resolution
of 240 k and 120 k, respectively. The CAH2 data set consisted of 3031 ETD, 3363 CID and 3437 HCD
top-down MS/MS spectra. Alemtuzumab was digested with papain, and subsequently reduced and
analyzed by RPLC coupled online with a Thermo LTQ Orbitrap Velos; MS and MS/MS spectra were
acquired at a resolution of 100 k and 60 k, respectively. The data set for the Fab region of alemtuzumab
comprised 4962 ETD and 4931 HCD top-down MS/MS spectra.

4.2. Deconvolution

The input top-down MS/MS spectra were centroided and converted to mzXML format with
ReAdW, and then deisotoped and charge state deconvoluted using MS-Deconv [34] with the default
parameters: maximum charge state: 30; maximum monoisotopic mass of fragment ions: 49, 000 Da;
signal-to-noise ratio: 1; envelopes of precursor ions were deconvoluted to derive the precursor masses
of MS/MS spectra.

4.3. Tags

A tag of length k, or k-tag, is defined by k + 1 peaks p1, . . . , pk+1 from a spectrum S, such that
each two neighbor ones are separated by the mass of an amino acid. Thus, a k-tag t has an amino acid
sequence s(t) = a1 . . . ak and an offset o(t) equal to the mass Mass(p1) of the leftmost peak p1.

A set T of 4-tags, to become the input for tag convolution, was generated with the method
implemented within the Twister software tool [31,32] for de novo sequencing of peptides from
top-down tandem mass spectra. Thereby, the default parameters of Twister were used: tag length k = 4,
mass tolerance ε = 4 mDa, peak reflection applied to individual deconvoluted spectra, and water
loss ions eliminated. Further, for a preprocessed spectrum S, a spectrum graph G(S) was constructed,
the vertices of which corresponded to the peaks of S, and for two vertices—u and w—an edge from
u to w was introduced if m(w)−m(u) matched the mass of some amino acid within 2ε, where m(v)
denotes the mass of the peak from S that gave rise to the vertex v. The vertices of G(S) were scored
with the intensities of their underlying peaks, and an optimal path with respect to the vertex scores
was extracted from each connected component of G(s). Finally, from each obtained path of at least
k = 4 in length, all the possible 4-tags were derived.

An important point here is that the application of a small constant mass tolerance at the time
of generating the edges of G(S) assures that the resulting k-tags are highly accurate. A detailed
description of the above procedure can be found in [31].

4.4. Sequence Fragments

The first part of the input of the proposed method is a set A of amino acid strings supposed to
represent sequence fragments of the proteins from the sample being analyzed. In our experiments,
we used as A the amino acid sequences of the aggregated paths generated with Twister, as described
in [32], from the set of MS/MS spectra acquired from the respective sample.

http://bioinf.spbau.ru/en/twister
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In brief, Twister takes a set of deisotoped and charge state deconvoluted MS/MS spectra as
input, and first generates from them a set of highly accurate k-tags using the strategy described
in the previous section. Next, it assembles a number of de novo strings from the tags consistent
with each other in terms of both amino acid sequences and offsets, each assigned a mass offset
equal to the smallest offset among those of the tags contributing to it. (For example, if we have
two 4-tags derived from HCD spectra, with the amino acid string SGAT and GATF, respectively, and
offset 500 and 587, respectively, we note that 587 = 500 + Mass(S), and therefore, those tags may be
due to the same protein—e.g., one with a subsequence SGATF preceded by an N-terminal fragment of
mass 500; having glued the two tags, we will obtain a de novo string SGATF with the offset of 500.)
Finally, Twister combines the derived de novo strings into a number of aggregated strings endowed
with direct and reversed offsets; the amino acid sequence of an aggregated string typically represents a
longer sequence fragment of a protein contained in the sample, and its associated offsets reflect the
location of the respective fragment within the entire sequence.

To generate the aggregated strings, we ran Twister with the default parameters (see above)
on the CAH2 and alemtuzumab data sets. The amino acid sequences of the 70 and 92 aggregated
strings obtained for CAH2 and alemtuzumab, respectively, which served as input for the algorithm
being described, are listed in the supplementary file Aggregated-strings-Twister.xls. Their correct
fragments, at least four in length, are highlighted in color, and for each of those, its first and last
position in the corresponding protein sequence is indicated; in the case that the former exceeds the
latter, the respective fragment occurs in the sequence in the reversed form.

4.5. Tag Convolution

For an amino acid sequence s, let s denote its reversed copy.
Tag convolution was defined in [33] as follows. For a set of k-tags T , let K(T ) = {w|∃t ∈ T : s(t) = w}

denote the set of all their amino acid sequences. Given two k-mers w1, w2 ∈ K(T ), tag convolution
τ(w1, w2) considers all pairs (t1, t2) of tags from T , such that s(t1) = w1 and s(t2) = w2, and
computes the difference o(t2)− o(t1) of their offsets. For each difference encountered thereby (up
to a predefined tolerance), tag convolution records how many times it occurred. Thus, its output
comprises a set of pairs, each composed of a registered offset difference di and its multiplicity mi:
τ(w1, w2) = {(di, mi)|1 ≤ i ≤ h}, where h is the number of distinct offset difference values observed.

Subsequently, the above concept was generalized to the case of strings, and slightly adjusted so
that for two subsequences s1 = ai . . . ai+q and s2 = aj . . . aj+r of s, where 1 ≤ i ≤ i + q < j ≤ n− r,
the value contributed to the output of tag convolution T(s1, s2) by the pairs of tags matching either s1

and s2 or s2 and s1 would equal Mass(ai+q+1 . . . aj−1), i.e., the mass of the subsequence separating s1

and s2 in s. This was formalized in the following way.
For a real δ, a shift of τ(w1, w2) by δ is defined as τδ(w1, w2) = {(d + δ, m)|(d, m) ∈ τ(w1, w2)}.

To compute T(s1, s2) for two amino acid strings s1 = x1 . . . xe and s2 = y1 . . . y f , we first iterate over all
the pairs of k-mers from s1 and s2, respectively; thereby, a pair (xi . . . xi+k−1, yj . . . yj+k−1) contributes
the output of τ−Mass(xi ...xe)−Mass(y1 ...yj−1)

(xi . . . xi+k−1, yj . . . yj+k−1) to an auxiliary set τ(s1, s2). Next,
we analogously form a set τ(s2, s1). Having merged together τ(s1, s2) and τ(s2, s1), we obtain T(s1, s2).
Note that T(s1, s2) = T(s2, s1).

In [33], we described a procedure for validating de novo peptide sequences. In particular,
for an amino acid ai of a candidate sequence s = a1 . . . an, where k < i ≤ n − k, it computes
T(a1 . . . ai−1, ai+1 . . . an) and checks whether Mass(ai) occurs in it with a high enough multiplicity.
According to our experiments, for a correct peptide sequence s, the multiplicity Mass(ai) usually
clearly dominates that of the other values present in T(a1 . . . ai−1, ai+1 . . . an). This suggests that a
similar idea might be applied to check whether two amino acid strings s1 and s2 are subsequences
of a longer sequence s: to this end, one would compute T(s1, s2) and verify whether the multiplicity
of the most frequently observed offset difference d∗ is significantly greater than the second-highest
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multiplicity. If so, d∗ would be reported as the mass of the subsequence separating s1 and s2 in s;
otherwise, the verdict would be that s1, s2 and s are not related in that way.

However, such an approach would work fine only for a rather short peptide sequence s, and its
subsequences s1 and s2 separated by at most a few amino acids, and turns out to be inapplicable to the
top-down case, with long protein sequences and large gaps between the retrieved fragments of those.
The underlying issues, along with the means to resolve them, are discussed in the next section.

4.6. Gap Estimation

Given two amino acid strings s1 and s2, we aim to verify whether they represent two disjoint
fragments of the same protein sequence s, and if the answer is positive, report an approximate mass
of the sequence separating them in s. To this end, we compute T(s1, s2) based on a set T of k-tags
extracted from top-down MS/MS spectra; however, only pairs of tags from the same spectrum are
allowed to contribute to T(s1, s2), and its output needs to be treated in a different way, as compared to
the bottom-up case.

To generate the set T , we again apply the strategy being part of the Twister approach,
which assures high accuracy of the resulting tags (see Section 4.3). In particular, we use a stringent
mass tolerance ε = 4 mDa when deciding whether the difference between two peak masses matches
the mass of some amino acid, thereby relying upon the observation that the errors in close masses tend
to be similar.

However, when we switch to the differences between tag offsets, which can be quite large,
this kind of assumption can no longer be made. Moreover, the same value can appear as a difference
of two relatively small offsets, and also as that of two large offsets, and in the latter case, the error in
it may be substantially larger than in the former case. To avoid the need to keep track of the way in
which concrete values were obtained, we apply the binning strategy similar to the one introduced
in [32] for analyzing the offsets of aggregated strings. Furthermore, namely, each offset difference
d is first scaled through multiplication by 10h (in our experiments, h = 4), and rounded to the
nearest integer; subsequently, each obtained scaled difference ds is assigned a multiplicity µ(ds) equal
to the number of the offset differences that got transformed into it. In addition, an integral binned
difference db is calculated for d by rounding it to the nearest integer; its multiplicity is defined as
µ(db) = µ(ds

1) + · · ·+ µ(ds
g), where ds

i are the scaled counterparts of the offset differences that got
transformed into db, 1 ≤ i ≤ g.

Let our hypothesis be that s1 and s2 are two disjoint subsequences of the same (unknown)
protein sequence s, and s1 precedes s2 in s. In order to disprove it, we proceed as follows. First,
we calculate T(s1, s2), along with the respective sets of scaled and binned offset differences endowed
with multiplicities. Next, we focus on the binned differences, and select the non-negative ones not
exceeding a predefined threshold Gmax. Further, from the binned differences still under consideration,
which have the multiplicity at least Bmin, we pick up those with the highest multiplicity bmax. For each
such difference dbmax , we calculate its score as Score(dbmax) = µ(dbmax) + µ(dbmax − 1) + µ(dbmax + 1),
assuming that a value d′ that does not appear as a binned difference has a zero multiplicity. In this
way, we account for the well-known ±1 Da errors in large enough deconvoluted masses. Finally,
the top-scoring binned difference dbmax

top is selected (the smallest one is picked up in case of ties),
then its corresponding scaled difference ds

0 with the highest multiplicity is detected, and the value of
d̂ = ds

0 · 10−h is reported as a candidate estimate of the gap between s1 and s2.
As a last step, we check whether the tags that contributed to the binned counterpart d̂b of the

estimate d̂ together would cover at least a certain number of amino acids in both s1 and s2. To this
end, we introduce a threshold Amin, and note that m∗ = Amin − k + 1 k-tags with distinct labels
all corresponding to the same string will always cover Amin amino acids in it. The estimate d̂ is
accepted if at least m∗ tags that support d̂b are observed for each of s1 and s2, or m∗ + 1 and m∗ − 1
tags are observed for one and the other string, respectively. If neither is the case, we check whether
the respective numbers are both at least m∗ − 1, and if so, whether either d̂b − 1 or d̂b + 1 occurred
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among the binned differences, and was supported by at least m∗ − 1 and m∗ tags for the two strings,
respectively. In case this holds, the estimate d̂ is accepted. Otherwise, we conclude that the hypothesis
was wrong.

Since the protein sequence fragments may appear in the output of Twister in a direct as well as
reversed form, when processing the amino acid sequences s1 and s2 of two aggregated paths, we apply
the above procedure to up to four pairs of strings, and namely, s1 and s2, s1 and s2, s1 and s2, and s1

and s2. If for some pair, a gap estimate was obtained, the two strings are joined to form a gapped path,
and the remaining pairs are not considered.

To enable iterative construction of gapped paths, we proceed as follows. The gapped paths are
initialized with the input strings, and further examined pairwise. As in the case of regular amino acid
strings, for a pair g1, g2 of gapped paths, we consider four combinations comprising the direct and/or
reversed versions of those: g1 and g2, g1 and g2, g1 and g2, and g1 and g2. Without loss of generality,
let us discuss in more detail the first case.

When processing g1 and g2, we first try to append g2 to g1. To decide whether it is possible,
we pick up the last sequence fragment slast

1 of g1 and the first sequence fragment s f irst
2 of g2, and verify

as stated above whether slast
1 and s f irst

2 represent two fragments of the same protein sequence. If the
answer is positive, g2 is appended to g1; otherwise, we consecutively examine the gaps from g1,
and for each gap large enough to potentially accommodate g2, perform a similar check for the sequence
fragment s′ of g1 immediately preceding this gap, and s f irst

2 . If, according to its outcome, s′ precedes

s f irst
2 in some protein sequence, we additionally verify whether upon embedding of g2 into this gap,

its tail would overlap the fragment s′′ of g1 immediately after the gap. If not, g2 is appropriately
merged into g1 after s′. The overlap check amounts to a comparison of the mass offset of the end of g2

upon embedding, and that of the beginning of s′′ (the offsets may be calculated e.g., with respect to the
beginning of g1), which is carried out using a tolerance εabs specified in ppm. In case g2 could not be
embedded into g1, a similar procedure is applied with a goal of embedding g1 into g2.

Supplementary Materials: The following are available online at www.mdpi.com/2227-7382/5/1/6/s1: File
Aggregated-strings-Twister.xls containing the lists of the amino acid sequences of the aggregated strings
generated by Twister from the data sets for CAH2 and alemtuzumab, respectively; File Gapped-strings.xls
containing the lists of the gapped strings obtained for CAH2 and alemtuzumab, respectively.
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Abbreviations

The following abbreviations are used in this manuscript:

MS/MS tandem mass spectrometry
CAD collisionally activated dissociation
ECD electron capture dissociation
CAH2 carbonic anhydrase 2
CDR complementarity determining region
RPLC reversed-phase liquid chromatography
MS mass spectrometry
ETD electron-transfer dissociation
CID collision-induced dissociation
HCD higher-energy C-trap dissociation
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