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Abstract: Metabolomics is a promising tool for studying exercise physiology and exercise-associated
metabolism. It has recently been defined with the term “sportomics” due to metabolomics’ capability
to characterize several metabolites in several biological samples simultaneously. This narrative
review on exercise metabolomics provides an initial and brief overview of the different metabolomics
technologies, sample collection, and further processing steps employed for sport. It also discusses the
data analysis and its biological interpretation. Thus, we do not cover sample collection, preparation,
and analysis paragraphs in detail here but outline a general outlook to help the reader to understand
the metabolomics studies conducted in team-sports athletes, alongside endeavoring to recognize
existing or emergent trends and deal with upcoming directions in the field of exercise metabolomics
in a team-sports setting.
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1. Introduction

Metabolomics is defined in the Oxford English Dictionary as “the scientific study of
the set of metabolites present within an organism, cell, or tissue” [1]. In 2001, metabolomics
was well-defined by Fiehn as the comprehensive and quantitative analysis of all metabo-
lites of the biological system under study [2]. Later, Turnbaugh and Gordon described
metabolomics as characterization via mass spectrometry, NMR, or other analytical methods
of metabolites generated by one or more organisms in a given physiological and envi-
ronmental context [3]. Thus, metabolomics is a discipline that studies the metabolome,
which is the collection of small-molecule chemical entities (with molecular weights less
than or equal to 1500 Daltons). In other words, this is the study of end-products of intricate
biochemical pathways (deriving from genome, transcriptome, and proteome metabolism)
that occur within and outside the cell [4]. Thus, the characterization of the metabolome,
the “secret language” by which cells communicate, can provide helpful contributions to
the understanding of the complex interaction between genes and the environment. Thus,
networks of specific biological processes or physiological phenomena are activated upon
a given stimulus/perturbation, such as disease, pharmaceutical drug, environment, diet,
or physical activity. Metabolomics is increasingly used in different research areas, from
medicine to toxicology, from nutritional science to plant science, and from cells to other
organs [5]. Metabolomics is also a promising tool for studying exercise physiology and
exercise-associated metabolism. This application in sports was recently defined with the
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term “sportomics” [6]. In the last decade, exercise metabolomics studies were conducted on
runners [7], cyclists [8], soccer players [9,10], basketball players [11], and rugby players [12].
Indeed, exercise physiologists know well that exercise primes one for significant, often
profound variations in the metabolism of numerous tissues and organs. The knowledge on
exercise-induced variations in metabolites and the metabolic pathway is exciting and chal-
lenging [13,14]. To date, from 114,100 to 217,920 different metabolites have been observed
in the human body, and more than 46,000 metabolite or metabolic signaling pathways
have been described [15]. However, the majority of the published exercise/physiology
metabolism studies measured fewer than dozens of metabolites and examined only one to
two pathways at a time [16]; this scenario limits our knowledge of the complex connections
between exercise, physiology, and metabolism. To address those limitations, over the
past 20 years, exercise physiologists have performed minimally invasive and non-invasive
metabolomics studies to assess the phenotype and physiology of sport and exercise [17].
The growing popularity of metabolomics in sport is due to the ability of metabolomics to
simultaneously characterize several metabolites in several biological samples (e.g., saliva,
urine, and sweat) obtained in non-invasive ways to gain a molecular snapshot of the impact
of exercise [18]; other reasons and thus possible applications could be: to evaluate the acute
effects of hydration, nutritional strategies to manage oxidative stress, and inflammation and
immune response [8]; to determine how training perturbations can impact the metabolome
over long or short periods and explore their effects over a long period of time [9]. The ability
of metabolomics to probe processes that occur in real time or over hours or even days could
explain why exercise physiologists are increasingly using this science. In this review on
exercise metabolomics, we intended to provide an initial and brief overview of the different
metabolomics technologies, sample collection possibilities, and further processing steps
employed in the sports context and discuss data analysis and their biological interpretation.
Thus, we do not cover sample collection, preparation, and analysis paragraphs in detail
here but outline a general outlook to help the reader to understand the metabolomics
studies conducted in team-sports athletes, alongside endeavoring to identify existing or
emerging trends and deal with upcoming directions in the field of metabolomics applied to
exercise in a team-sports setting.

2. Metabolomics Methods

Metabolomics is one of the most recent omics sciences which allows the simultaneous
qualitative and quantitative analysis of different metabolites present in biological samples.
Through the use of various platforms based on mass spectrometry (MS) such as capillary
electrophoresis–mass spectrometry (CE-MS), liquid chromatography–mass spectrometry
(LC-MS) and/or ultra-performance liquid chromatography–mass spectrometry (UPLC-MS),
gas chromatography–mass spectrometry (GC-MS), or nuclear magnetic resonance (NMR)
spectroscopy [19–21]. It is well-recognized that each platform has its advantages and
disadvantages in metabolomic studies. In general, the use of nuclear magnetic resonance
spectroscopy guarantees a more precise identification and quantification of metabolites;
on the other hand, the analysis costs are higher, and the sensitivity is lower than different
approaches based on mass spectrometry. Today, mass spectrometry is the most common
platform used, mostly in combination with gas or liquid chromatography. Generally, GC-
MS presents fast acquisition speed, robust data acquisitions, good sensitivity, and allows
for the convenient identification of analytes using commercial databases and software.
However, sample preparation is laborious, and identifying new compounds is difficult.
Moreover, liquid chromatography–mass spectrometry can detect a broader range of polar
and non-polar metabolites and has higher sensitivity but shows a limited ability to identify
new molecules concerning NMR or GC-MS [20]. In LC-MS, polar and non-polar metabolites
are separated using HILIC and RP columns, respectively. GC-MS, on the other hand, can
separate both polar and non-polar metabolites through one type of column. The detailed
pros and cons of these platforms have been discussed in some reviews [21,22]. Overall,
chemical analysis using different methods (CE-MS, LC-MS, UPLC-MS, GC-MS, and NMR),
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the subsequent data processing (e.g., peak detection, de-noising, etc.), data reduction, and
statistical analysis represent clear challenges to accurately identifying metabolites in a
biological sample, as well as the biological interpretation and contextualization of detected
metabolites [21]. Albeit with some differences in chemical methods, many metabolomics
studies follow a similar workflow, which is shown in Figure 1.
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Figure 1. Workflow of a metabolomic study. NMR—nuclear magnetic resonance, GC-MS—gas
chromatography–mass spectrometry, CE-MS—capillary electrophoresis–mass spectrometry, LC-MS—
liquid chromatography–mass spectrometry, PCA—principal component analysis, PLS-DA—partial
least squares discriminant analysis, OPLS-DA—orthogonal partial least squares discriminant analysis.

Based on the analytic platform used and depending on the type of biological sample
collected, the number of metabolites analyzed all at once can vary from dozens to thou-
sands. Considering the variety of existing platforms and the heterogeneity of samples, it is
not astounding to read published papers where different metabolomics methods have been
used. For example, “metabolic fingerprinting” is a metabolomic technique commonly used
in whole-organism metabolomic studies as well as in cell culture studies. This method is
employed to characterize all measurable analytes in a sample, for example cell cytoplasm,
serum, and plasma with the successive classification of samples and the categorization
of diversely displayed metabolites, which define the sample categories [23]. Among sev-
eral strategies that aim to quantify cell metabolites to increase our understanding of the
complex interactions between metabolites’ level and the interpretation of metabolic net-
works, “metabolic footprinting” represents a commonly used method in microbiology
and biotechnology to characterize extracellular metabolites, providing important infor-
mation for functional genomics and strain characterization [24]. In the metabolomics
scenario, there is a further classification of methods, and the most used is “targeted” and
“untargeted” metabolomics, respectively. The first focuses on the proof of identity and
the quantification of a specific, pre-defined group or category of a limited number (tens to
hundreds) of well-interpreted and biochemically described metabolites in a tissue, biofluid,
or biological matrix, and it is commonly used in clinical or biomarker discovery trials [25],
while the second approach, known as untargeted or hypothesis-generating, focuses on the
unbiased identification of the maximum number of metabolites or metabolic features in a
bio-fluid, tissue, or biological matrix and it is predominantly used in biological discovery
or hypothesis-generation applications. In both cases, the employment of nuclear magnetic
resonance and liquid or gas chromatography coupled to mass spectrometry are predomi-
nant [26]. Overall, it is possible to obtain the accurate quantitation of target metabolites
with triple quadrupole mass spectrometry, whereas the data obtained from untargeted
metabolomics can be only semi-quantitative with high-resolution mass spectrometry.

In the literature, some authors refer to “metabolic profiling” as a synonym of metabolomics;
in reality, this term is reserved correctly for the measurement in biological systems of the
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complement of metabolites and their intermediates that mirrors the response to genetic
modification and physiological, pathophysiological, and/or developmental stimuli [27].
Other than the above-discussed methods, it is noteworthy that “lipidomics” involves the
comprehensive analysis of all lipids, fatty acids, and lipid-like molecules in a biological or
environmental sample [28].

3. Sample Collection and Processing

Concerning the choice of the type of sample, it is essential to consider the invasiveness
of the collection method (invasive such as serum versus less invasive or non-invasive such
as saliva), the suitability of the sample for the research question asked, and the chemical
method used [29]. Typically, in metabolomics experiments, samples or bio-fluids that
soak or surround the tissue or organ of interest, such as serum, saliva, urine, and stool,
are chosen [30]. It is noteworthy that different sample types present both advantages
and disadvantages, which are briefly reported in Table 1. In addition to the type, the
numerosity of samples used for the experimental trial appears to be another important
theme to consider. In several metabolomics studies, an average of 35 controls and 35 cases
are mandatory to obtain adequate data. Sometimes, if metabolite change is important, five
to ten cases and controls could be adequate [31].

Table 1. Advantages and disadvantages of biological samples typically used in sportomics.

Type of Sample Invasivity of Collection
Method Advantages Disadvantages

Blood Very invasive

Appropriate for all methods of
analysis. Includes endogenous

metabolites and contains all
molecules secreted or excreted by

different tissues.

It contains proteins and lipoproteins. It
makes it difficult to identify small
metabolites via NMR. Metabolic

degradation of blood analytes with
enzymes in the sample.

Tissue Very invasive

Furnishes the most accurate
indicator of local metabolites.

Supplies high concentrations of
detectable metabolites.

Limited amounts of samples can be taken.
Often the concurrent presence of high

molecular weight proteins.

Urine Minimally invasive

Contains stable metabolites.
Macromolecules are almost absent.

Contains endogenous and
exogenous compounds. Possibility
to collect several samples. Simple

storage and shipment.

The presence of a high concentration of
salts and urea can be a problem in M.S.

platforms. Can be contaminated by
bacteria, new metabolites’ synthesis, and
changes in the original metabolic profile.
Diet and environmental conditions can

significantly affect the the sample.

Saliva Minimally invasive

Presence of low-molecular-weight
molecules. Mirrors the

physiological conditions of the
body. Simple storage and shipment.

Contaminated by bacteria that can
activate the new synthesis of metabolites.

Presence of high-molecular-weight
proteins. The composition of saliva can

be affected by physiological and
pathological conditions of the mouth.
Lower concentrations of endogenous
metabolites with respect to the blood.

Stool Technically non-invasive

Sampling is possible regularly and
in sufficient quantities. Contains a
mixture of metabolites. Provides

useful insight on metabolic status,
health/disease state, and symbiosis

with the gut microbiome.

Biological variance and significant
variations in metabolites’ composition

due to the different regions of the source
of the sample. Diet and environmental
conditions can significantly affect the

complexity of the sample.

After collecting the biological samples, they must be further processed or extracted to
obtain a sample appropriate for the chemical metabolomics analysis. This depends on the
type of the analytical platform and on the biological sample being used. For example, cells,
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feces, and tissue must be frozen, then crushed in powder, and extracted with chloroform
and water or methanol solvents to be processed using NMR spectrometers or mass spec-
trometers [32], while when an already-liquefied sample is collected, for example, serum,
plasma, or urine, the bio-fluid must be filtered to remove cellular debris, macromolecules,
and proteins. The removal of the latter is critical because it prevents enzymatic reactions,
which may alter the synthesis of metabolites in the original sample. Otherwise, in some
cases, even bio-fluid must be extracted with organic solvent when analyzed with LC-MS or
GC-MS. Indeed, the use of organic solvents is the most “operative” method of all proteins
and in extracting classes of metabolites. Methanol or methanol:water (1:1) can be used
to extract polar metabolites from serum, plasma, and/or saliva, while chloroform mixed
with methanol:water in a ratio of 2:2:1.8 can be used to extract non-polar metabolites from
most bio-fluids or tissues and lipids. To use the GC-MS platform, metabolites need to react
with specific chemical moieties to enhance their volatility or isotopically label them for
enhanced liquid chromatography separation and mass spectrometry differentiation [15].
These processes ensure that samples are enzyme- and protein-free and avoid the presence
of newly originated metabolites that were not in the initial sample [32,33].

4. Data Analysis and Biological Interpretation

In papers where a “targeted” approach is used, after carrying out spectral processing,
the metabolites present in the biological sample are characterized. Afterward, the set of
analytes is statistically processed with a final data reduction. In this case, almost all of the
metabolites that are targeted in the study design are typically identified and quantified.
As an alternative, in studies where the “non-targeted” approach is chosen, data reduction
techniques are used before the metabolites are identified. These initial steps are mandatory
and are planned to reduce thousands of spectral physical appearances into dozens of
statistical characteristics that can be identified in metabolites [33]. In metabolomics studies,
the use of statistical analysis is of fundamental importance, which guarantees an acceptable
interpretation of the data, and generally, two main approaches are used: (i) unsupervised
and (ii) supervised methods.

Similar to other omics sciences, metabolomics analysis generates large datasets that
are often difficult to interpret. The most common unsupervised technique able to reduce
the vastity of such a dataset, even increasing data interpretation and reducing information
loss, is Principal Component Analysis (PCA), which detects the main “landscapes” and
elucidates the variance of a dataset. PCA data are classically shown as a two- or three-
dimensional plot. The plot classically shows several clusters of data points that share some
grade of similar characteristics. A PCA loadings plot displays the features (metabolites or
spectral bins) that are most strongly discriminating between clusters. In this way, PCA plots
may be used to extract the most important differentiating spectral or metabolite features in
a metabolomic study. In this way, scientists reduce hundreds or thousands of components
or metabolites to a manageable number of data [15].

However, it is important to point out that, among the common methods used in
metabolomics, there is also the discriminant analysis of partial least squares (PLS-DA)
and its optimized form, PLS-DA orthogonal (OPLS-DA). These methods of classification
require vigilant validation and further testing to determine that the sorting model is not
oversized. Overall, the use of these specific statistic techniques allows one to summarize
the information contained in large data tables by means of a smaller set of variables in
order to observe trends, clusters, and outliers. On one hand, these powerful statistical
modeling tools provide insights into separations between experimental groups based on
high-dimensional spectral measurements from different platforms such as NMR, MS, or
other analytical instrumentation. On the other hand, when used without validation, these
tools may lead researchers to statistically unreliable conclusions. Although both targeted
and non-targeted approaches use distinct steps to identify metabolites, they share similar
practices for biological interpretation. To date, exercise physiologists and metabolomics
researchers use bioinformatic tools for the enrichment of metabolite sets from metabolomics
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trials. Among these libraries, Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways [34], Reactome [35], MetaCyc Suite [36], and PathBank [37] are used alone or in
combination. MetaboAnalyst is an additional regularly used web source that provides a
large number of tools for more sophisticated biological interpretation, biomarker analysis,
and multi-omics integration [38–40]. Another problem faced by analysts when interpreting
the results of metabolite analyzes is linked to the type of detector used. For example, a
time-of-flight (TOF) detector is a particle detector that can discriminate between lighter
and heavier elementary particles. Gas chromatography coupled with mass spectrometry,
including time-of-flight mass spectrometry (GC-TOF MS), is usually applied to determine
metabolites with thermal stability and volatility [40]. Meanwhile, mass spectrometry-based
multiple reaction monitoring (MRM) assays show superior multiplexing detection capabili-
ties, are highly reproducible, specific, and are a very sensitive technique for quantifying
targeted protein/peptides [15]. In addition, MRM has been considered to be one of the
most effective tools available for quantitative clinical proteomes [6].

5. Team-Sport Athlete Studies

The complex and combined nature of the human organism to exercise response makes
the use of metabolomics a useful method to fill gaps in our current understanding of
exercise-associated cellular responses [41]. With this in mind, exercise physiologists have
recently started to apply the metabolomic approach to sports to investigate the response
of cells, tissues, and organs to specific physical effort. Table 2 provides an overview of
previously published studies investigating the use of metabolomics analysis in team-sport
athletes. To the best of our knowledge, the first application of metabolomics in team
sports was published in 2014 by Santone and coworkers [42]. In this early study, the
authors examined, in 14 elite professional soccer players, the impact of the level 1 Yo-Yo
intermittent recovery on salivary metabolites. Saliva samples were collected before and
after the Yo-Yo performance test and analyzed using a proton [1H]-NMR platform with a
subsequent PCA analysis. Among hundreds of metabolites detected, significant temporal
changes in metabolite concentrations for the identification of the pre/post intermittent Yo-
Yo test were identified as follows: urea, glucose, lactate, citrate, acetate, glycerol, glutamate,
leucine, alanine, and lysine. In 2014, Ra and collaborators [43] produced the first large-
scale sportomics study, in male soccer players (n = 122) participating in successive soccer
matches (three) over a period of 3 days, with the aim to identify potential metabolites of
fatigue. They choose saliva as a bio-fluid, and the analysis was conducted on the CE-MS
platform. They found that the levels of the following amino acids, valine, isoleucine,
tyrosine, leucine, tryptophan, and phenylalanine, were increased meaningfully in the
athletes with fatigue compared to the non-fatigued ones; even 3-methyl histidine was
increased. In addition, another two metabolites, glucose-1 and -6-phosphate, were also
impaired. These metabolites were recommended as potential targeted saliva-detectable
compounds of fatigue in soccer players [43].

Table 2. Summary of studies investigating the use of metabolomics analysis in elite sports team athletes.

References Subjects Collection Type of BS Metabolomics Analytical
Techniques and Aims of the Study

Santone
et al., 2014

n = 14 elite professional soccer
players from the Italian Lega Pro

team (C1)

Before and after the level 1
Yo-Yo intermittent

recovery test
Saliva

1H-NMR. Determining
exercise-induced metabolites

changes

Ra
et al., 2014

n = 122 male soccer players
(intercollegiate athletes who
belonged to a soccer team)

Vefore and after
3 consecutive days (90 min

game per day) of a
3-match tournament

Saliva CE-TOFMS. Identifing metabolites
in fatigued players

Barton
et al., 2017

n = 40 professional international
male rugby union players and

n = 46 controls
1 time point Urine and feces

1H-NMR, R.P., and HILIC for urine.
UPLC-MS and GC-MS-targeted

SCFA for feces. Identifing
differences between athletes

and non-athletes
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Table 2. Cont.

References Subjects Collection Type of BS Metabolomics Analytical
Techniques and Aims of the Study

Al-Khelaifi
et al., 2018

n = 116 elite athletes from
different sports disciplines who

participated in national or
international sports events
(n = 41 male rugby players,

n = 8 volleyball players (4F/4M),
n = 1 male baseball players,

n = 4 male basketball players,
n = 62 male soccer players)

Spare samples, collected
by doping control Serum

NTMBMS combined with UHPLC
to metabolomics profiling of

athletes from different team sports

Al-Khelaifi
et al., 2018

n = 331 elite athletes from
different sports (n = 315 male

soccer players; n = 16 male rugby
players participated in national or

international sports events)

Spare samples, collected
by doping control Serum

NTMBMS combined with UHPLC
to analyze the presence of various

xenobiotics that potentially
originate from nutritional

supplements

Al-Khelaifi
et al., 2019

n = 338 from different sports
(n = 315 male soccer players,
n = 16 male rugby players,
n = 2 male baseball players,

n = 1 volleyball player, n = 3 male
basketball players, n = 1 female
hockey player participated in

national or international
sports events)

Spare samples, collected
by doping control Serum

NTMBMS combined with UHPLC
to compare metabolic differences in

athletes with high versus
low/moderate cardiovascular

demand

Al-Khelaifi
et al., 2019

n = 490 from different sports (n =
315 male soccer players, n = 16
male rugby players, n = 2 male

baseball players, n = 1 male
volleyball player, n = 3 male

basketball players, n = 1 female
hockey player participated in

national or international sports
events)

Spare samples, collected
by doping control Serum

NTMBMS combined with UHPLC
to investigate genetically influenced
metabolites that discriminate elite

athletes from non-elite athletes and
to identify those associated with

endurance sports

Pitti
et al., 2019

n = 17 female professional team
soccer players from the Italian

Res Roma

Before and after a Coppa
Italia soccer match Saliva

1H-NMR to assess metabolic
changes in saliva metabolites

occurring during a soccer match

Akazawa
et al., 2019

n = 12 female volleyball players
from the top level of Japanese

college team

1 time point in the early
morning after 12 h

overnight fast
Saliva CE-TOFMS to investigate the

impact of QoS on metabolite levels

Pintus
et al., 2020

n = 21 professional soccer players
from the Italian First Division

(Serie A)

3 time points
2nd, 6th, and 16th day of

pre-season
Urine

1H-NMR to study exercise-induced
metabolite changes during

pre-season

O’Donovan
et al., 2020

n = 37 international Irish athletes
from 16 different sports, many of

whom participated in the 2016
Summer Olympics (n = 10 field

hockey players)

1 time point Feces and urine

NMR and UPLC-MS analysis for
fecal samples and NMR, GC-MS,
and UPLC-MS analysis for urine.
Exploring the impact of training

load and type of exercise on
metabolites

Khoramipour
et al., 2020

n = 70 male basketball players
from the top level of Iran national

top-league

8 time points, before and
after each quarter Saliva

1H-NMR to investigate the salivary
metabolic fluctuations between the
four 10 min quarters of high-level

basketball games

Quintas
et al., 2020

n = 80 professional soccer players
from FCB under 18-teams and
2 reserve teams as volunteers

5 time points, 1 in
pre-season and 4 in-season Urine

UPLC-MS to study the association
between the external load and the
urinary metabolome as a surrogate

of the metabolic adaptation to
training
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Table 2. Cont.

References Subjects Collection Type of BS Metabolomics Analytical
Techniques and Aims of the Study

Hudson
et al., 2021

n = 7 male rugby players from an
elite English Premiership squad

8 time points over a
competitive week

including gameday

Urine,
blood, and

saliva

NMR spectroscopy to investigate
the urine, serum, and saliva

metabolic changes over a
competitive week including

gameday

Al-Muraikhy
et al. 2021

n = 126 young elite male soccer
players who participated in

national or international sports
events

Spare samples, collected
by doping control Serum

Waters ACQUITY -UPLC and
Thermo Scientific Q-Exactive high

resolution/accurate mass
spectrometer interfaced with heated
electrospray ionization (HESI-II) to
study the metabolic alterations and
identify the metabolic predictors of

leukocyte telomere length (LTL)

Marinho
et al., 2022

n = 23 male soccer players from a
Brazilian elite championship team

(Serie A)

3 time points over a
2 soccer matches

interspersed by 72 h
of recovery

Urine

1H-NMR and subsequent PCA and
OPLS-DA to study metabolic

changes immediately post a first
match, the day after (20 h after), and

after (20 h post) a second match

BS: biological sample; QoS: quality of sleep. CE-TOFMS: capillary electrophoresis and time-to-flight mass spec-
trometry; NTMBMS: non-targeted metabolomics-based mass spectroscopy; UHPLC: ultra-high-performance liquid
chromatography; 1H-NMR: protonic untargeted metabolomics; UPLC: ultra-performance liquid chromatography.

A few years later, Barton et al. [44] used metabolomics in an elite athlete cohort of
international-level rugby players and age-matched controls to study host-derived and
microbial-derived metabolic profiles using urine and fecal samples. The samples were ana-
lyzed using a combination of multiplatform metabolic phenotyping such 1H-NMR, GC-MS,
and hydrophilic interaction UPLC-MS, and then, a multivariate analysis based on OPLS-DA
was used to compare urine and fecal samples from athletes and controls. Athletes showed
higher urine levels of trimethylamine-N-oxide (TMAO), L-carnitine, dimethylglycine, O-
acetyl carnitine, proline, betaine, creatine, acetoacetate, 3-hydroxy-isovaleric acid, L-valine,
acetone, N-methyl nicotinate, N-methyl nicotinamide, phenylacetylglutamine (PAG) and
3-methylhistidine. Furthermore, higher levels of trimethylamine (TMA), short-chain fatty
acids, lysine, and methylamine were found in the fecal samples of athletes compared to
the age-matched control cohort. In addition, the urine metabolome of athletes presented
lower concentrations of glycerate, allantoin, and succinate. Similarly, the fecal samples
showed lower levels of glycine and tyrosine when compared with control subjects. The
highest levels of short-chain fatty acids in feces, in particular propionate, were correlated to
protein intake, while butyrate was shown to have a strong association with dietary fiber
intake. This information supports previous insights into the beneficial influence of physical
exercise and associated diet on end-products such as short-chain fatty acids, which are
notably associated with numerous health benefits [45,46]. Moreover, the highest presence of
TMAO and especially of 3-hydroxy-isovaleric acid has been demonstrated to have efficacy
for inhibiting muscle wastage and reducing exercise-induced muscle damage [6,47], while
the highest presence of metabolites such as creatine, 3-methylhistidine, and L-valine mirror
increased muscle turnover [48]. The high concentration of phenylacetylglutamine (PAG)
in the urine of rugby players is not surprising, because it is a derived metabolite from
phenylalanine, which is notably elevated in lean subjects [49].

A series of studies were published by Al-Khelaifi’s group during the two-year period
2018–2019, in which the authors conducted non-targeted metabolomics-based mass spec-
troscopy combined with ultra-high-performance liquid chromatography to metabolomics
profiling spare samples collected by doping control in athletes of different sports [50–52].
The first pilot study conducted by this group showed that serum samples from ath-
letes involved in different sports exhibit distinct xenobiotic profiles that may reflect
drug/supplement use, diet, and exposure to various chemicals. For example, soccer
players showed higher levels of caffeic acid, quinate, and ectoine. Hippurate was also
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higher, as well as 4-vinyl-guaiacol sulfate and 2-furoyl glycine [53]. In a second pilot study,
metabolomics was used to compare the blood metabolic profiles between moderate-and
high-power and endurance elite athletes and to identify the potential metabolic pathways
underlying these differences. Out of 743 analyzed metabolites, gamma-glutamyl amino
acids were significantly reduced in both high-power and high-endurance athletes com-
pared to their moderate counterparts, indicating the importance of the glutathione cycle
and overall oxidative stress substrates. Team-sports athletes (e.g., soccer, basketball, and
volleyball) exhibited increased levels of testosterone and progesterone and decreased lev-
els of diacylglycerols and eicosanoids (fatty acids metabolism). In addition, high-power
athletes had increased levels of phospholipids and xanthine metabolites compared to their
moderate-power counterparts [53]. One year later, the same group applied metabolomics
to compare the metabolic signature of elite athletes with low/moderate cardiovascular
demand (e.g., rugby, baseball, and volleyball) versus higher demand (e.g., basketball and
soccer). Out of over 750 metabolites detected, 112 were associated with cardiovascular
demand, and 40 of them (e.g., adenine, creatine, glutamine, carnitine, arachidonic acid,
plasmalogen, cortisol, leucine, valine, and isoleucine) were increased in soccer players
and basketballers compared to their low/moderate-cardiovascular-demand counterparts,
while 70 compounds (e.g., glutamate, beta-citryl-glutamate, gamma-glutamyl amino acids,
5-oxoproline, fatty acid-carnitines, and acylated carnitines) were increased in baseball,
rugby and volleyball players, mirroring an enhanced anti-oxidative stress scavenging
mechanism and the higher beta-oxidation of fatty acids for energy generation during exer-
cise in this class of athletes with low cardiovascular demand [52]. Genetic predisposition to
elite athletic performance was also studied by investigating genetically influenced metabo-
lites discriminating elite athletes from non-elite athletes, with the aim to identify those
associated with endurance sports [53]. Pitti et al. [54] found changes in the concentrations
of 56 metabolites after an official soccer match, studying the saliva samples of 17 female
professional players. The authors reported an increase of 40% of total salivary proteins
in starting players that played the entire match and of 20% for those entered, while no
significant change was observed in those that were substituted or that did not participate
in the match. Metabolomics was also applied by Akazawa et al. [55] to examine the impact
of the quality of sleep (QoS) on metabolites and cognitive function in female volleyball
athletes over a period of one week. Among several saliva metabolites detected, specific
compounds showed differences between athletes with better and lesser QoS; for example,
2-oxoglutaric acid, ornithine, citrulline, lysine, proline, tyrosine, and arginine levels were
higher in the QoS group (reporting a better QoS) compared to the those reporting a lesser
QoS. Paradoxically, ergogenic caffeine was found in higher levels in the first group, while
urea and myo-inositol 3-phosphate were in higher concentrations in the lesser QoS group.
These results pointed out that the quality of sleep could affect energy metabolism and
amino acid during heavy exercise and that a metabolomics approach can be a useful tool
to track changes and potentially identify athletes with sleep disturbances. Most recently,
Pintus et al. [9] tracked the first-morning urine of elite soccer players during the pre-season
period in three-time points. Authors studied 63 urine samples collected from 21 male soccer
players during the 2nd, 6th, and 16th day of the pre-season period. Urine sampled at the
beginning of this training period was higher in TMAO and dimethylamine (DMA) levels,
showing an increased intake of dietary protein from players. Urine sampled on sixth day
showed an elevated increase in 3-hydroxybutyrate, citrate, and hippurate, mirroring an
increase in fatty acid metabolism and an increased intake of phenolic compounds and a
host-gut microbial co-metabolism. Finally, at the end of this period of preparation, urine
presented higher levels of guanido-acetic acid, involved in the urea cycle and suggested
to be a biomarker of exhaustive exercise and fatigue. In recent times, metabolomics was
adopted by O’Donovan et al. to study the impact of training load or type of exercise on fecal
and urine metabolites, independently of dietary intake. The authors classified elite-level
athletes based on decreasing/increasing dynamic components and increasing/decreasing
static components. Interestingly, metabolites such as succinic acid, cis-aconitate, and lactate
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in urine samples and creatinine in feces were found to be significantly higher in athletes
involved in increasing high dynamic and decreasing low static components (e.g., field
hockey and rowing), indicating muscle turnover may have been greatest in this cohort of
athletes [55].

Another interesting and useful application of metabolomics is offered by the study
of Quintas et al. [56]. Data of 80 professional young soccer players were collected in a
longitudinal observational trial, analyzed using ultra-performance liquid chromatography
coupled to electrospray ionization quadrupole time-of-flight mass spectrometry, and as-
sessed using partial least squares regression. Metabolites associated with external load
were hypoxanthines, tyrosine, tryptophan, hormone metabolites (hydrocortisone, tetrahy-
drodeoxycortisol, dihydrotestosterone glucuronide, androsterone glucuronide, cortolone-3-
glucuronide, testosterone glucuronide, and tetrahydroaldosterone-3-glucuronide), interme-
diates in phenylalanine metabolism, 4-pyridoxic acid, and catabolic products of vitamin
B6 and riboflavin [57]. These markers mirror exercise-induced adaptations and increased
physical activity [57,58]. In the recent past, Hudson et al. [59] characterized the metabolic
perturbations caused by competitive rugby. The authors collected blood, urine, and saliva
samples every morning throughout a competitive match week during the early part of
the competitive season, and samples were analyzed using NMR. The most important
changes were observed post match play and included metabolites such as citrate, lactate,
and alanine, explaining the TCA cycle intermediaries, the conversion of pyruvate in lactate
ensuring glycolysis can continue, and for alanine, that gluconeogenesis exists to meet the
total match energy needs. Other discriminatory metabolites identified after the match were
succinic acid, acetoacetate, and acetone, mirroring reduced fatty acid oxidation during
the match. After the match, alanine, histidine, and tyrosine levels were reduced, while
leucine, 2-hydroxyisocaproate, and 3-hydroxy-3-methylglutarate levels were increased,
showing the protein breakdown and degradation of this branched-chain amino acid oc-
curred during a game. Of note, two days’ post match, alanine increased significantly, and
similarly, 3-methylhistidine and glycylproline, and 4-hydroxyproline, well-known markers
of muscle and collagen damage, were increased [59]. Metabolomics was also applied to
identify metabolites and metabolic pathways associated with leukocyte telomere length
(LTL), a predictive marker of biological aging. Among 837 metabolites measured in serum
samples of 126 young elite male soccer players, 67 showed significant associations with LTL;
in particular, glycine-serine-threonine, benzoate, and lysophospholipids were elevated
with longer LTL. In contrast, monoacylglycerols, sphingolipids, long-chain fatty acids,
and polyunsaturated fatty acids were enriched with shorter telomers. The authors found
that glutamine, N-acetyl glutamine, xanthine, beta-sitosterol, N2-acetyllysine, stearoyl-
arachidonoyl-glycerol, N-acetylserine, and 3–7-dimethylurate were the metabolites that
best predicted LTL in these groups of team-sport players [60].

A study involving Brazilian male soccer players showed variances in the metabolic
profile just after and 20 h post matches. This indicates the potential of this kind of analysis
to distinguish metabolic profiles, after exercise, in the recovery process. The authors docu-
mented that athletes with higher session ratings of perceived exertion (s-RPE) have more
metabolic variations related to muscular damage and energy metabolism in comparison to
athletes with a lower s-RPE. Metabolites that increased at the end of both matches were:
TMA, DMA, creatine, and creatinine, which reflect muscular stress related to the nearness
to the match. In addition, at the end of the matches, metabolites such as glycine, hippuric
acid, l-serine, gallic acid, and betaine were increased. They were associated with cellular
regeneration, antioxidant, and anti-inflammatory actions [61].

Khoramipour et al. (2020) characterized and compared the metabolic fluctuations
between four 10 min quarters of a high-level basketball match. The authors reported
increased salivary concentrations of lactate, pyruvate, succinic acid, citric acid, glucose,
and hypoxanthine after quarters 1 and 3, demonstrating more reliance on anaerobic energy
systems and increased levels of ATP turnover during these two quarters. In contrast,
after quarters 2 and 4, saliva presented reduced levels of valine, leucine and increased
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concentrations of alanine, glycerol, acetoacetic acid, acetone, succinic acid, citric acid,
acetate, and taurine, fat metabolism and gluconeogenesis, describing how the accumulated
fatigue and reduction in high-intensity activities in the second and fourth quarters reduced
the speed of energy production, and players utilized more aerobic energy [62].

6. Limitations of Previous Studies and Potential Improvements

As with all other “omics” technologies, sport metabolomics is continually growing and
incessantly improving. Herein, we examined studies published until now, and it is clear
that several of the previous exercise metabolomics investigations conducted in team-sports
athletes lacked statistical consistency, for example, multivariate statistics were extensively
used, they were under-powered, and small sample sizes were included, and false discovery
rates were not corrected. These precautions are expected of most “omic” studies published
today. In general, bearing in mind this analysis of the existing literature, we found a disturb-
ing lack of metabolite quantification in many published exercise metabolomics studies. The
lack of the absolute quantification of these studies makes comparisons almost impossible.
The reason for this is that different laboratories, distinct study designs, and/or diverse
platforms (GC–MS vs. NMR vs. LC-MS) were adopted to identify and quantify metabolites.

Undoubtedly, if metabolomics is to be used in exercise, moving beyond the research
phase with regulated protocols, demanding and more standardized protocols must be
adopted for metabolite identification and quantification, as are recognized in clinical
settings in the metabolomics field. Albeit the design of the experimental study for several
metabolomics sports trials has significantly improved over the past 10 years, and more
advances are conceivable [63–66].

Supplemental progress in more standardized data collection, analysis, and reporting
protocols would also help to improve the overall comparability and quality of exercise
metabolomics studies. Furthermore, an important goal for exercise metabolomics studies
will be the use and the combination of additional omics techniques such as genomics, tran-
scriptomics, and proteomics in the study design. Therefore, to really study metabolomics,
other “omics” techniques are required to enable a deep comprehension of the physiol-
ogy and the biology involved, together with the understanding of the interplay of gene
expression, proteins, and metabolites with the environment.

7. Conclusions and Future Perspectives

We believe that a multi-omics approach, including proteomics, genomics, transcrip-
tomics, and metabolomics approaches, would allow sports coaches, exercise physiologists,
and sport nutritionists to help and assist elite athletes more efficiently via optimized
dietary and exercise prescriptions. In practice, we propose that more emphasis in exer-
cise metabolomics needs to be placed on human studies with more focus on practical-
oriented and real-world designs using non-invasive sample collection methods such as
urine and saliva.

Knowing these preliminary applications, we can expect that the use of multi-omics in
sports science will continue to grow in both elite sports performance and clinical exercise
settings. We foresee greater interest in the subarea of metabolomics and sports nutrition,
with an emphasis on using the results to design personalized, precision nutrition and
recovery strategies for maximizing the effects of exercise-induced health benefits.
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