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Abstract: This study investigates the knowledge acquisition of biology and physics freshmen students
with special regard to differences between high school (HS) high performing and low performing
students. Our study is based on a prior knowledge model, which describes explicit knowledge as
a composite of four knowledge types: knowledge of facts, knowledge of meaning, integration of
knowledge, and application of knowledge. As a first outcome-oriented approach, we operationalize
knowledge acquisition via the changes in these knowledge types between the beginning and the
end of the first year. To investigate the knowledge acquisition, a test set was constructed that covers
these knowledge types. It was administered to 162 biology and 101 physics students at university.
We used an Item Response Theory approach to scale the data. Repeated measures ANOVAs were
used to analyze the acquisition of the knowledge types. We separated HS low, medium, and high
achievers by high school grade point average (HS GPA). The knowledge acquisition of the HS low
achievers did not differ from other groups. However, the HS low achievers did not only start with
less prior knowledge but also were not able to reach the prior knowledge of the HS high achievers
within the first year. Our findings concerning knowledge acquisition may be used to support and
improve students’ knowledge acquisition in a targeted way by focusing on selected knowledge types.
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1. Introduction

Science students in the introductory phase of university courses often struggle with mastering
new subject-specific challenges [1]. If a student can withstand these subject-specific challenges or not,
was part of numerous prediction studies on academic achievement (e.g., [2–6]). Here, high school
grade point average (HS GPA) turns out to be the best single predictor for university achievement
internationally [5,7]. Potential reasons for high predictive power of the HS GPA may be differences in
the students’ subject specific prior knowledge as well as in their knowledge acquisition during the first
year. However, up to now, much remains unknown about the (differences in) subject specific prior
knowledge of HS low and high achievers and their knowledge acquisition during the first year at
university. Therefore, to improve students’ performance and to contribute to the development of more
effective science courses, it seems necessary to understand how students’ knowledge changes during
the first year.

1.1. Theories of Knowledge

There are several theoretical models of knowledge [8–10] that are only sporadically adapted
for student assessment so far. Knowledge and its key dimensions have been studied in research on
cognition and learning for years. Bloom [8] provides a widely accepted definition of prior knowledge
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(The prefix “prior” stresses the role of knowledge as a prerequisite for learning. It does not imply that
prior knowledge is a different type or subtype of knowledge.):

“[Prior knowledge comprises a student’s] cognitive entry behaviors [as] those prerequisite
types of knowledge, skills, and competencies which are essential to the learning of a particular
new task or set of tasks”. [8] (p. 32)

Most studies seem to agree that knowledge is a complex, multidimensional construct [3,9–12].
For example, Dochy and Alexander [10] define prior knowledge as dynamic in nature, structured,
explicit or tacit, and partitioned in multiple knowledge types and skills. The most common accepted
distinction is made between knowing-that (declarative/conceptual knowledge) and knowing-how
(procedural, strategic knowledge) [9,10,13–15]. Declarative knowledge is defined as knowledge
of specific facts, meanings, concepts, symbols, and principles in a particular field of study [14,15],
while procedural knowledge is defined as the conversion of declarative knowledge into functional
units [14]. The main difference between these two knowledge types is that procedural knowledge
refers to actions directly and helps handling tasks and problems, whereas declarative knowledge does
not [13,16]. Procedural knowledge is goal-orientated and mediates problem-solving processes [17].
As such, declarative and procedural knowledge are domain specific [9].

In recent science education research, Hailikari et al. [3] and Hailikari and Nevgi [2] proposed
a model of explicit knowledge that distinguishes four knowledge types, two rather declarative and
two rather procedural. The definitions of these knowledge types are based on the theoretical work of
Mayer [18], Bloom [8], Dochy and Alexander [10], and Krathwohl [19]. In the model by Hailikari and
colleagues [3], declarative knowledge is categorized as knowledge of facts, a reproduction of isolated
domain-specific facts, and knowledge of meaning, the reproduction of domain-specific concepts or
principles. While knowledge of facts is a simple recognition or reproduction of single facts on a low
level of abstraction, knowledge of meaning requires the students to describe common concepts [3].
In addition to those declarative knowledge types, Hailikari et al. [3] describe the integration of
knowledge as “the lower level of procedural knowledge” (p. 325). The integration of knowledge
considers the structural aspect of prior knowledge [20] and is defined as “the ability to see interrelations
between [domain-specific] concepts and how different phenomena are linked to each other” [3] (p. 325).
This comprises the ability to compare those concepts and their interrelations [3]. The integration of
knowledge must not be confused with knowledge integration framework (see below), as it does not
address the complexity of a normative idea, but rather the ability to see and express interrelations
between subject-specific concepts [3]. As a fourth knowledge type that can clearly be classified as
procedural knowledge, the application of knowledge is defined as the knowledge to solve novel
domain-specific tasks and problems [3]. The application of knowledge helps students to build a
subject-specific representation of a problem and develop an appropriate solution on this basis.

The model of Hailikari and colleagues [3] suggests that knowledge is represented on a continuum on
which types of knowledge with different underlying cognitive processes can be separated. The described
knowledge model has already been used in a variety of empirical studies in science education
(e.g., [2,3,21,22]). These studies used the model for the assessment of general chemistry, organic
chemistry, and mathematics knowledge of university students. However, in some of those studies only
a single or a few items were used for knowledge assessment. Therefore, analyses of the underlying
knowledge construct were not possible and only vague empirical evidence exists that these knowledge
types can be assessed separately. Hence, we wanted to develop an adequate assessment instrument
that allows for a proper assessment of different knowledge types.

1.2. Assessment of Knowledge Types

Dochy [20] formulated a guideline for the design of test items for assessing specific knowledge types.
In the guidelines, he proposes using items that require the appreciation, recognition, and reproduction
of information to measure declarative knowledge, and items that require production and application
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to measure procedural knowledge. A study by Kyllonen and Stephens [23] applies similar guidelines.
They designed two tests, one for each knowledge type, and modeled two latent knowledge types.
In this study and many others, knowledge and its types were assessed in a multiple-choice test format
(e.g., [24]). However, there is reason to doubt the appropriateness of using multiple-choice items to
measure the characteristics of all types of declarative and procedural knowledge. Therefore, more
elaborate assessments of knowledge types in chemistry and mathematics have been used [2,3,25].
In these, specific types of items were used to assess the four knowledge types that require different
cognitive processes when dealing with the subject-specific content. Their assessment included
multiple-choice and short answer items. Nonetheless, it was not possible to distinguish knowledge
types using statistical methods because only a few items were used. Hence, a broader assessment is
needed to provide evidence for the theoretically assumed four-dimensional structure of knowledge.

1.3. Learning and Knowledge Acquisition in Science at University Level

The overall goal of higher education is to develop students’ knowledge in certain domains.
Numerous studies focused on learning at the university level in general (e.g., biology [26,27],
mathematics [28], and physics [29]) by using theoretical models of knowledge to address and promote
learning (e.g., [27]). Recent studies about learning often apply knowledge integration theory (for
details, see [30]) as a design rationale for the assessment of learning and instruction (e.g., [31,32]).
Research about knowledge integration addresses the increasingly complex cognition of students,
whereas abilities of lower complexity (i.e., not eliciting relevant ideas) are viewed as a prerequisite of
more complex cognitive abilities (i.e., normative ideas or multiple scientifically valid links between
normative ideas) [31]. Liu, Lee, and Linn [32] were able to build valid and reliable assessments to
measure the knowledge integration of high school students for four years in different science cohorts.
Their assessment took advantage of different item formats. They were able to construct effective
assessment to address the quality of students’ answers. However, the studies on knowledge integration
do not address science students at university and do not differentiate between the knowledge acquisition
of different groups of students.

Examples for studies that assess different types of knowledge and differentiate between different
groups of students, are the studies by Hailikari and colleagues [2,3]. The knowledge model by
Hailikari et al. [3] defines four knowledge types by the complexity of a task and the cognitive
processes that are needed to solve it. Their research dealing with knowledge types at the university
level aims at predicting academic achievement (e.g., [2,3,25]). Their studies and other studies on
academic achievement employ subject-specific tests to assess students’ prior knowledge and grades
at the end of the semester as an indicator of their learning outcomes. For example, Hailikari and
Nevgi [2] provide cognitive predictors for academic achievement in chemistry. Based on their detailed
definitions of prior knowledge types, they predicted students’ achievement in chemistry, concluding
that students with sophisticated prior knowledge (application of knowledge, integration of knowledge)
are more successful at passing the final chemistry exams. The results of the study indicate that
sophisticated prior knowledge and higher order thinking approaches (e.g., problem solving) are
important prerequisites for academic learning at university. Binder et al. [21] adapted the prior
knowledge model by Hailikari et al. [3] to predict biology and physics students’ achievement in
the introductory phase at university. For biology students, declarative knowledge (knowledge of
meaning) was shown to be a good predictor for passing all subject-specific exams in the first two
semesters. For physics students, knowledge of meaning as well as application of knowledge predicted
the students’ success in all subject-specific exams. However, these studies were aimed at assessing
students’ suitability for university and because of the different measures at the beginning and end of
the semester, they only enable a very indirect evaluation of changes in knowledge over time. To track
and evaluate such changes, the utilized knowledge tests must be the same or at least linked over
different time points.
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Insights into the (different) outcomes of students’ learning that are measured with identical or
linked knowledge tests at the beginning and the end of the first year could help to identify groups
of students that might benefit from additional training, addressing certain knowledge types. This,
in turn, might guide the planning of meaningful course adjustments. In this context, Dochy and
Alexander [10] claimed that an assessment of knowledge types could lead to an enhanced learning
process, better course design, better modular education design, and development of knowledge-based
instructional systems.

2. Purpose

The above-mentioned studies either address the knowledge integration of the students or they aim
at predicting students’ academic achievement by analyzing cognitive traits as predictors. Knowledge
integration studies mainly focus on the development of students’ understanding of science concepts
and the nature of science itself [31]. Therefore, they focus on ongoing conceptual understanding,
but not on different knowledge types or the knowledge acquisition of different groups of students.
On the other hand, prediction studies focus on different predictors of academic achievement and groups
of students but do not address the knowledge acquisition of university students directly. Therefore,
a detailed assessment of HS high achievers’ and HS low achievers’ knowledge types and knowledge
acquisition seems fruitful to us. A differentiated evaluation of the acquisition of knowledge types for
groups of students, which performed differently in educational settings before, could reveal differences
not only in their prior knowledge but also in their knowledge acquisition at university. Findings could
lead to effective interventions fostering specific knowledge types.

To address the knowledge acquisition of university students, we wanted to examine the acquisition
of the four knowledge types described by Hailikari et al. [3] over the first year for groups of students
with contrasting preconditions for academic achievement. Because of its high predictivity for academic
achievement [5,7], and analogous to Hailikari et al. [3], we chose the HS GPA to define these groups
and distinguished between HS high, medium, and low achieving students. This grouping enables
us to evaluate if the overall HS achievement is connected to subject-specific knowledge acquisition
at university.

For our study, we chose the subjects biology and physics. This choice was based on the assumption
that they pose different challenges to student learning. In Germany, first year biology courses focus
on learning new taxonomy and terminology, and understanding interrelations in biological systems
(e.g., in botany), in physics courses the students shall learn to solve subject-specific problems (e.g.,
in mechanics). Therefore, declarative types of knowledge could be of special interest for biology
students, whereas in physics applicable knowledge could be helpful in the courses. The finding
that different knowledge types are predictive for academic success in both subjects [21] supports
this assumption.

This could lead to differential knowledge acquisition in the different subjects and to findings that
inform a subject specific adjustment of university lectures.

Beforehand, we need a measurement instrument suitable for a reliable and valid assessment of
the four knowledge types in each subject. To do so, we developed subject and knowledge type specific
tests (see below) and examined whether the knowledge types proposed by Hailikari et al. [3] can be
distinguished empirically.

3. Materials and Methods

3.1. Test Development and Design

To assess the four knowledge types in biology and physics, we developed four tests for each
subject (for examples see Supplementary Materials). The subject-specific knowledge in biology and
physics was differentiated according to the four knowledge types knowledge of facts, knowledge of
meaning, integration of knowledge, and application of knowledge [3]. We did so in order to account for
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the complex nature of knowledge and to avoid underrepresentation of the addressed construct [16,33]
by focusing on selected knowledge types. To further increase the validity of the measures, we followed
Dochy and Alexander [10], assessing each knowledge type using an assessment method that considered
the specific characteristics of each.

We assessed knowledge of facts using multiple-choice tasks, which only require marking one
correct answer from four choices (single select). To measure knowledge of meaning, we employed a set
of 15 constructed response tasks, which asked for definitions of subject-specific concepts or principles.
The students were asked to write down a correct definition in a few words or a sentence.

To assess integration of knowledge, a construct-a-map concept-mapping task [34] was used.
Concept mapping tasks can reveal the organization of and relationships between subject-specific
concepts [35,36]. We administered a pre-structured map to the students, which contained 12 concepts
to allow for a time-saving handling. We asked them to link the concepts and construct propositions by
writing down a linking phrase. A constructed proposition indicates both declarative knowledge about
the two concepts and students’ understanding of these concepts [34,37,38]. The concept mapping test
can test for procedural knowledge shown by the students in picking up different concepts, think about
relationships, and conceptualize propositions [34,38]. Concept mapping tests can be scored through
various scoring methods, depending on which different aspects of learning outcomes shall be assessed
(see below). To assess the integration of knowledge, the degree to which the maps communicate
understanding of interrelationships of concepts should be scored [38].

Application of knowledge was assessed through a card-sorting task (e.g., [39,40]). We used 12
subject-specific problems in each subject, wherein every problem represented one item. The students
were not asked to solve these problems, but to sort them based on the underlying problem scheme [39]
they would use to actually solve the problems. The problems were designed so that one of four
different problem schemes are favorable to solve them, for example, the conservation of energy in
physics or expansion of the surface area in biology (for example see Supplementary Materials). Thus,
three problems can be treated according to the same scheme.

Our test topics were based on the curriculum of the bachelor study programs in biology or
physics. In the curricula of both subjects, certain subject-specific domains are important prerequisites
for upcoming domains in the following semesters. In biology, cellular biology, botany, and zoology
there are basic classes in the first year, which provide students with basic knowledge that is required
for advanced classes such as genetics or evolutionary biology in the following semesters. In physics,
the mechanics classes are the basic classes, which prepare students for the more advanced courses.
To increase the curricular validity of the tests, we used recurring facts and concepts from high school
and university curricula for the tasks.

3.2. Procedure

The study was conducted during students’ first years at university. Subject-specific knowledge
was assessed at the beginning of the first semester, and after the second semester. We employed a
parallel design for both cohorts (biology and physics), only changing the subjects of the knowledge
tests according to students’ majors. We administered all tasks as paper and pencil tests. We introduced
the students to the task techniques required, for example, how to construct a concept map. For this
purpose, we explained each type of task via a short presentation in advance. In addition, the students
received written instructions in the test booklets.

3.3. Sample

The study was conducted at two universities in Germany. In total, 268 freshmen participated in
the study. Of these, 162 students were majoring in biology and 106 in physics. 64% of the biology
students were female (N = 105), and only 22 % of the physics students (N = 22). The average age of
the physics students was Md = 20. The average age of the biology students was Md = 21. For the
analysis of knowledge acquisition, the sample was reduced to 161 students (N = 104 in biology, N = 57
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in physics) due to dropout during the first year. All students volunteered to participate in the study
and received an incentive. The test results had no influence on the evaluation of the students’ course
achievements and lecturers have received aggregated test results, if any. In addition, all measures
followed ethical and privacy guidelines.

3.4. Scoring and Data Analysis

In this section, the scoring of the tests for the knowledge types is elaborated. Each assessment
format required a specific scoring method. We describe how each test was scored and how the raw
data were scaled using item response theory (IRT) models.

3.4.1. Knowledge of Facts

The items for knowledge of facts were scored dichotomously as right or wrong. One point was
awarded for selecting the right answer, and zero points for choosing a wrong answer.

3.4.2. Knowledge of Meaning

For the knowledge of meaning test, students’ answers were rated using a rubric. For a full
description of a principle or concept, a student had to correctly describe one or more aspects of the
concept. These aspects and the correct descriptions were specified in the coding frame. For every
aspect of a concept described correctly according to the coding frame, one point was assigned. For the
different concepts up to four aspects were rated. Therefore, the scoring method implied polytomous
scoring of the knowledge of meaning items (for examples, see the Supplementary Materials). To assure
for a fair scoring and scaling of the knowledge of meaning tests, we added up the correctly mentioned
aspects per student without weighting and used Item Response Theory (IRT) for scaling (see Section 3.5,
“Scaling”).

3.4.3. Integration of Knowledge

Various possibilities to score concept maps exist, including scoring map components such as
nodes, counting the number of propositions, or scoring the complexity of the structure (e.g., [41]).
However, Yin et al. [34] noted that these measures are highly uncertain and differ between people and
maps. Therefore, we employed a scoring method based on scoring of the links used and knowledge
administered in the linking phrases (e.g., [38,42]). Each linking phrase was scored dichotomously.
No link or a link with a wrong linking phrase was awarded zero points. A link with a correct
linking phrase was awarded one point. This type of scoring considers both the structure of the
map (from sparsely linked to highly linked) and quality of the phrases. Higher scores show highly
interlinked concepts with correct connections and are interpreted as a measure for the degree of
conceptual understanding.

3.4.4. Application of Knowledge

For each item in the application of knowledge test, one point was awarded if the student sorted
a task by a suitable problem scheme to address the problem. Since the exact descriptions of the
problem schemes differ between students, suitable schemes were defined for each problem in a coding
frame. For example, if “conservation of energy” was the intended scheme, answers explicitly equating
the relevant forms of energy in words or in a formula were awarded one point, too. This results in
dichotomous measures for each problem.

3.5. Scaling

Empirical studies using knowledge tests often employ IRT models in the data analysis [43,44].
The Rasch model is most often used, which is a 1-PL model for dichotomous data [45]. The partial
credit model (PCM) adjusts the Rasch model for polytomous data [46]. Both models can be applied



Educ. Sci. 2019, 9, 281 7 of 18

to scale items with different formats [47], to analyze the dimensionality of a construct, and in a
longitudinal analysis.

Thus, we used IRT models to scale our data. We scaled for the biology and physics sample
separately and linked the two points of measurement using items with constant difficulty (see below).
The PCM was the most appropriate model for the polytomous scoring of the knowledge of meaning
test and different item formats to assess knowledge types (multiple-choice and constructed response
items). The PCM estimates the difficulty of each item step of an item and a person’s ability based on
this stepwise modelling. Therefore, we applied a PCM to our data.

As a precondition for the longitudinal analysis, we wanted to ensure the factorial validity of
the four knowledge types. Therefore, we performed model comparisons between several uni- and
multidimensional PCMs for the biology and physics sample. Based on the theoretical framework,
three empirical models were employed for the data structure: The unidimensional PCM-model
representing subject-specific prior knowledge, a two-dimensional PCM-model representing declarative
and procedural knowledge, and a four-dimensional PCM-model representing the four knowledge
types. The model with the best fit could be examined through comparing information criteria (AIC,
BIC) and likelihood ratio tests. The Bayesian Information Criterion (BIC) is an information criterion for
model selection in which the deviance is divided by the model parameters considering sample size.
The Akaike Information Criterion (AIC) is also an information criterion that adds a penalty term for the
number of parameters in the model. The model with the lowest information criterion is preferred [48].

For the model representing the best fit for our data, we calculated and examined reliabilities and
item fit values. A measure for the appropriateness of an item for the probabilistic model is the item fit
measure infit MNSQ, which should be between 0.7 and 1.3 [49].

For longitudinal data scaling, the two points of measurement (beginning of the first and end of
the second semester) were linked by certain items per test [50]. To do so, we performed a differential
item functioning (DIF) analysis for all items between the measurement points. In a first step, we scaled
the data of every point of measurement separately (using the four-dimensional PCM, see section “4.1
Results”). Then, we mean–mean equated the item difficulties of both points of measurement to position
them on the same scale. Items with a change in item difficulty larger than 0.638 logits were flagged for
DIF following [51]. For the linking, we used items with a constant item parameter (difficulty) over the
measurement points. We inserted the item parameters of these items in the models for both points of
measurement. The linking of items per test positions the person’s ability parameters (Warm’s Mean
Weighted Likelihood Estimates (WLE); [52]) for the measurement points on a continuum. The item
difficulty of non-linking items was computed based on the responses of the measurement point.
For all items without DIF, we used the item difficulties of the second measurement point as initial
difficulties in the PCM. Finally, the WLE was calculated for each knowledge type and measurement
point respectively.

3.6. Data Analysis

To determine person parameters for the knowledge in all knowledge types, we conducted IRT
scaling and all fit and DIF analyses using the software R [53] with the package TAM (Test Analysis
Modules, [54]). In addition, IBM SPSS statistics 23 was used for the analysis of knowledge type
acquisition. To answer our research question, we performed a repeated measure multivariate analysis
of variance (MANOVA) for those students who participated at both measurement points. The factor
‘group’, based on the students HS GPA, was included as a between-subject factor in the analysis.
We used time (point of measurement) and the knowledge types as within-subject factors in the repeated
measures MANOVA. To address between-subjects effects in more detail, we used Oneway MANOVAs,
with the four knowledge types as dependent variables and the (HS achiever) group as the independent
variable. Effect sizes (partial η2) from the analyses are interpreted according to Cohen [55] (small effect:
partial η2 > 0.01, medium effect: partial η2 > 0.06, large effect: partial η2 > 0.14).
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4. Results

4.1. Precondition: Validity

To validate our interpretations of the test scores, we examined different validity-supporting
evidences (e.g., [56]). Each test’s content was based on the topics of the curriculum of the first year.
In addition, the lecturers were involved in the test development. Therefore, it is reasonable that test
contents fit the subject specific requirements of the first year. We applied well-established methods
to assess different types of knowledge. Each method is proven to challenge students’ knowledge
differently and therefore to assess different aspects of knowledge (see above). The two tests assessing
application of knowledge are based on card-sorting tasks, which is a well-established assessment
method [57,58]. However, due to our adaption of the method (see above) we put special effort into
its validation and applied an argument-based approach to validity according to Kane (e.g., [56]).
The results of several validation studies underpin that the test scores can validly be interpreted as
measures for initial problem solving procedures on subject-specific problems and are therefore suitable
to assess application of knowledge (for further information, see [59]).

An important aspect of validity is the question if the proposed four knowledge types can be
empirically distinguished. Therefore, we tested the model fit of the three IRT models through
information criteria and likelihood ratio tests. Information criteria and likelihood ratio tests were
estimated for both data sets: biology and physics. All models were based on the data from the first
measurement point. The four-dimensional model (types of knowledge) and two-dimensional model
(declarative/procedural knowledge) were nested within the one-dimensional model (knowledge),
and all items used in the one-dimensional model were employed in the more restrictive models.
The information criteria are presented in Table 1.

Table 1. Information criteria for the different probabilistic models tested.

Subject Dimensions NP Deviance AIC BIC

Biology knowledge (1D) 107 17478.24 17692.24 18022.61

Biology declarative versus procedural
knowledge (2D) 109 17418.82 17636.82 17973.37

Biology knowledge types (4D) 116 17278.10 17510.10 17868.27

Physics knowledge (1D) 125 11156.02 11406.02 11731.67

Physics declarative versus procedural
knowledge (2D) 127 11111.87 11365.87 11696.73

Physics knowledge types (4D) 134 10986.42 11254.42 11603.52

NP = number of parameters; AIC = Akaike information criterion; BIC = Bayesian information criterion [49].

Lower values in deviance, AIC or BIC indicate a better fit of the IRT model to the data, as they
are so-called penalty scores. In both subjects, the four-dimensional model demonstrates the lowest
information criteria, indicating that a four-dimensional latent construct fits the data best.

Likelihood ratio tests were used to test the differences in models’ deviance for significance.
The results are presented in Table 2. The differences in deviance are significant for all pairwise
comparisons of the three models.
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Table 2. Likelihood ratio tests for the model comparisons.

Subject Comparison df X2
emp X2

crit p

Biology 1D versus 2D 2 59.42 18.42 <0.001
Biology 2D versus 4D 7 140.72 29.84 <0.001
Biology 1D versus 4D 9 200.14 33.70 <0.001

Physics 1D versus 2D 2 44.15 18.42 <0.001
Physics 2D versus 4D 7 125.45 29.84 <0.001
Physics 1D versus 4D 9 169.60 33.70 <0.001

df = degrees of freedom; X2
emp = empirical Chi-square value; X2

crit = critical Chi-square value; p = p-value of the
model comparison [52].

The ranges of the latent correlations between the knowledge types are shown for both measurement
points in Table 3. The multidimensional scaling estimated the true score of each type of knowledge.
Correlations were computed between these true scores at each point of measurement. Both findings,
the latent correlations and the likelihood ratio tests suggest that the knowledge types can be assessed
and interpreted separately from each other. This supports construct validity of the test scores drawn
from our assessment.

Table 3. Ranges of latent correlations between the four knowledge types in the four-dimensional IRT
models of the longitudinal scaling.

Measurement Point Latent Correlations (Biology Model) Latent Correlations (Physics Model)

1 0.47 < rlat < 0.67 0.52 < rlat < 0.78

2 0.24 < rlat < 0.59 0.61 < rlat < 0.86

4.2. Precondition: Reliability and Item Fit Analysis

The four-dimensional IRT model was used to estimate the person and item parameters. The person
parameters for this scaling are on the same scale for both measurement points and can be compared
in further analyzes. For the biology items, the infit MNSQ ranges from 0.82 to 1.23. For the physics
items of all tests, the infit MNSQ ranges from 0.73 to 1.26. The test reliability of this scaling of the
prior knowledge tests is provided in Table 4. The fit measures of all items used in both subjects are
acceptable [49,51]. We used the person ability parameters generated by this four-dimensional model in
all further analyses.

Table 4. Infit MNSQ range and Warm’s Mean Weighted Likelihood Estimates (WLE) reliability
coefficients (e.g., [60]) for the tests.

Subject Tests Measure M1 M2

Biology knowledge of
facts

Infit MNSQ
(Reliability)

0.94–1.06
(0.60)

0.85–1.15
(0.74)

knowledge of
meaning

Infit MNSQ
(Reliability)

0.90–1.09
(0.71)

0.82–1.15
(0.72)

integration of
knowledge

Infit MNSQ
(Reliability)

0.94–1.05
(0.58)

0.92–1.19
(0.60)

application of
knowledge

Infit MNSQ
(Reliability)

0.91–1.23
(0.71)

0.89–1.10
(0.68)
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Table 4. Cont.

Subject Tests Measure M1 M2

Physics knowledge of
facts

Infit MNSQ
(Reliability)

0.88–1.16
(0.77)

0.84–1.26
(0.62)

knowledge of
meaning

Infit MNSQ
(Reliability)

0.85–1.15
(0.68)

0.85–1.12
(0.61)

integration of
knowledge

Infit MNSQ
(Reliability)

0.86–1.23
(0.75)

0.94–1.13
(0.52)

application of
knowledge

Infit MNSQ
(Reliability)

0.73–1.22
(0.77)

0.75–1.22
(0.66)

4.3. Distinguishing HS High and Low Achieving Students

To answer our research question, namely, how the different knowledge types develop over the
first year for HS high achievers and HS low achievers in biology and physics courses, we examined the
acquisition of the four knowledge types over the first year. To distinguish between HS high achieving
and HS low achieving students we split each sample (biology and physics) in three performance
groups (tertiles). The HS GPA in Germany is usually ranked on a scale from 1.0 to 4.0, with 1.0 as the
highest grade. Descriptive statistics for the three groups are provided in Table 5.

Table 5. Descriptive statistics of the high school grade point average (HS GPA) tertiles.

Subject n Md SD Group Name

Biology

36 1.50 0.20 Low HS GPA
(HS high achievers)

34 2.10 0.16
Medium HS GPA

(HS medium
achievers)

34 2.70 0.30 High HS GPA
(HS low achievers)

Physics

18 1.35 0.20 Low HS GPA
(HS high achievers)

20 1.90 0.15
Medium HS GPA

(HS medium
achievers)

19 2.60 0.30 High HS GPA
(HS low achievers)

n = sample size, Md = median; SD = standard deviation.

4.4. Knowledge Type Acquisition: Biology and Physics Sample

Table 6 shows the results of the MANOVA with time and knowledge type as within-subjects
factors and (HS GPA) group as between-subjects factor for the biology and physics sample. In both
samples, we found significant effects of time and of group. This indicates that the whole samples
of biology and physics students acquire knowledge with a large effect size during the first year and
that over both measurement points the HS achiever groups differ in their knowledge with a medium
effect size. The interactions of time and group are not significant and so are the interactions of time,
group and knowledge type, indicating that in both samples the HS GPA groups do not differ in their
acquisition of knowledge types at university (biology sample: Figure 1, physics sample: Figure 2).
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Table 6. Results of the MANOVAs.

Subject Factor/s Sum of
Squares df F p partial η2 Observed Power

Biology

Time 40.99 1 62.49 <0.001 0.382 1.0

Group 26.69 2 3.94 0.022 0.072 0.69

Time*Group 0.25 2 0.187 0.830 0.004 0.08

Time*Knowledge
type*Group 0.353 3.89 1 0.114 0.976 0.002 0.07

Physics

Time 32.81 1 64.50 <0.001 0.544 1.0

Group 97.98 2 14.62 <0.001 0.351 0.99

Time*Group 1.02 2 1.00 0.375 0.036 0.21

Time*Knowledge
type*Group 5.25 3.44 1 1.59 0.191 0.056 0.43

1 Value with Greenhouse-Geisser correction, due to significant Mauchly Test of Sphericity.

To address the differences between the HS GPA groups further, especially with regard to
the students’ knowledge when they are entering university, we performed a MANOVA using the
knowledge types at the first measurement point as dependent variables and the HS achievement
groups as independent variables.

In the biology sample, there are significant medium effects for group in knowledge of meaning
(F(2, 101) = 4.76, p = 0.011, partial η2 = 0.09) and integration of knowledge (F(2,101) = 17.50, p = 0.006,
partial η2 = 0.10). Post hoc comparison with Bonferroni correction reveals significant differences
between HS high achievers and HS low achievers in knowledge of meaning. For the integration of
knowledge, the HS high achiever group differs significantly from the HS medium achievers’ group
(p = 0.029) and from the HS low achievers’ group (Table 7 and Figure 1).

Table 7. Descriptive statistics and post hoc comparison of the HS achievement groups in biology.

Knowledge type HS achievement M (SD) Sig. 1

Knowledge of meaning
HS low achiever −0.45 (0.89) −

HS medium achiever −0.29 (1.07) p = 1.000
HS high achiever −0.19 (0.74) p = 0.012

Integration of knowledge
HS low achiever −0.58 (0.71) −

HS medium achiever −0.52 (0.88) p = 1.000
HS high achiever −0.03 (0.75) p = 0.011

1 post hoc comparison with Bonferroni correction: p-value in comparison to the HS low achievers.

In the physics sample, there are significant large effects for knowledge of facts (F(2, 54) = 5.57;
p = 0.006, partial η2 = 0.17), knowledge of meaning (F(2, 54) = 10.76; p < 0.001, partial η2 = 0.28) and
application of knowledge (F(2, 54) = 7.66; p < 0.001, partial η2 = 0.22). Post hoc comparisons indicate
that both the HS high and medium achiever groups significantly outperform the HS low achiever
group in these three knowledge types (Table 8 and Figure 2).



Educ. Sci. 2019, 9, 281 12 of 18

Educ. Sci. 2019, 9, x FOR PEER REVIEW   13 of 19  

Educ. Sci. 2019, 9, x; doi: FOR PEER REVIEW   www.mdpi.com/journal/education  

  
(a) (b) 

  
(c) (d) 

Figure 1. Students’ abilities for the four different knowledge types in biology for HS high, medium and low achiever. M1 and M2: measurements at the beginning and 
the end of the first year, (a) knowledge of facts, (b) knowledge of meaning, (c) integrations of knowledge, (d) application of knowledge.

Figure 1. Students’ abilities for the four different knowledge types in biology for HS high, medium and low achiever. M1 and M2: measurements at the beginning and
the end of the first year, (a) knowledge of facts, (b) knowledge of meaning, (c) integrations of knowledge, (d) application of knowledge.
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Figure 2. Students’ abilities for the four different knowledge types in physics for HS high, medium, and low achiever. M1 and M2: measurements at the beginning and 
the end of the first year, (a) knowledge of facts, (b) knowledge of meaning, (c) integrations of knowledge, (d) application of knowledge.

Figure 2. Students’ abilities for the four different knowledge types in physics for HS high, medium, and low achiever. M1 and M2: measurements at the beginning and
the end of the first year, (a) knowledge of facts, (b) knowledge of meaning, (c) integrations of knowledge, (d) application of knowledge.
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Table 8. Descriptive statistics and post hoc comparison of the HS achievement groups in physics.

Knowledge Type HS Achievement M (SD) Sig. 1

Knowledge of facts
HS low achiever −0.45 (0.70) −

HS medium achiever 0.15 (0.61) p = 0.042
HS high achiever 0.31 (0.90) p = 0.008

Knowledge of meaning
HS low achiever −0.34 (0.65) −

HS medium achiever 0.60 (0.74) p = 0.001
HS high achiever 0.51 (0.69) p < 0.001

Application of knowledge
HS low achiever −0.87 (1.75) −

HS medium achiever 0.47 (1.40) p = 0.021
HS high achiever 0.97 (1.26) p < 0.001

1 post hoc comparison with Bonferroni correction: p-value in comparison to the HS low achievers.

5. Discussion

The aim of our study was to analyze the acquisition of subject specific knowledge over the first
year in biology and physics studies for groups of students that performed differently in high school.
To do so, we modelled the subject specific knowledge through four knowledge types according to
Hailikari et al [3] and created assessment tools to measure these four knowledge types in biology
and physics. The assessments were to distinguish between the four knowledge types and to produce
reliable measures for each. In this section, we discuss test dimensionality, reliability, and knowledge
type acquisition for different HS achievement groups in biology and physics.

5.1. Preconditions: Dimensionality and Reliability

As prerequisites for the analysis of the acquisition of the four knowledge types, we evaluated
the dimensionality and reliability of the constructed assessments. Hailikari et al. [3] contended the
advantage of using different methods to assess different knowledge types. To increase the validity of
the measurement of each knowledge type, we applied a specific method to assess each. Each method
was selected based on the theoretical description of the cognitive processes associated with the specific
knowledge type.

Regarding reliability, the items used in both subjects show acceptable fit measures [51], hence,
a reliable test set for the assessment of prior knowledge types was created.

To examine dimensionality, we analyzed the fit of an a priori predicted IRT model with our
gathered data based on theoretical assumptions. For both subject-specific test sets, the information
criteria and likelihood ratio tests confirmed that the four-dimensional model fits the given data best.
Therefore, the results support the assumption that each test scale is an indicator for one knowledge type.
The theoretical distinction made by Hailikari et al. [3] can be reproduced with scales for each knowledge
type. Our finding backs those of Hailikari et al. [25], who found small intercorrelations between
different knowledge types in pharmaceutical chemistry as a first indicator for separate knowledge
types. Furthermore, the finding supports the construct validity of our assessments.

5.2. Knowledge Type Acquisition: Biology and Physics Sample

Students’ knowledge in both samples increases over the first year at university. This increase
shows a large effect size and applies for the three HS GPA groups (HS high, medium, and low achievers)
in the same way (non-significant interaction of time and group, see Tables 6 and 7, Figures 1 and 2).
Therefore, freshmen courses in biology and physics seem to support students’ knowledge acquisition
equivalently, regardless of their previous performance at school.

However, in both subjects, the HS GPA low achievers start with significantly lower prior knowledge
in subject-specific knowledge types (biology: knowledge of meaning and integration of knowledge;
physics: knowledge of facts, knowledge of meaning, and application of knowledge). Due to the similar
knowledge acquisition among the HS achievement groups, HS low achievers are not able to compensate
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for this difference during the first year at university. Furthermore, the mean knowledge of the HS
low achievers’ group does not reach the mean prior knowledge of the HS high achievers group in the
respective knowledge types (Figures 1 and 2). Our findings may suggest that the initial knowledge
gap rather than differences in students’ knowledge acquisition during the first year contributes to the
lower academic achievement of the HS low achiever group that is predicted by the HS GPA.

In the physics sample, the largest differences between the HS achievement groups are evident
in application of knowledge. It is known that elaborate applicable knowledge as well as declarative
knowledge are attributes of expertise in physics [39,57,58] and has shown to be a good predictor for
grades in physics [21,57].

For the biology sample, we discovered the largest differences between the HS GPA achievement
groups in knowledge of meaning and integration of knowledge. These knowledge types require the
students to understand subject-specific concepts and the interrelations between those concepts. Since
the biology courses in Germany require to learn the terminology and taxonomy of different domains,
these knowledge types might be helpful, to link this specific knowledge to existing concepts and
principles. In this regard, knowledge of meaning has also been proven to be a good predictor for
academic achievement in the introductory biology courses [21]. Consequently, our results show that
the HS GPA is able to indicate differences in those specific knowledge types that are correlated with
academic achievement at university level, although the HS GPA itself is not a subject-specific measure.

6. Conclusions and Outlook

In biology and physics courses knowledge in all knowledge types is acquired during the first
year at university and this holds for students with different preconditions from high school in a very
similar way. However, HS low achieving students enter the physics and biology courses with far less
prior knowledge in subject-specific knowledge types compared to the HS high achieving students and
are not able to bridge the knowledge gap over the first year at university without further support.
This finding leads to two conclusions. First, the HS GPA of a student seems to indicate the prior
knowledge of the students rather than their ability to acquire subject-specific knowledge. Second, to
reduce dropout, especially the differences in prior knowledge should be addressed to enable more
students to have academic achievement. This underlines the need for preparatory courses that support
especially HS low achievers to enhance their subject specific knowledge before or at the beginning
of the first year at university. Our results give hints which knowledge types should be in the focus
of respective subjects and courses. Furthermore, our assessments can be implemented to evaluate
students’ prior knowledge types and to assign them to preparatory courses or to evaluate the outcomes
of the courses with regard to knowledge type acquisition.

A limitation of our study is that gender distributions systematically differ between the biology
and physics sample, because both samples show typical gender distributions. Thus, the factor gender
could explain our subject-specific findings to some extent.

The knowledge model by Hailikari et al. [3] is a model of explicit knowledge. It is conceivable that
other types of knowledge are acquired during the first year at university (e.g., strategic knowledge or
conditional knowledge) beyond the four analyzed knowledge types. Our research could be extended to
other knowledge types in future research to find relations between the different knowledge types and
academic achievement. Furthermore, the operationalization of knowledge acquisition via changes in
knowledge over time is only a first outcome-oriented approach to the description of a complex process
that is influenced by many other factors like course design or students’ actual learning strategies.

On the other hand, our study is based on a sample from only two [country] universities by
now. Thus, replicability and generalizability of our findings are subjects of further research, too.
In addition, the analysis of correlations between the HS GPA and subject specific knowledge types
could be extended to other STEM subjects.
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