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Abstract: Multi-omics is a cutting-edge approach that combines data from different biomolecular
levels, such as DNA, RNA, proteins, metabolites, and epigenetic marks, to obtain a holistic view of
how living systems work and interact. Multi-omics has been used for various purposes in biomedical
research, such as identifying new diseases, discovering new drugs, personalizing treatments, and
optimizing therapies. This review summarizes the latest progress and challenges of multi-omics for
designing new treatments for human diseases, focusing on how to integrate and analyze multiple
proteome data and examples of how to use multi-proteomics data to identify new drug targets. We
also discussed the future directions and opportunities of multi-omics for developing innovative and
effective therapies by deciphering proteome complexity.
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1. Introduction

The complexity of biological systems is beyond the scope of single-omics studies,
which only focus on one type of biological molecule. To fully understand the molecular
mechanisms and interactions that underlie biological functions and diseases, it is necessary
to integrate data from multiple omics levels, such as genomics, transcriptomics, proteomics,
metabolomics, and epigenomics. This is the essence of multi-omics, an emerging approach
that aims to provide a comprehensive and systematic view of biological systems. Multi-
omics has been applied to various fields of biomedical research, such as diagnostics, drug
discovery, personalized medicine, and synthetic biology. By combining different types of
omics data, multi-omics can reveal novel insights into the molecular basis of diseases and
drug responses, identify new biomarkers and therapeutic targets, and predict and optimize
individualized treatments. Multi-omics has the potential to revolutionize the field of phar-
maceutical sciences and enable the development of innovative and effective therapeutics.

However, the multi-omics approach faces many challenges, such as data heterogeneity,
integration, analysis, interpretation, and validation. The high dimensionality, diversity, and
complexity of multi-omics data pose significant computational and statistical difficulties for
data integration and analysis [1]. The biological interpretation and validation of multi-omics
results require extensive knowledge of the field of interest and experimental verification.

This review highlights the recent advances and challenges of multi-omics for the
design of novel pharmaceutical therapies [2]. One of the significant challenges of drug
discovery is integrating different omics data, such as genomics, transcriptomics, proteomics,
and metabolomics, to identify and validate novel drug targets and biomarkers. Omics data
can provide a comprehensive and holistic view of the molecular and cellular mechanisms
of diseases, as well as the effects of drugs on various biological systems [3]. However,
omics data are also complex, heterogeneous, and high-dimensional, requiring advanced
computational methods and tools to analyze and interpret them.

The first step in multi-omics studies is to collect omics data from different sources or
platforms. Depending on the research question and design, omics data can be obtained
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from different levels of biological organization (e.g., cell, tissue, organ), different types of
samples (e.g., blood, urine, biopsy), different time points or conditions (e.g., before or after
treatment), or different individuals or populations (e.g., healthy, diseased, in remission).
Omics data can also be generated by different technologies or methods (e.g., RNA/DNA
sequencing, mass spectrometry). The quality and quantity of omics data can vary greatly
depending on the experimental design and/or procedures. The next step in multi-omics
studies is to integrate omics data from different sources or platforms. Data integration aims
to combine omics data in a meaningful way that preserves or enhances the information
content of each dataset. Data integration can be challenging, depending on the type of
omics data required to be combined for the analysis [4].

2. Main Text
2.1. Different Approaches for Multi-Omics Data Integration

There are different approaches and strategies for integrating omics data for drug
discovery, depending on the type, quality, and availability of the data, as well as the
biological question and hypothesis [5,6] (Figure 1).
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Figure 1. The integration of different omics data for drug discovery. There are different methods and
tools for integrating omics data, such as conceptual integration, statistical integration, model-based
integration, and network-based integration. Each method has its own advantages and limitations
and can reveal distinct aspects of the biological system.

Some of the common methods include:

− Conceptual integration: This method involves using existing knowledge and databases
to link different omics data based on shared concepts or entities, such as genes,
proteins, pathways, or diseases. For example, one can use gene ontology (GO) terms
or pathway databases to annotate and compare different omics data sets and identify
common or specific biological functions or processes [7]. This method is useful for
generating hypotheses and exploring associations between different omics data, but
it may not capture the complexity and dynamics of the biological system. Open-
source pipelines such as STATegra [8] or OmicsON [9] have recently demonstrated an
enhanced capacity of the framework to detect specific features overlapping between
the compared omics sets;

− Statistical integration: This method involves using statistical techniques to combine
or compare different omics data based on quantitative measures, such as correlation,
regression, clustering, or classification [10]. For example, one can use correlation
analysis to identify co-expressed genes or proteins across different omics data sets or
use regression analysis to model the relationship between gene expression and drug
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response [11]. This method is useful for identifying patterns and trends in the omics
data, but it may not account for the causal or mechanistic relationships between the
omics data;

− Model-based integration: This method involves using mathematical or computational
models to simulate or predict the behavior of the biological system based on dif-
ferent omics data [12]. For example, one can use network models to represent the
interactions between genes and proteins in different omics datasets or use pharma-
cokinetic/pharmacodynamic (PK/PD) models to describe the absorption, distribution,
metabolism, and excretion (ADME) of drugs in different tissues or organs [13]. This
method is useful for understanding the dynamics and regulation of the biological
system, but it may require a lot of prior knowledge and assumptions about the system
parameters and structure;

− Networks and pathway data integration: This method involves using networks or
pathways to represent the structure and function of the biological system based
on different omics data. Networks are graphical representations of the nodes (e.g.,
genes, proteins) and interactions in the system, while pathways are collections of
related biological processes or events that occur in a specific order or context [14].
For example, one can use protein–protein interaction (PPI) networks to visualize the
physical interactions between proteins in different omics data sets or use metabolic
pathways to illustrate the biochemical reactions involved in drug metabolism [15].
This method is useful for integrating multiple types of omics data at different levels of
granularity and complexity, but it may not capture the temporal or spatial aspects of
the system.

2.2. Aims of Multi-Omics Analyses

Data analysis aims to extract useful information or knowledge from omics data that can
answer specific research questions or hypotheses (Figure 2). One of the main applications of
multi-omics is to identify and validate new drug targets for various diseases. Drug targets
are molecules that can be modulated by drugs to alter the disease state or phenotype. Drug
targets can be proteins, genes, metabolites, or epigenetic marks that are involved in the
pathogenesis or progression of diseases.
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Figure 2. Aims of the integration of different omics data for drug discovery.

Multi-omics can help to discover and validate drug targets by:

− Revealing the molecular signatures or profiles of diseases and drug responses using
omics data from different levels of biological molecules [16]. For example, multi-
omics can identify the genes, proteins, metabolites, and epigenetic marks that are
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differentially expressed or regulated in diseased versus healthy samples or individuals,
or in responsive versus non-responsive samples or individuals to a given drug;

− Constructing the molecular networks or pathways of diseases and drug responses
using omics data from different levels of biological molecules [17]. For example, multi-
omics can infer the interactions or relationships among genes, proteins, metabolites,
and epigenetic marks that are involved in disease mechanisms or drug mechanisms
of action;

− Prioritizing the potential drug targets based on their relevance or importance to
diseases and drug responses using omics data from different levels of biological
molecules [18]. For example, multi-omics can rank genes, proteins, metabolites,
and epigenetic marks based on their differential expression or regulation, network
centrality, functional annotation, disease association, drug association, or other criteria;

− Validating the selected drug targets using experimental methods or computational
models that can test the effects of modulating the drug targets on diseases and drug
responses. For example, multi-omics can provide guidance for designing experiments
such as knockdowns, overexpressions, mutations, inhibitors, activators, or combina-
tions thereof for the drug targets [19]. Alternatively, multi-omics can provide input
for building computational models such as PK/PD models, systems pharmacology
models, or machine learning models that can simulate the effects of modulating the
drug targets [20].

Another main application of multi-omics is to predict and optimize drug responses
for various diseases. Drug responses are the outcomes or phenotypes that result from ad-
ministering drugs to treat diseases. Drug responses can be measured by various indicators
such as efficacy, safety, toxicity, adverse effects, resistance, sensitivity, dosage, duration,
frequency, or combinations thereof. Multi-omics can help to predict and optimize drug
responses by:

− Characterizing the inter-individual variability of drug responses using omics data from
different levels of biological molecules [21]. For example, multi-omics can identify
the genetic variants (e.g., single nucleotide polymorphisms (SNPs), copy number
variations (CNVs), insertions/deletions (indels)), gene expression levels (e.g., mRNA
levels), protein expression levels (e.g., protein levels), metabolite levels, and epigenetic
modifications (e.g., DNA methylation levels) that influence how different individuals
respond to a given drug;

− Classifying the subtypes or groups of individuals with similar drug responses using
omics data from different levels of biological molecules [22]. For example, multi-
omics can cluster individuals based on their molecular signatures or profiles of drug
responses into responders versus non-responders, sensitive versus resistant, or toxic
versus non-toxic groups;

− Predicting the optimal drug responses for individual patients using omics data from
different levels of biological molecules [23]. For example, multi-omics can use machine
learning methods such as SVMs, random forests, or neural networks to build predic-
tive models that can estimate the efficacy, safety, toxicity, adverse effects, resistance,
sensitivity, dosage, and duration of drug responses.

Some successful examples of multi-omics studies are listed in Table 1 and described below:

− A study used multi-omics data from post-mortem brain samples to clarify the roles of
risk-factor genes in complex diseases such as autism spectrum disorder (ASD) and
Parkinson’s disease. The study integrated genomic, transcriptomic, epigenomic, and
proteomic data to identify gene expression changes, DNA methylation patterns, and
protein-protein interactions associated with ASD and Parkinson’s disease [24]. The
study also revealed novel molecular pathways and potential therapeutic targets for
these diseases;

− A study that explained how to use multi-omics data from microbial metagenomes
to investigate the interactions between plants, animals, and their microbiomes [25].
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Another study integrated genomic, transcriptomic, proteomic, and metabolomic data
from different host tissues and microbial communities to understand how the micro-
biome influences the host physiology, metabolism, immunity, and behavior [26];

− Another example of multi-omics studies in cancer research is a work where authors
used multi-omics data from tumor-infiltrating immune cells to develop a deep learn-
ing framework for predicting survival and drug response in breast cancer patients.
Genomic, transcriptomic, proteomic, and epigenomic data were successfully inte-
grated to identify the molecular signatures and profiles of immune cells in the tumor
microenvironment [27];

− Another example is a research article that describes the use of multi-omics in studying
the molecular mechanisms and therapeutic targets of meningioma, a type of benign
brain tumor. The authors used multi-omics data from human meningioma samples
and cell lines to identify the functional roles of two genes, TRAF7 and KLF4, that are
frequently mutated in meningioma [28]. The article demonstrates how multi-omics
can provide novel insights into the molecular basis of diseases and drug responses,
identify new biomarkers and therapeutic targets, predict and optimize individualized
treatments, and design and engineer novel biological systems.

Table 1. Example of multi-omics studies.

Title of the Article and Reference Type of Data Approach Used for Integration

An integrated multi-omics approach identifies
epigenetic alterations associated with
Alzheimer’s disease [24]

Transcriptomics, epigenomic,
Chip-seq

GO analysis of genes, comparison to
published data

Loss-of-function mutations in TRAF7 and
KLF4 cooperatively activate RAS-like GTPase
signaling and promote meningioma
development [28]

Ubiquitome, proteome, interactome
(ViroTrap) and transcriptome

Ingenuity Pathway analysis and
network visualization using
EnrichmentMap Cytoscape

Single-cell multi-omic integration compares
and contrasts features of brain cell identity [29]

Single-cell RNA-seq and DNA
methylation profiles

LIGER, an algorithm that delineates
shared and dataset-specific features of
cell identity

Multi-omics resolves a sharp disease-state shift
between mild and moderate COVID-19 [30]

Proteome, single-cell Secretome
(Isoplexis), Metabolome, single-cell
RNA-seq

Cross-omic network analysis, and
enrichment analysis using GSEA

Multi-omics delineation of cytokine-induced
endothelial inflammatory states [31]

Secretome, proteome,
phosphoproteome, transcriptome

Co-expression analysis was performed
using the WGCNA, pathway analysis
using clusterPofiler/WikiPathways

Multi-omics integration at single-cell
resolution using bayesian networks: a case
study in hepatocellular carcinoma [32]

Single-cell RNA-seq and copy
number alterations Bayesian networks

Spatial heterogeneity of infiltrating T cells in
high-grade serous ovarian cancer revealed by
multi-omics analysis [33]

Single-cell RNA-seq and whole
genome sequencing,
immunophenotyping (FACs), bulk
RNA-seq analyses for immune cell
infiltration

Gaussian Mixture Models

Computational integration of HSV-1
multi-omics data [34]

Ribosome profiling, RNA-seq,
ATAC-seq

ContextMap2 which allows parallel
mapping of RNA-seq reads against
multiple genomes (host and microbial)

A “multi-omics” analysis of blood-brain barrier
and synaptic dysfunction in APOE4 mice [35]

Single-nucleus RNA-sequencing,
phosphoproteome proteome,
interactome

Pathways analysis using FindMarkers,
phosphorylated substrate to kinase
network generation using Biogrid data

Multiomics signatures of type 1 diabetes with
and without albuminuria [36] Proteomics, lipidomics, metabolomics Integration using MOFA, mapping

using EggNog and KEGG databases
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2.3. Different Types of Proteomics Data That Can Be Used for Multi-Omics Analyses

This review, as well as others, highlights the discrepancy between the interactome,
proteome, and transcriptome [37]. The discrepancy between interactome/proteome and
transcriptome is due to the difference between the levels of transcription of specific genes,
translation of mRNA, and protein abundance or interaction in a biological system. This
difference can be caused by various factors, such as post-transcriptional regulation, post-
translational modification, protein degradation, protein–protein interaction, and environ-
mental stimuli [38]. The discrepancy between interactome/proteome and transcriptome
can have significant implications for understanding the molecular mechanisms and func-
tions of biological systems, as well as for identifying potential biomarkers and therapeutic
targets for diseases that are linked to protein complexity [39].

Proteome and phosphoproteome are two important concepts in the field of proteomics,
which is the study of the entire set of proteins expressed by a cell, tissue, or organism under
certain conditions. Proteome refers to the identity, expression levels, and modification of
proteins, while phosphoproteome refers to the subset of proteins that are phosphorylated.
This is a common post-translational modification that regulates protein function and signal-
ing. Proteomics and phosphoproteomics can provide valuable information for the design
of novel therapies [40], especially for diseases such as cancer, where protein expression and
phosphorylation are often dysregulated. Table 2 comprises an updated list of the types of
omics data publicly available for common cancer types.

Table 2. Publicly available omics data in the cancer research field in publicly available databases such
as the Catalogue Of Somatic Mutations In Cancer (COSMIC), The Cancer Genome Atlas (TCGA) and
Clinical Proteomic Tumor Analysis Consortium (CPTAC).

Cancer Type Genome [41] Transcriptome [42] Methylome Proteome [43] Other CPTAC
Data [43]

Acute Myeloid Leukemia COSMIC TCGA TCGA -

Adrenocortical Carcinoma COSMIC TCGA TCGA -

Bladder Carcinoma COSMIC TCGA - -

Breast Carcinoma COSMIC TCGA TCGA CPTAC Acetylome

Cervical Carcinoma COSMIC TCGA TCGA -

Cholangiocarcinoma COSMIC TCGA - -

Colorectal Adenocarcinoma COSMIC TCGA - CPTAC

Esophageal Carcinoma COSMIC TCGA - -

Gastric Adenocarcinoma COSMIC TCGA - -

Glioblastoma COSMIC TCGA - CPTAC
Acetylome,
Phosphoproteome,
Proteome

Head and Neck Squamous Cell
Carcinoma COSMIC TCGA - CPTAC Phosphoproteome,

Proteome

Hepatocellular Carcinoma COSMIC TCGA - - Phosphoproteome,
Proteome

Chromophobe Renal Cell
Carcinoma COSMIC TCGA - -

Clear Cell Renal Cell Carcinoma COSMIC TCGA TCGA -

Papillary Renal Cell Carcinoma COSMIC TCGA - -



Proteomes 2023, 11, 34 7 of 14

Table 2. Cont.

Cancer Type Genome [41] Transcriptome [42] Methylome Proteome [43] Other CPTAC
Data [43]

Lung Adenocarcinoma COSMIC TCGA TCGA CPTAC Phosphoproteome,
Acetylome

Lung Squamous Cell Carcinoma COSMIC TCGA TCGA CPTAC Ubiquitinome,
Phosphoproteome

Mesothelioma COSMIC TCGA - -

Ovarian Serous
Adenocarcinoma COSMIC TCGA TCGA CPTAC

Glycoproteome,
Phosphoproteome,
Proteome

Pancreatic Ductal
Adenocarcinoma COSMIC TCGA - CPTAC

Paraganglioma and
Pheochromocytoma COSMIC TCGA - -

Prostate Adenocarcinoma COSMIC TCGA - -

Sarcoma COSMIC TCGA - -

Skin Cutaneous Melanoma COSMIC TCGA - -

Testicular Germ Cell Cancer COSMIC TCGA - -

Thymoma COSMIC TCGA - -

Thyroid Papillary Carcinoma COSMIC TCGA - -

Uterine Carcinosarcoma COSMIC TCGA - -

Uterine Endo-metrioid
Carcinoma COSMIC TCGA TCGA - -

Uveal Melanoma COSMIC TCGA

Proteomics, ubiquitinome, and phosphoproteomics can also help to characterize
molecular mechanisms and target modulators by integrating with other omics data, such
as genomics, transcriptomics, and metabolomics. Proteomics can help identify potential
biomarkers and protein expression patterns that can be used to assess disease prognosis,
tumor classification, and identify potential responders for specific therapies [44]. Phospho-
proteomics can help to understand cellular signaling and infer kinase activity, which is a
key regulator of many cellular processes and a common target for drug development [45].
In line with these findings, a recent article described an overview of the online data publicly
available in the field of cancer research, highlighting the discrepancy between different
cancer types and potential multi-omics strategies [46].

The ubiquitinome refers to the set of proteins that are modified by covalently bound
ubiquitin molecules, a small protein that regulates protein stability, localization, and func-
tion [47]. Ubiquitination is a reversible and dynamic process that can affect various cellular
pathways such as the cell cycle, DNA repair, apoptosis, and autophagy. The ubiquitin
system is involved in many diseases, such as cardiovascular diseases, cancer, neurodegen-
eration, inflammation, and infection [48]. Therefore, understanding and manipulating the
ubiquitinome, which is the set of all ubiquitinated proteins in a cell or organism, could
lead to new therapeutic strategies. One way to use the ubiquitinome for drug discovery is
to identify biomarkers or signatures of the ubiquitinome that are associated with certain
diseases or conditions. For example, changes in the levels or patterns of ubiquitination of
certain proteins can indicate the presence or progression of a disease or the response or
resistance to a treatment [49]. By measuring the ubiquitinome using proteomics or other
methods, one can diagnose, monitor, or predict the clinical outcomes of patients. Moreover,
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one can use the information from the ubiquitinome to design novel therapies that target the
underlying mechanisms or pathways of the disease, as in the case of Parkinson’s disease
(PD) [50,51] or cardiovascular diseases such as Noonan syndrome [52].

Glycoproteome analysis is the study of the structure and function of proteins that are
modified by glycans, which are complex carbohydrate chains attached to proteins [53].
Glycoproteins are involved in many biological processes and diseases, such as cell signaling,
immune response, cancer, and viral infection. Glycoproteome analysis aims to identify
glycoproteins, and their glycosylation sites. Glycosylation can affect the structure, stability,
folding, interactions, and functions of proteins and thus regulate many cellular processes
and pathways. Moreover, glycosylation can also influence the recognition and response of
the immune system to foreign or abnormal cells, such as cancer cells or virus-infected cells.
MS-based glycoproteome analysis can be performed using two complementary workflows:
glycosylation site mapping and glycopeptide analysis. Glycosylation site mapping identi-
fies the potential glycosylation sites that are occupied by glycans on the protein sequence,
while glycopeptide analysis characterizes the specific glycan structures and compositions
on each site. Glycoproteome analysis can be used as a powerful tool for disease diagnosis
and therapy monitoring because glycosylation can serve as a biomarker that reflects the
current status of the patient and the changes in the glycome due to disease progression or
treatment [54]. Therefore, analyzing the glycome can reveal the alterations in glycosylation
that are associated with different diseases, such as cancer, diabetes, Alzheimer’s disease,
and infectious diseases. For example, cancer cells often have abnormal glycosylation
patterns that affect their growth, invasion, metastasis, and immune evasion.

Protein acetylation is a type of post-translational modification that involves the ad-
dition of an acetyl group to a protein molecule. This modification can affect different
amino acid residues of the protein, such as lysine, serine, and threonine. However, the
most common and well-studied form of protein acetylation is the acetylation of lysine
side chains. Protein acetylation can affect the structure, function, and interactions of pro-
teins and regulate various biological processes such as metabolism and signaling. Protein
acetylation can also occur at the N-terminus of the proteins, which is called N-terminal
acetylation. N-terminal acetylation is catalyzed by a group of enzymes called N-terminal
acetyltransferases (NATs). N-terminal acetylation can affect the protein’s lifetime by influ-
encing its degradation, folding, localization, and interactions with other molecules. For
example, N-terminal acetylation can protect proteins from being degraded by proteases
that recognize unmodified N-termini, or it can target proteins for degradation by specific
ubiquitin ligases. Acetylome analysis is the study of the global patterns and dynamics
of protein acetylation using mass spectrometry and bioinformatics tools [55]. Acetylome
analysis can reveal critical features of lysine acetylation, such as its abundance, distribution,
conservation, and functional roles. Furthermore, it can reveal the changes in protein acetyla-
tion patterns and levels that are associated with disease pathogenesis and progression [56].
Acetylome can also be a target for therapy development, such as using drugs that modulate
the activity of acetyltransferases or deacetylases, which are enzymes that add or remove
acetyl groups from proteins. For example, elamipretide and nicotinamide mononucleotide
are mitochondrial-targeted drugs that can restore the abundance and acetylation of proteins
that are disrupted by aging in mouse hearts [57].

The interactome refers to the set of molecular interactions that occur in a particular
cell. The term specifically refers to physical interactions among molecules, such as those
among proteins, but can also describe sets of indirect interactions among genes, also
called genetic interactions. Interactomes are generally displayed as graphs, where nodes
represent molecules and interactions between the players [58]. Interactomes can help to
understand the molecular mechanisms and functions of cells, as well as how they are
affected by diseases or environmental changes. An example of using the interactome
for drug discovery by identifying biomarkers or signatures of the interactome that are
associated with certain diseases or conditions is the case of Alzheimer’s disease (AD) [59].
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Interactomes of specific therapeutic targets can strengthen multi-omics analyses to identify
regulatory mechanisms of proteins and potential therapeutic approaches [60].

One way to resolve the discrepancy between the interactome, proteome, and tran-
scriptome is to use multi-omics approaches, which integrate data from different levels of
biological molecules. For example, one study used multi-omics data from human brain
organoids to identify the posttranscriptional regulation of ribosomal genes by a transcrip-
tion factor called KLF4 [61]. Another study used multi-omics data from human melanoma
samples to identify the molecular mechanisms and therapeutic targets of a novel onco-
gene called RREB1 [62]. While transcriptomics does not always correlate with protein
levels and direct drug responses, the transcriptome can still be important for the design
of therapies associated with large chromosomal rearrangements that can, for example,
occur in cancer. Several papers have described the integration of RNA sequence, copy
number aberration, and methylation to give a better understanding of cellular alterations
associated with disease pathogenesis [63]. Such an approach can help identify genes that
are affected by multiple types of genomic and epigenomic alterations. A recent article used
transcriptome analysis to compare the effects of commonly observed chromosomic deletion
on the gene expression in kidney epithelial cells and clear-cell renal cell carcinoma (ccRCC)
samples [64].

3. Discussion

Multi-omics for drug discovery is a very exciting and promising field that aims to
integrate and analyze data from different levels of biological molecules, such as DNA,
RNA, proteins, and metabolites, to find new drugs and biomarkers for various diseases.
Multi-omics can reveal novel insights into the molecular basis and mechanisms of diseases
and drug responses, identify new therapeutic targets and pathways, predict and optimize
individualized treatments, and design and engineer novel biological systems. However,
multi-omics also faces many challenges, such as data heterogeneity, integration, analysis,
interpretation, and validation. The development of advanced computational methods
and tools, as well as the ethical implications of multi-omics data, need to be addressed
and resolved. A recent piece of software, called Phenonaut 1.3, has also been designed
to improve the auditability of multi-omics data integration [65], as several laboratory-
developed tools are still not completely transparent. Multi-omics data integration has the
potential to revolutionize the field of pharmaceutical sciences and enable the development
of innovative and effective therapies, but it is still confronted with challenges such as
auditability or consistency.

However, multi-omics data also poses some ethical challenges that need to be consid-
ered and addressed. Multi-omics data can reveal sensitive and personal information about
individuals or groups, such as their genetic predispositions, health status, lifestyle, behav-
ior, and environmental exposures. This information can be used for beneficial purposes,
such as diagnosis, treatment, prevention, and research. However, it can also be misused or
abused, such as through discrimination, stigmatization, exploitation, or coercion. There-
fore, multi-omics data should be collected, stored, shared, and analyzed with respect for
the privacy and confidentiality of the data subjects. This requires the implementation of
appropriate technical and legal measures to protect the data from unauthorized access,
use, or disclosure while at the same time balancing accessibility for researchers so as not
to stifle scientific progress. It also requires the informed consent of the data subjects or
their representatives to participate in multi-omics studies and to agree on the terms and
conditions of data collection, storage, sharing, and analysis.

Multi-omics data can be affected by various sources of error, bias, or uncertainty that
can compromise its quality and validity. These sources include the heterogeneity and com-
plexity of biological systems, the variability and incompleteness of measurement methods,
the inconsistency and incomparability of data formats and standards, the difficulty and
subjectivity of data integration and interpretation, and the possibility and unpredictability
of data changes over time. Therefore, multi-omics data should be generated, processed,
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reported, and evaluated with rigor and transparency to ensure its quality and validity. This
requires the adoption of best practices and guidelines for multi-omics data generation,
processing, reporting, and evaluation. It also requires the verification and validation of
multi-omics data by independent methods or sources.

Multi-omics data can have significant scientific, clinical, social, and economic value
for various stakeholders, such as researchers, clinicians, patients, communities, industries,
governments, and society at large. However, there may be inequalities or disparities in
access to and benefit from multi-omics data among different stakeholders due to various
factors such as resource availability, technical capacity, legal regulation, ethical principles,
or power relations. Therefore, multi-omics data should be shared and used in a fair and
equitable manner that respects the rights and interests of all stakeholders. This requires
the establishment of policies and mechanisms for multi-omics data sharing and use that
balance the needs and expectations of different stakeholders. It also requires the recognition
and reward of the contributions and efforts of different stakeholders in generating or using
multi-omics data.

4. Conclusions

By analyzing data from various omics levels, such as the genome, transcriptome,
proteome, metabolome, and microbiome, multi-omics integration can explore complex
biological systems and find new biomarkers and therapeutic targets for different diseases,
especially cancer. Multi-omics integration can reveal how different molecular entities
and biological processes interact and relate to each other. Proteome complexity can make
therapy design complicated due to the diversity and variability of protein forms and
functions that are influenced by gene expression, alternative splicing, post-translational
modifications, protein-protein interactions, and protein degradation. Proteome complexity
poses a significant challenge for proteomics studies, as it demands advanced techniques
and methods to detect and measure the different protein species in a specific biological
system. Here we showed that the phosphoproteome, glycoproteome, acetylome, and
ubiquitinome are important for such analyses in combination with the classical proteome
or transcriptome.

One of the main objectives of multi-omics integration for the design of novel therapies
and the identification of novel biomarkers is to address proteome complexity and under-
stand how it impacts disease mechanisms and outcomes. For instance, some studies have
used multi-omics integration to find new prognostic biomarkers by integrating multi-omics
data from cancer patients to create an interactive web application for multi-omics data
exploration and integration. They have also used it to apply proteomics in cancer research
to identify molecular signatures and mechanisms related to tumor growth and metastasis.
These studies have used various techniques and tools, such as mass spectrometry, network
analysis, dimensionality reduction, machine learning, and bioinformatics pipelines, to
analyze and integrate multi-omics data and address proteome complexity.

Multi-omics integration for the design of novel therapies and the identification of
novel biomarkers is a promising and rapidly evolving field that can provide valuable
insights into the molecular basis of diseases and potential interventions. However, it also
faces some challenges and limitations, such as data quality, standardization, reproducibility,
interpretation, and validation. Therefore, further research and development are needed to
improve the methods and applications of multi-omics integration and to address proteome
complexity comprehensively and reliably. Furthermore, data integration for multi-omics
studies is a complex and challenging task that requires careful planning and execution of
the study design, data generation, data processing, data analysis, and data interpretation.
It also requires the development and application of appropriate methods and tools that can
integrate multi-omics data robustly and reliably. Recent studies cover specific ways of data
interpretation, especially for handling large datasets [66] and looking at predictive model-
ing [67]. By doing so, these studies provide a path to leverage the integrated connections of
multi-omics data to gain a deeper understanding of biological systems and diseases.
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