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Abstract: In science, technology, engineering, arts, and mathematics (STEAM) education, artificial
intelligence (AI) analytics are useful as educational scaffolds to educe (draw out) the students’
AI-Thinking skills in the form of AI-assisted human-centric reasoning for the development of
knowledge and competencies. This paper demonstrates how STEAM learners, rather than computer
scientists, can use AI to predictively simulate how concrete mixture inputs might affect the output
of compressive strength under different conditions (e.g., lack of water and/or cement, or different
concrete compressive strengths required for art creations). To help STEAM learners envision how AI
can assist them in human-centric reasoning, two AI-based approaches will be illustrated: first, a Naïve
Bayes approach for supervised machine-learning of the dataset, which assumes no direct relations
between the mixture components; and second, a semi-supervised Bayesian approach to machine-learn
the same dataset for possible relations between the mixture components. These AI-based approaches
enable controlled experiments to be conducted in-silico, where selected parameters could be held
constant, while others could be changed to simulate hypothetical “what-if” scenarios. In applying AI
to think discursively, AI-Thinking can be educed from the STEAM learners, thereby improving their
AI literacy, which in turn enables them to ask better questions to solve problems.

Keywords: STEAM education; STEM education; science; technology; engineering; arts; mathematics;
Bayesian; artificial intelligence; AI Thinking; human-centric; explainable AI

1. Introduction

1.1. The Theoretical Basis of AI-Thinking

During the usage of advanced data analytics techniques based on artificial intelligence (AI), such
as machine learning, complex features that characterize the problem to be solved can be autonomously
extracted without laborious human intervention. However, it does not mean that there is no role for
humans to play here. Humans still need to play the leading role in the interpretation of the findings
that have been generated by the AI, with the domain knowledge that humans uniquely have, based on
their rich lived experiences. In the realm of understanding that straddles both AI and human-centric
domains, humans will continue to play a vital role. The conceptual notion of this form of understanding
and thinking—AI-Thinking—was first offered by Zeng [1] as a framework that could be used for
leveraging data analytics with cognitive computing, and thereby enhance learning by challenging
humans to interpret new findings from the machine-learned discovery of hidden patterns in data. The
interplay of the usage of artificial intelligence and mathematics education has been observed to be
capable of educing (drawing out) AI-Thinking in students [2]. Beyond the technical skills that the
students could learn, science, technology, engineering, arts, and mathematics (STEAM) educators are
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also interested in inculcating AI-Thinking [1,3] in students, as AI has been shown to be beneficial to
engaging students in STEAM education [4]. It is worthy to note that the term “arts” does not only
refer to the fine arts per se; it also includes the liberal arts and the social sciences (e.g., philosophy,
psychology, literature, sociology, education, etc.), in which critical thinking and rigorous human
reasoning using formal logical and informal argumentations feature prominently, and hence could
benefit from AI-Thinking.

In the focused context of the current paper, the term AI-Thinking could be construed as follows:
“AI” represents machine-based artificial intelligence, while “thinking” represents human-in-the-loop
(HuIL) [5] reasoning. STEAM practitioners must be educated, so that they would be able to recognize
opportunities which AI could be applied in the domains they are interested in, where they can
transform human-centric ideas into technical inputs that the AI technology can understand. When the
AI technology presents technically detailed results after performing computations on the data, in order
to understand and interpret the findings in meaningful human-centric terms, STEAM practitioners
would have to be informed enough about the technical details of how the AI processed the data (e.g.,
in the present context, to be at least knowledgeable about how the mathematical algorithm of the
Bayesian theorem works).

It would not be unreasonable to assume that AI-Thinking is not a linear thinking process. From
a complex thinking and learning educational phenomenon perspective [6], it could be understood
as the co-emergence of at least two main concomitant types of thinking reaching a state of “vital
simultaneities” [7], that is, in human-initiated AI analysis on the dataset informing human-centric
reasoning in terms from STEAM-related domains, and vice-versa, in STEAM-related human-centric
reasoning informing further AI analysis on the dataset, and so on. They are inextricably intertwined
and cannot be easily pried apart. Nevertheless, even though AI-Thinking is elusively complex and
might be challenging to include as part of formal assessments in educational curricula, it behooves
us to bear in mind that the importance of educing AI-Thinking in STEAM practitioners could not
be overstated, as policy makers and STEAM educators embark on this adventure to train students
via informal educational programs in an era where—like it or not—the use of AI is becoming more
ubiquitous across industries and societies.

1.2. The Role of AI in Education

AI has always played a supporting role in contemporary education. Since the 1980s, AI has been
utilized in education to assist teachers and to enhance the learning experiences of students [8,9]; albeit in
small numbers around the globe. The field of artificial intelligence in education (AIED) has progressed
alongside the development of pedagogical theories, practices, and goals of education [10–12]. Thus far,
however, the focus of AIED has primarily been on empirical studies about the successful usages of
computers software applications or toy-like programmable robots to teach well-defined STEM-related
conceptual knowledge [10]; albeit, often without as much considerations about inclusion of the letter
“A” which represents the arts. This was understandable as many curricula in the past were often
crafted by separate faculties or departments, unless specially called upon for collaborations across
domains. Moreover, AI has been more closely associated with the computer science departments in
universities, rather than with the science, engineering, mathematics, or art departments. However, in
recent years AI has gained so much traction across industries that the notion of AI-infused industries
has been referred to as “Industry 4.0” [13]. This underscores the importance of training students not
just in problem-solving using seminal concepts which they learn from STEAM, but also from AI.

In recent years, STEAM education has become an integral part of pre-tertiary education, reaching
out to students in kindergartens, elementary schools, middle schools, and high schools. Conducting
research into AI’s supporting role as educational scaffolds for students can contribute to a better
understanding of how their learning processes can be enhanced [14]. Educators have been trying to
introduce to pre-university students popular AI concepts such as machine vision, natural language
processing (NLP), machine learning (ML), deep learning (DL), or reinforcement learning (RL), and
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thereafter train these students to create artificial neural networks (ANN), recurrent neural networks
(RNN), convolutional neural networks (CNN), or generative adversarial networks (GAN).

Ideally, in order for students to learn about these AI-related concepts, they would need to first
master a computer programming language such as C++, Python or Julia, and subsequently learn to
write programs to translate algorithms from mathematical symbols into computer code. It could be
assumed that educators and students in pre-university levels neither have the time nor the pre-requisite
skills to learn how to write programs within the precious class timeslots.

Moreover, there is a need for educators to train students to a level in which they can work in teams,
discuss STEAM concepts and engage their peers using data-driven evidence-based reasoning skills.
However, Correa, Bielza, and Pamies-Teixeira [15] point out that in neural networks, the relationships
existing between the nodes in a model could be likened to a black box. They are either hidden from the
user or are far too complex to be easily understood by humans.

2. Research Problem and Research Questions

2.1. Research Problem

Data analytics has emerged as a professional skill that STEAM practitioners (such as scientists,
computer programmers, engineers, scholars of the liberal arts, and mathematicians) are expected by
potential employers to possess as part of their education, regardless of whether they were taught the
skill in school. It has been recognized as an essential skill to undergraduate STEAM curriculum; not
just in post-graduate engineering education [16]. In order to motivate students to develop their interest
in STEAM, K-12 curriculums in many countries have already included elements of science, technology,
engineering, arts, and mathematics in lessons, as part of their efforts to offer integrated STEAM
education. In recent years, exposure to STEAM in K-12 education for burgeoning pre-engineering
students have involved the use of specialized hardware such as Lego Mindstorms toy robots [17], or
by modifying the computer code of well-known machine learning tutorial examples, such as adapting
the famous movie recommendation system into myriad forms of recommendation systems in other
domains [18].

It behooves STEAM educators to wonder: is there a more intuitive human reasoning-centric
approach for beginner STEAM practitioners that is relatively easy-to-use, so that people who might
not be so familiar with computer programming or advanced mathematics can also analyze data and
interpret the results? Further, is there any user-friendly AI-based software that could be used by
beginner STEAM practitioners to ask hypothetical questions to experiment with different variables
in various scenarios in the computational simulations, and subsequently communicate their ideas
from the results of the analyzed data with colleagues, using intuitive human-centric reasoning that
could also be easily understood by people who are not STEAM practitioners (e.g., business managers)?
The current paper submits that there is indeed one such approach that STEAM educators could
consider using. The AI-based Bayesian network (BN) probabilistic reasoning approach [19–21], is
particularly well-suited for assisting STEAM practitioners to explore hypothetical questions using
computational modeling.

At this juncture, readers who have gotten thus far might be wondering, “That is all very well and
good, but can a concrete example be provided for STEAM educators and practitioners?” “Yes indeed,
in the current paper, a concrete example will be offered for your consideration.” (My sincere apologies
for the pun.)

To overcome the constraints that were previously mentioned, the current paper proffers an
AI-based BN probabilistic reasoning approach [19–21], using a user-friendly software which can be
implemented in the classroom for beginner STEAM learners, all within a reasonably short timeframe
of perhaps one hour. To suggest how AI-Thinking can be educed in a STEAM-related educational
setting, the following will be included in the current paper.

• Science: the scientific concept of entropy will be explored by measuring it in the dataset.
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• Technology: a user-friendly AI-based Bayesian network software, Bayesialab, will be used.
• Engineering: a civil engineering example will be used to explore the relationship between concrete

compressive strength and the variables within the mixture.
• Arts: different concrete compressive strengths might be required by the artist for creating different

kinds of art works, and the artist might also have to work with pre-existing conditions or in places
where cement or water or other materials might not be abundant.

• Mathematics: the mathematical formula of the Bayesian Theorem will be explained and utilized
to make predictive inferences from the data.

The major theoretical paradigms that have shaped the field of AI-Thinking are logical reasoning,
probabilistic reasoning, and deep data-driven learning [22]. AI-Thinking is involved in the usage of
AI as a tool for analysis, in representations of complex knowledge, and in AI-development [23]. In
AI-Thinking, probabilistic reasoning in data-driven cognitive models are more intuitive for grappling
with uncertainties in real world problems, as it is similar to the human thinking process [3].

In light of this, the exemplars in the current paper have been purposefully designed to provide
opportunities to educe AI-Thinking in the students in terms of logical reasoning (e.g., how the scarcity
of one or more of the concrete mix components might necessitate the prediction and subsequent
re-adjustment of new acceptable concrete compressive strength levels), probabilistic reasoning (e.g.,
via the Bayesian probabilistic reasoning approach), and deep data-driven learning (e.g., discovery of
hidden patterns of the relationships between the concrete mixture variables and the outcomes of the
compressive strengths via supervised, and semi-supervised machine learning of the dataset).

The primary advantage of BN is that its strong probabilistic theory enables users to gain an
intuitive understanding of the processes involved, and enables predictive reasoning because given
observations of evidence, questions can be posed to find the posterior probability of any variable or
set of variables. The current paper, however, does not purport to perform comparisons between the
usage of BN and ANN in predictive models; as that has already been well-documented by Correa,
Bielza, and Pamies-Teixeira [15], who observe that BN can illustrate the relationships existing between
the nodes in a model, and provide more information on the relationship than ANNs, which has been
likened to a black box. The benefits of BN notwithstanding, the very idea of using a BN approach
could and should also be questioned by the student whose AI-Thinking is being educed. In fact, this
could be one of the discussions that STEAM educators might wish to consider facilitating for their
students. Nevertheless, in lieu of that fruitful discussion between STEAM educators and the students,
let us return to the delineation of the BN approach at hand.

Two BN models will be illustrated in the current paper: a naive BN model, followed by a
semi-supervised BN model. The naive BN model [24] is the simplest type of BN model. In the
context of this paper, a naive BN model considers how much each of the individual mix components
(cement, water, fineaggregate, slag, superplasticizer, age, flyash, and coarseaggregate) independently
contributes to the probability of achieving different levels of concrete compressive strength, regardless
of any possible correlations between them. Even though disregarding the possible correlations between
the variables of the mix might seem contrived at first, naive BN has been known to perform well for
predictive applications in modeling of real-world scenarios [25,26].

2.2. Research Questions

The three over-arching research questions that guide the current paper are:
Research Question 1: from descriptive analytics of the dataset, what are the relations between the

inputs (mixture components) and the output (concrete compressive strength)?
Research Question 2: from predictive analytics of the dataset, what are the amounts of

the inputs (mixture components) which could produce the optimal output (high-level concrete
compressive strength)?
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Research Question 3: under conditions of uncertainties when the supply of water and/or cement
is/are scarce (at low-level), what are the probabilities of producing output of low/mid/high concrete
compressive strength?

3. Methods

3.1. Rationale for Using the AI-Based Bayesian Network Approach

Among a vast constellation of tools in AI-related research, the BN approach for analyzing statistical
data [27] has gained traction in research in recent years [28]. The BN approach [19–21] is suitable for
analyzing non-parametric data, because it does not require the underlying parameters of a model to
assume a normal parametric distribution [29–31]. The Bayesian paradigm enables STEAM practitioners
to perform hypothesis testing by including prior knowledge into the analyses. Consequently, it
becomes unnecessary to repeatedly perform multiple rounds of null hypothesis testing [32–34] when
using Bayesian data analytical techniques.

Researchers in education, such as Kaplan [35], Levy [36], Mathys [37], and Muthén and
Asparouhov [38], Bekele and McPherson [39], and Millán, Agosta, and Cruz [40] have also utilized
the Bayesian approach, because it enables them to measure information gain, as depicted in Claude
Shannon’s information theory [41], which could calculate the probabilistic amount of commonality
between two data distributions even if they might not be parametric.

3.2. The Bayesian Theorem

A brief introduction to the Bayesian theorem and BN will be presented here. However, it can never
do justice to the well-established corpus of BN. Readers who are interested to learn more about BN are
encouraged to peruse the works of Cowell, Dawid, Lauritzen, and Spiegelhalter [42]; Jensen [43]; and
Korb and Nicholson [44].

The mathematical formula (see Equation (1)) upon which BN was based, was developed and first
mentioned in 1763 by the mathematician and theologian, Reverend Thomas Bayes [27].

P(H|E) =
P(E|H).P(H)

P(E)
(1)

According to Equation (1), H represents a hypothesis, and E represents a piece of evidence. P(H|E)
is referred to as the conditional probability of the hypothesis H, which means the likelihood of H
occurring given the condition that the evidence E is true. It is also referred to as the posterior probability,
which means the probability of the hypothesis H being true after calculating how the evidence E
influences the verity of the hypothesis H.

P(H) and P(E) represent the probabilities of the likelihood of the hypothesis H being true, and of
the likelihood of the evidence E being true, independent of each other, and is referred to as the prior or
marginal probability—P(H) and P(E), respectively. P(E|H) represents the conditional probability of the
evidence E, that is, the likelihood of E being true, given the condition that the hypothesis H is true. The
quotient P(E|H)/P(E) represents the support which the evidence E provides for the hypothesis H.

3.3. The Research Model

The primary goal of the current paper is to offer one of myriad possible ways that AI-Thinking
(regardless of how much or how little) could be educed in beginner STEAM students. The objective
of the exemplars is not to promote Bayesian Network as the ultimate AI-based tool for educing
AI-Thinking, but to encourage STEAM students to think about the trustworthiness of AI-based analysis
techniques in general, and hopefully, to exercise AI-Thinking in order to discuss AI and STEAM
with the teachers and classmates. In other words, it is far more important to get students to raise
questions and think about the possibilities in problem-solving, rather than try to achieve a so-called
correct answer.
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The probabilistic reasoning techniques used are based on BN. The Bayesian approach has
been chosen because it is a methodology that has been used for modeling the performances in
STEAM-related systems where the concept of the Markov Blanket [45], in conjunction with response
surface methodology (RSM) [46–49] are utilized, as they are proven techniques for examining the
optimization of the relations between the variables of theoretical constructs, even if they are not
physically related.

The current paper proffers an approach which enables STEAM educators to facilitate discussions
pertaining to AI and STEAM with the use of descriptive analytics, as well as predictive simulations
using the data that has been generously donated by Yeh [50–55] and made publicly available at the
website (https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength).

In subsequent sections, the detailed BN models of the knowledge about concrete mixture variables
and the outcome of the concrete compressive strength will be presented. The current paper proposes a
practical Bayesian approach to demonstrate how STEAM educators and practitioners—rather than
computer scientists—could analyze and explore any possible hidden motif in the data, using the
following two types of analytics, which will be perform first for the supervised machine learning BN
model, and subsequently for the semi-supervised machine learning BN model:

Descriptive Analytics of “What Has Already Happened?” in Section 4:

Purpose: to use descriptive analytics to discover the motifs in the collected data. For descriptive
analytics, BN modeling will utilize the parameter estimation algorithm to automatically detect the data
distribution of each column in the dataset. Further descriptive statistical techniques will be employed
to understand more about the current baseline conditions of the concrete mixture variables and the
corresponding compressive strengths. These techniques include the use of curves analysis and the
Pearson correlation analysis.

Predictive Analytics Using “What-If?” Hypothetical Scenarios in Section 5:

Purpose: to use predictive analytics to perform in-silico experiments with fully controllable parameters
in the concrete mixture variables for the prediction of counterfactual outcomes in the concrete
compressive strengths. A probabilistic Bayesian approach will be used to simulate various scenarios
where constraints might exist (e.g., scarcity of water and/or cement) to better inform STEAM practitioners
about how different combinations of the concrete mixture could produce different levels of concrete
compressive strengths. For predictive analytics, counterfactual simulations will be employed to explore
the motif of the data. The predictive performance of the BN model will be evaluated using tools
that include the gains curve, the lift curve, the receiver operating characteristic (ROC) curve, as well
as by statistical bootstrapping of the data inside each column of the dataset (which is also the data
distribution in each node of the BN model) by 100,000 times, in order to generate a larger dataset
to measure its precision, reliability, Gini index, lift index, calibration index, the binary log-loss, the
correlation coefficient R, the coefficient of determination R2, root mean square error (RSME), and
normalized root mean square error (NRSME).

4. Preparation of Data Prior to Machine Learning

This section presents the procedures taken in descriptive analytics to make sense of “what has
already happened?” in the collected dataset. The purpose of importing the dataset comprising 1030
rows of concrete mixture components and the corresponding outcomes in concrete compressive
strengths into Bayesialab, is to discover the “informational motif” [56] of the data.

4.1. Dataset of the Concrete Mixture Variables and Their Corresponding Concrete Compressive Strengths

The files of the dataset can be downloaded from the UCI Machine Learning Repository website
(https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength).

https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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4.2. Codebook of the Dataset

The dataset was generously donated to the public domain by Yeh [50–55], who has produced
seminal research studies to analyze concrete mix data using artificial neural networks (ANN). The
current paper does not seek to belabor the laudable predictive engineering research studies which
were based on ANN; rather, it hopes to offer a complementary alternative for STEAM educators to
ease students into using a multidisciplinary integrative approach to engage in predictive probabilistic
reasoning, AI-Thinking, and STEAM learning. The codebook of the dataset is presented in Table 1.

Table 1. Code book of the data.

Name Description

Cement input variable: Kg in a m3 mixture
Blast Furnace Slag input variable: Kg in a m3 mixture

Fly Ash input variable: Kg in a m3 mixture
Water input variable: Kg in a m3 mixture

Superplasticizer input variable: Kg in a m3 mixture
Coarse Aggregate input variable: Kg in a m3 mixture

Fine Aggregate input variable: Kg in a m3 mixture
Age input variable: Day (1~365)

Concrete compressive strength Output variable: MPa

4.3. Software Used: Bayesialab

The software which will be utilized is Bayesialab version 8.0. The 30-day trial version can be
downloaded from the website (http://www.bayesialab.com).

Before proceeding with the following exemplars illustrated in the following sections, a highly
recommended pre-requisite activity which would be greatly beneficial to the reader is, to become
familiar with Bayesialab by downloading and reading the free-of-charge user-guide [57] from the
website (http://www.bayesia.com/book/) as it contains the descriptions of the myriad tools and
functionalities within the Bayesialab software, which are too lengthy to include in the current paper.

4.4. Pre-Processing: Checking for Missing Values or Errors in the Data

Before using Bayesialab to construct the BN, the first step is to check the data (using the file
“Concrete_Data_Yeh.csv”) for any anomalies or missing values. In the dataset used in this study,
there were no anomalies or missing values. However, should other researchers encounter missing
values in their datasets; rather than discarding the row of data with a missing value, the researchers
could use Bayesialab to predict and fill in those missing values. Bayesialab would be able to perform
this by machine-learning the overall structural characteristics of that entire dataset being studied
using structural EM algorithms and dynamic imputation algorithms, before producing the predicted
values [58].

The dataset in delimited text format (see Figure 1) was imported into Bayesialab, in preparation
for machine learning analysis.

http://www.bayesialab.com
http://www.bayesia.com/book/
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As part of the data import process, Bayesialab could inspect the dataset (see Figure 3) to
double-check it for any missing values or errors (there were none).
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Discretization of the continuous data in multiple columns could be automatically performed by
the Bayesialab software. The algorithm R2-GenOpt* used in this example (see Figure 4) was the optimal
approach recommended by Bayesialab. It was a genetic discretization algorithm for maximizing the
coefficient of determination R2 between the discretized variable and its corresponding continuous
variable [59].
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After the data import process was completed, unlinked nodes (see Figure 5) were presented. Each
node contained data from a column of the dataset. The next section will present how machine learning
was performed on the imported dataset.
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5. Overview of the BN Approach Used to Machine-Learn the Data

Before presenting the results from the machine learning process performed by the BN software, a
brief overview of the nomenclature used to describe the structure of the BN is presented here. Nodes
(both the blue round dots, as well as the round cornered rectangles showing the data distribution
histograms) represent variables of interest, for example, the input variables such as cement, blast
furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age, in terms
of kilogramme in one cubic meter (Kg in one m3) volume of the concrete mixture, and the output
variable, concrete compressive strength. Such nodes can correspond to symbolic/categorical variables,
numerical variables with discrete values, or discretized continuous variables. Even though BN can
handle continuous variables, we exclusively discuss BN with discrete nodes in the current paper, as it
is more relevant to heuristically categorize the concrete mixture input variables into high, mid, and
low amounts, so that STEAM educator can easily facilitate the discussions among the students, and
with the students within the short times pan of one class period (about 1 h).

Directed links (the arrows) could represent informational (statistical) or causal dependencies
among the variables. The directions are used to define kinship relations, i.e., parent-child relationships.
For example, in a Bayesian network with a link from X to Y, X is the parent node of Y, and Y is the
child node. In the current paper, it is important to note that the Bayesian network presented is the
machine-learned result of probabilistic structural equation modeling (PSEM); it is not a causal model
diagram, and for this reason, the arrows do not represent causation; they merely represent probabilistic
structural relationships between the parent node and the child nodes.

BN, also referred to as belief networks, causal probabilistic networks, and probabilistic influence
diagrams are graphical models which consist of nodes (variables) and arcs or arrows. Each node
contains the data distribution of the respective variable. The arcs or arrows between the nodes represent
the probabilities of correlations between the variables [60].

Using BN, it becomes possible to use descriptive analytics to analyze the relations between the
nodes (variables) and the manner (the motif or pattern) in which initial probabilities, such as the
proportions of the various concrete mixture input variables (e.g., different amounts of cement, blast
furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age), might influence
the probabilities of future outcomes in the concrete compressive strengths.

Further, BN can also be used to perform counterfactual speculations about the initial states of
the data distribution in the nodes (variables), given the final outcome. In the context of the current
paper, exemplars will be presented in the predictive analytics segments to illustrate how counterfactual
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simulations can be implemented using BN. For example, if we wish to find out the conditions of the
initial states in the nodes (variables) which would lead to a high probability of attaining high-level
concrete compressive strength, or if we wish to find out how low inputs of cement and/or water
could influence the outcome of the concrete compressive strength, we can simulate these hypothetical
scenarios in the BN.

The relation between each pair of connected nodes (variables) is determined by their respective
conditional probability table (CPT), which represents the probabilities of correlations between the
data distributions of the parent node and the child node [61]. In the current paper, the values in
the CPT are automatically machine-learned by Bayesialab according to the data distribution of each
column/variable/node in the dataset. Nevertheless, it is possible but optional for the user to manually
enter the probability values into the CPT, if the human user wishes to override the machine learning
software. In Bayesialab, the CPT of any node can be seen by double-clicking on it.

6. Supervised Machine Learning Using the Naïve Bayes Approach

In this section, supervised machine learning via a naive Bayes model is utilized to analyze how
input variables of the mixture could influence the output of concrete compressive strength.

First, descriptive analytics is performed on the collected data to learn more about the characteristics
of its collective pattern or motif. Subsequently, predictive analytics using supervised machine learning
will make use of the motif machine-learned in this section to generate simulations of hypothetical
scenarios in-silico to forecast conditions which we might like to achieve or avoid.

6.1. “What Had Happened?” Descriptive Analytics Using Supervised Machine Learning with Naive
Bayes Approach

The results of the descriptive analysis (see Figure 6) are presented as follows.
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For exploration purposes, and for facilitating the ease of quick discussions about STEAM-related
concepts among the students, the machine learning procedure inside Bayesialab was used to cluster
the data within each component of the mixture into three levels to represent the high, mid, and
low categories.

Descriptive analytics of the entire dataset revealed that, collectively from all the attempts in using
different combinations of the components in the mix:

• For the node concrete compressive strength (csMPa), there was 35.15% probability of achieving
low compressive strength of <=28.02 MPa (where MegaPasal is the SI unit for pressure); there
was 43.11% probability of achieving mid compressive strength of >28.02 and <=48.79 MPa; and
there was 21.75% of achieving high compressive strength of >48.79 MPa.

Descriptive analytics of the entire dataset revealed that, collectively from all the attempts in using
different combinations of the components in the mix:

• For the attribute cement, 41.17% of the combinations in the collected data used low-level amounts
of concrete in the mix (<=239.6 kg in a meter-cube mixture); 37.18% of the combinations in
the collected data used mid-level amounts of concrete in the mix (>239.6 but <=362.6 kg in
a meter-cube mixture); and 21.65% of the combinations in the collected data used high-level
amounts of concrete in the mix (>362.6 kg in a meter-cube mixture).

• For the attribute superplasticizer, 42.52% of the combinations in the collected data used low-level
amounts of superplasticizer in the mix (<=4.6 kg in a meter-cube mixture); 51.17% of the
combinations in the collected data used mid-level amounts of superplasticizer in the mix (>4.6
but <=14.3 kg in a meter-cube mixture); and 6.31% of the combinations in the collected data used
high-level amounts of superplasticizer in the mix (>14.3 kg in a meter-cube mixture).

• For the attribute slag, 56.41% of the combinations in the collected data used low-level amounts of
slag in the mix (<=54.6 kg in a meter-cube mixture); 24.76% of the combinations in the collected
data used mid-level amounts of slag in the mix (>54.6 but <=167 kg in a meter-cube mixture);
and 18.83% of the combinations in the collected data used high-level amounts of slag in the mix
(>167 kg in a meter-cube mixture).

• For the attribute flyash, 56.41% of the combinations in the collected data used low-level amounts of
flyash in the mix (<=24.5 kg in a meter-cube mixture); 31.36% of the combinations in the collected
data used mid-level amounts of flyash in the mix (>24.5 but <=134 kg in a meter-cube mixture);
and 12.23% of the combinations in the collected data used high-level amounts of flyash in the mix
(>134 kg in a meter-cube mixture).

• For the attribute coarseaggregate, 19.51% of the combinations in the collected data used low-level
amounts of superplasticizer in the mix (<=910 kg in a meter-cube mixture); 51.75% of the
combinations in the collected data used mid-level amounts of superplasticizer in the mix (>910
but <=1014.3 kg in a meter-cube mixture); and 28.74% of the combinations in the collected data
used high-level amounts of superplasticizer in the mix (>1014.3 kg in a meter-cube mixture).

• For the attribute age, 81.55% of the combinations in the collected data had utilized low-level
amounts of age in the mix (<=56 days); 15.24% of the combinations in the collected data had
utilized mid-level amounts of age in the mix (>56 but <=180 days); and 3.20% of the combinations
in the collected data used high-level amounts of age in the mix (>180 days).

• For the attribute fineaggregate, 23.20% of the combinations in the collected data used low-level
amounts of fineaggregate in the mix (<=717.8 kg in a meter-cube mixture); 53.11% of the
combinations in the collected data used mid-level amounts of fineaggregate in the mix (>717.8
but <=825.5 kg in a meter-cube mixture); and 23.79% of the combinations in the collected data
used high-level amounts of fineaggregate in the mix (>825.5 kg in a meter-cube mixture).

• For the attribute water, 34.08% of the combinations in the collected data used low-level amounts of
water in the mix (<=173.5 kg in a meter-cube mixture); 57.48% of the combinations in the collected
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data used mid-level amounts of water in the mix (>173.5 but <=206 kg in a meter-cube mixture);
and 8.45% of the combinations in the collected data used high-level amounts of water in the mix
(>206 kg in a meter-cube mixture).

6.2. “What Has Happened?” Descriptive Analytics Using Pearson Correlation Analysis

To complement the work of colleagues who might prefer to visualize data in terms of frequentist
statistics, descriptive analytics can also be performed by using the Pearson correlation analysis tool in
Bayesialab. In conjunction with the naive Bayes model, it can be used for initial exploration of the
relations between the variables of the concrete mixture. The visualizations of the Pearson correlations
can be presented so that it is easier to see the positive correlations highlighted in thicker blue lines
(see Figure 7), and negative correlations highlighted in red (see Figure 8). One suggestion for the
interpretation of the positive Pearson correlations could be, that the thicker blue lines and their
corresponding nodes might represent the regions which could potentially impact the outcome of the
concrete compressive strengths positively. The tool can be activated in Bayesialab via these steps on
the menu bar: analysis > visual > overall > arc > Pearson correlation > R+ (positive correlations).
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The tabular view (see Table 2) of the Pearson correlation tool can be activated in Bayesialab via
these steps on the menu bar: analysis > report > relationship.

Table 2. Relationship between parent and child nodes of the supervised machine-learned BN.

Parent Child KL
Divergence

Mutual
Information G-Test df p-Value Pearson’s

Correlation

csMPa cement 0.1359 0.1359 194.0049 4 0.0000% 0.4215
csMPa water 0.1125 0.1125 160.6493 4 0.0000% −0.2228
csMPa age 0.0891 0.0891 127.2237 4 0.0000% 0.2472
csMPa superplasticizer 0.0689 0.0689 98.3567 4 0.0000% 0.2999
csMPa fineaggregate 0.0260 0.0260 37.1368 4 0.0000% −0.1567
csMPa coarseaggregate 0.0208 0.0208 29.6499 4 0.0006% −0.1543
csMPa slag 0.0206 0.0206 29.3990 4 0.0006% 0.1519
csMPa flyash 0.0186 0.0186 26.5392 4 0.0025% −0.0753

6.3. “What-If?” Predictive Analytics Using the Naïve Bayes Approach

Hypothetical Scenario 6.3.1: what amounts should be used in the component attributes in the
mix if we wish to achieve high concrete compressive strength?

The results of the predictive analysis (see Figure 9) are presented as follows.
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Figure 9. Prediction of conditions that would contribute to csMPa > 48.79 MPa (high-level of concrete
compressive strength).

To simulate the conditions for achieving high concrete compressive strength, we set hard evidence
by setting the counterfactual value of 100% on high compressive strength (>48.79 MPa) in the node
csMPa, by double-clicking on it in Bayesialab. The corresponding counterfactual results of the
conditions needed to achieve high concrete compressive strength are as follows:

• For the attribute cement, the probability of achieving high concrete compressive strength would
be 13.39% if the low-level amount of concrete was used in the mixture (<=239.6 kg in a meter-cube
mixture); the probability of achieving high concrete compressive strength would be 38.84% if the
mid-level amount of concrete was used in the mix (>239.6 but <=362.6 kg in a meter-cube mixture);
and the probability of achieving high concrete compressive strength would be 47.77% if the
high-level amount of concrete in the mix was used in the mix (>362.6 kg in a meter-cube mixture).

• For the attribute superplasticizer, the probability of achieving high concrete compressive strength
would be 22.77% if the low-level amount of superplasticizer was used in the mixture (<=4.6 kg in
a meter-cube mixture); the probability of achieving high concrete compressive strength would be
62.05% if the mid-level amount of superplasticizer was used in the mixture (>4.6 but <=14.3 kg
in a meter-cube mixture); and the probability of achieving high concrete compressive strength
would be 15.18% if the high-level amount of superplasticizer was used in the mixture (>14.3 kg in
a meter-cube mixture).

• For the attribute slag, the probability of achieving high concrete compressive strength would
be 42.86% if the low-level amount of slag was used in the mixture (<=54.6 kg in a meter-cube
mixture); the probability of achieving high concrete compressive strength would be 32.59% if the
mid-level amount of slag was used in the mixture (>54.6 but <=167 kg in a meter-cube mixture);
and the probability of achieving high concrete compressive strength would be 24.55% if the
high-level amount of slag was used in the mixture (>167 kg in a meter-cube mixture).

• For the attribute flyash, the probability of achieving high concrete compressive strength would
be 66.96% if the low-level amount of flyash was used in the mixture (<=24.5 kg in a meter-cube
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mixture); the probability of achieving high concrete compressive strength would be 25.45% if
the mid-level amount of flyash was used in the mixture (>24.5 but <=134 kg in a meter-cube
mixture); and the probability of achieving high concrete compressive strength would be 7.59% if
the high-level amount of flyash was used in the mixture (>134 kg in a meter-cube mixture).

• For the attribute coarseaggregate, the probability of achieving high concrete compressive strength
would be 28.12% if the low-level amount of coarseaggregate was used in the mixture (<=910 kg in
a meter-cube mixture); the probability of achieving high concrete compressive strength would be
48.21% if the mid-level amount of coarseaggregate was used in the mixture (>910 but <=1014.3 kg
in a meter-cube mixture); and the probability of achieving high concrete compressive strength
would be 23.66% if the high-level amount of coarseaggregate was used in the mixture (>1014.3 kg
in a meter-cube mixture).

• For the attribute age, the probability of achieving high concrete compressive strength would be
66.52% if the low-level amount of age had been utilized in the mixture (<=56 days); the probability
of achieving high concrete compressive strength would be 27.68% if the mid-level amount of age
had been utilised in the mix (>56 but <=180 days); and the probability of achieving high concrete
compressive strength would be 5.80% if the high-level amount of age had been utilised in the mix
(>180 days).

• For the attribute fineaggregate, the probability of achieving high concrete compressive strength
would be 32.59% if the low-level amount of fineaggregate was used in the mix (<=717.8 kg in
a meter-cube mixture); the probability of achieving high concrete compressive strength would
be 45.98% if the mid-level amount of fineaggregate was used in the mix (>717.8 but <=825.5 kg
in a meter-cube mixture); and the probability of achieving high concrete compressive strength
would be 21.43% if the high-level amount of fineaggregate was used in the mix (>825.6 kg in a
meter-cube mixture).

• For the attribute water, the probability of achieving high concrete compressive strength would be
63.84% if the low-level amount of water was used in the mix (<=173.5 kg in a meter-cube mixture);
the probability of achieving high concrete compressive strength would be 28.12% if the mid-level
amount of water was used in the mix (>173.5 but <=206 kg in a meter-cube mixture); and the
probability of achieving high concrete compressive strength would be 8.04% if the high-level
amount of water was used in the mix (>206 kg in a meter-cube mixture).

Hypothetical Scenario 6.3.2: what would happen to the concrete compressive strength if low-levels
in all components of the mixture were used?

The results of the predictive analysis (see Figure 10) are presented as follows.
If the counterfactual low-levels of each component was applied in the computational model,

there would be 31.83% probability of achieving low concrete compressive strength (<=28.02 MPa);
there would be 52.16% probability of achieving mid concrete compressive strength (>28.02 MPa but
<=48.79 MPa); there would be 16.01% probability of achieving high concrete compressive strength
(>48.79 MPa).

Hypothetical Scenario 6.3.3: what would happen to the concrete compressive strength if a
low-level of the amount of water was used, with the rest of the components held constant?

The results of the predictive analysis (see Figure 11) are presented as follows.
If the low-level of the amount of water was applied in the computational model, with the rest of

the components in the mixture held constant in accordance with the original dataset, there would be
24.73% probability of achieving low concrete compressive strength (<=28.02 MPa); there would be
41.15% probability of achieving mid concrete compressive strength (>28.02 MPa but <=48.79 MPa);
there would be 34.12% probability of achieving high concrete compressive strength (>48.79 MPa).
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low-level of water was applied, with the rest of the mix held constant.

Hypothetical Scenario 6.3.4: what would happen to the concrete compressive strength if low-level
of the amount of cement was used, with the rest of the components held constant?

The results of the predictive analysis (see Figure 12) are presented as follows.
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Figure 12. Prediction of the outcome in concrete compressive strength (target node: csMPa) if the
low-level of cement was applied.

If the low-level of the amount of cement was used, with the rest of the components held constant
in accordance with the original dataset, there would be 46.55% probability of achieving low concrete
compressive strength (<=28.02 MPa); there would be 43.95% probability of achieving mid concrete
compressive strength (>28.02 MPa but <=48.79 MPa); there would be 9.51% probability of achieving
high concrete compressive strength (>48.79 MPa).

Hypothetical Scenario 6.3.5: what would happen to the concrete compressive strength if low-levels
of the amount of cement and water were used, with the rest of the components held constant?

The results of the predictive analysis (see Figure 13) are presented as follows.
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If low-levels of the amount of cement and water were used, with the rest of the components held
constant in accordance with the original dataset, there would be 36.13% probability of achieving low
concrete compressive strength (<=28.02 MPa); there would be 46.66% probability of achieving mid
concrete compressive strength (>28.02 MPa but <=48.79 MPa); there would be 17.21% probability of
achieving high concrete compressive strength (>48.79 MPa).

7. Semi-Supervised Machine Learning Approach

Semi-supervised machine learning can be used to analyze the dataset and generated possible
relationships between the components in the mixture. This is the main difference from the supervised
machine learning method used earlier in Section 6.

7.1. Descriptive Analytics Using the Semi-Supervised Bayesian Network Machine Learning Approach

In this section, descriptive analytics can be performed on the collected data to learn more about the
characteristics of its collective pattern or motif (see Figure 14). Subsequently, predictive analytics using
semi-supervised machine learning will be used to reveal the motif machine-learned in this section to
generate simulations of hypothetical scenarios in-silico to forecast conditions which we might like to
achieve or avoid.Educ. Sci. 2019, 9, x FOR PEER REVIEW 20 of 42 
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Figure 14. After the semi-supervised learning algorithm was applied, the parameter nodes were
automatically linked to the target node csMPa (compressive strength of concrete).

For exploration purposes in this paper, the machine learning procedure inside Bayesialab was
used to cluster the data within each component of the mixture into three levels to represent the high,
mid, and low categories.

Descriptive analytics of the entire dataset revealed that, collectively from all the attempts in using
different combinations of the components in the mix:

• For the node (csMPa) concrete compressive strength, there was 35.15% probability of achieving
low compressive strength of <=28.02 MPa (where MegaPasal is the SI unit for pressure); there
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was 43.11% probability of achieving mid compressive strength of >28.02 and <=48.79 MPa; and
there was 21.75% of achieving high compressive strength of >48.79 MPa.

Descriptive analytics of the entire dataset revealed that, collectively from all the attempts in using
different combinations of the components in the mixture:

• For the attribute cement, 41.17% of the combinations in the collected data used the low-level
amounts of concrete in the mix (<=239.6 kg in a meter-cube mixture); 37.18% of the combinations
in the collected data used the mid-level amounts of concrete in the mix (>239.6 but <=362.6 kg in
a meter-cube mixture); and 21.65% of the combinations in the collected data used the high-level
amounts of concrete in the mix (>362.6 kg in a meter-cube mixture).

• For the attribute superplasticizer, 42.52% of the combinations in the collected data used the
low-level amounts of superplasticizer in the mix (<=4.6 kg in a meter-cube mixture); 51.17% of
the combinations in the collected data used the mid-level amounts of superplasticizer in the mix
(>4.6 but <=14.3 kg in a meter-cube mixture); and 6.31% of the combinations in the collected data
used the high-level amounts of superplasticizer in the mix (>14.3 kg in a meter-cube mixture).

• For the attribute slag, 56.41% of the combinations in the collected data used the low-level amounts
of slag in the mix (<=54.6 kg in a meter-cube mixture); 24.76% of the combinations in the collected
data used the mid-level amounts of slag in the mix (>54.6 but <=167 kg in a meter-cube mixture);
and 18.83% of the combinations in the collected data used the high-level amounts of slag in the
mix (>167 kg in a meter-cube mixture).

• For the attribute flyash, 56.41% of the combinations in the collected data used the low-level
amounts of flyash in the mix (<=24.5 kg in a meter-cube mixture); 31.36% of the combinations
in the collected data used the mid-level amounts of flyash in the mix (>24.5 but <=134 kg in a
meter-cube mixture); and 12.23% of the combinations in the collected data used the high-level
amounts of flyash in the mix (>134 kg in a meter-cube mixture).

• For the attribute coarseaggregate, 19.51% of the combinations in the collected data used low-level
amounts of superplasticizer in the mix (<=910 kg in a meter-cube mixture); 52.16% of the
combinations in the collected data used the mid-level amounts of superplasticizer in the mix (>910
but <=1014.3 kg in a meter-cube mixture); and 28.32% of the combinations in the collected data
used the high-level amounts of superplasticizer in the mix (>1014.3 kg in a meter-cube mixture).

• For the attribute age, 79.75% of the combinations in the collected data had utilised the low-level
amounts of age in the mix (<=56 days); 16.04% of the combinations in the collected data had utilised
the mid-level amounts of age in the mix (>56 but <=180 days); and 4.21% of the combinations in
the collected data used the high-level amounts of age in the mix (>180 days).

• For the attribute fineaggregate, 23.56% of the combinations in the collected data had used the
low-level amounts of fineaggregate in the mix (<=717.8 kg in a meter-cube mixture); 53.53% of the
combinations in the collected data used the mid-level amounts of fineaggregate in the mix (>717.8
but <=825.5 kg in a meter-cube mixture); and 22.91% of the combinations in the collected data
used the high-level amounts of fineaggregate in the mix (>825.5 kg in a meter-cube mixture).

• For the attribute water, 33.89% of the combinations in the collected data had used the low-level
amounts of water in the mix (<=173.5 kg in a meter-cube mixture); 56.03% of the combinations
in the collected data used the mid-level amounts of water in the mix (>173.5 but <=206 kg in a
meter-cube mixture); and 10.08% of the combinations in the collected data used the high-level
amounts of water in the mix (>206 kg in a meter-cube mixture).

7.2. Descriptive Analytics of the Semi-Supervised BN Model Using Pearson Correlations

To complement the work of colleagues who might prefer to visualize data of this semi-supervised
BN machine-learned model in terms of frequentist statistics, descriptive analytics can also be performed
by using the Pearson correlation analysis tool in Bayesialab. It can be used to provide another
perspective of looking at the data, just in case the previous BN model (see Figure 7) missed out
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something due to its exploratory intent, because the relations between the mixture variables were not
considered in that model. The visualizations of the Pearson correlations can be presented so that it
is easier to see the positive correlations highlighted in thicker blue lines and negative correlations
highlighted in red.

One suggestion for interpretation of the positive Pearson correlations (see Figure 15) could be,
that the thicker blue lines and their corresponding nodes might represent the variables which could
potentially impact the student positively. The tool can be activated in Bayesialab via these steps on the
menu bar: analysis > visual > overall > arc > Pearson correlation > R+ (positive correlations).Educ. Sci. 2019, 9, x FOR PEER REVIEW 22 of 42 
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One suggestion for interpretation of the negative Pearson correlations (see Figure 16) could be, that
the red lines and nodes might represent the mixture variables that could potentially impact the outcome
of the concrete compressive strengths negatively. The tool can be activated in Bayesialab via these steps
on the menu bar: analysis > visual > overall > arc > Pearson correlation > R- (negative correlations).

The tabular view (see Table 3) of the Pearson correlation tool can be activated in Bayesialab via
these steps on the menu bar: analysis > report > relationship.
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Table 3. Relationship analysis between parent and child nodes in the semi-supervised
machine-learned BN.

Parent Child KL
Divergence

Mutual
Information G-Test df p-Value Pearson’s

Correlation

flyash superplasticizer 0.4372 0.3004 428.9930 4 0.0000% 0.4042
fineaggregate coarseaggregate 0.3303 0.1275 193.7040 4 0.0000% −0.1800

cement fineaggregate 0.3037 0.0255 53.7375 4 0.0000% −0.0895
water fineaggregate 0.2930 0.1155 198.8320 4 0.0000% −0.3460
slag fineaggregate 0.2792 0.0450 72.3311 4 0.0000% −0.2091

superplasticizer water 0.2514 0.2254 356.7480 4 0.0000% −0.4920
slag coarseaggregate 0.2434 0.0825 129.5773 4 0.0000% −0.2844

flyash slag 0.2238 0.1289 183.9886 4 0.0000% −0.3398
cement csMPa 0.2226 0.1359 194.0049 4 0.0000% 0.4215

slag superplasticizer 0.2187 0.0338 48.3312 4 0.0000% 0.0865
superplasticizer coarseaggregate 0.2086 0.0891 106.7541 4 0.0000% −0.2981

cement superplasticizer 0.1989 0.0739 105.5544 4 0.0000% 0.0845
csMPa age 0.1464 0.1160 127.2237 4 0.0000% 0.2945
cement slag 0.1304 0.0355 50.6310 4 0.0000% −0.2011

superplasticizer age 0.1240 0.0936 81.2284 4 0.0000% −0.2837
cement flyash 0.1158 0.1158 165.4023 4 0.0000% −0.3502

slag csMPa 0.1073 0.0206 29.3990 4 0.0006% 0.1519
csMPa water 0.1041 0.0781 160.6493 4 0.0000% −0.1156

7.3. Descriptive Analytics: Mapping of Entropy in the Semi-Supervised BN Model

When the ingredients of a concrete mixture physically interact with one another, it would not
be unreasonable to assume that energy is involved, and that not all that energy would be converted
directly into the outcomes that STEAM practitioners might wish to achieve. Clausius [62] asserts that
when work is done (energy expended) on a particular entity inside a system to transform it from one
state to another, not all of that energy would be converted and used to change the state of that entity.
Some amount of that energy would be “spread out” into other parts of the system. Clausius refers to
this “spread” of energy as entropy. This section proffers a Bayesian approach by which the notion of
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entropy could be visualized and analytically harnessed [63], and therefore could be used to as an area
of discussion between the STEAM educator and students.

The entropy of the data distribution within each node of the BN can be visualized in Bayesialab (in
validation mode) by right-clicking on each node and selecting “Display Expected Log-loss”, because
entropy is mathematically expressed (see Equation (2)) as:

H(X) = −
∑
x∈X

p(x)log2(p(x)) (2)

Since entropy is the sum of the “Expected Log-loss” of each state x of variable X when using
network B, it can be expressed (see Equation (3)) as:

H(X) =
∑
x∈X

LLx (3)

where log-loss can be expressed (see Equation (4)) as:

LLx = −pB(x)log2(pB(x)) (4)

The entropy in the concrete mixture system can be visualized (see Figure 17) in terms of size and
colors by using the mapping tool in Bayesialab (in validation mode) on the menu bar at: visual >

overall > mapping > 2D mapping.
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The bigger sized nodes suggest that there is higher entropy (more disorder) in them. Conversely,
the smaller sized nodes suggest that there is lower entropy (less disorder) in each of those variables.
The Pearson’s correlation values on the lines between the nodes are used by Bayesialab to represent the
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strength of the relationships between the nodes. The blue lines represent positive Pearson’s correlations
in the relations between variables of the concrete mixture. The red lines represent negative Pearson’s
correlations in the relations between variables of the concrete mixture. The reasons for higher entropy
or lower entropy might not be so obvious at first glance, so this could be used by the STEAM educator
to facilitate a discussion with the students. As a starting point for the teacher to initiate the discussion
with the STEAM learners, a possible interpretation of the entropy analysis that teacher could use might
be: “an environment which has less disorder could be considered to be conducive to the stability of the
system. However, some disorder is also needed for the initial interactions between the ingredients of
the concrete mixture. Discuss.”

7.4. Predictive Analytics of the Semi-Supervised BN Model

Hypothetical Scenario 7.4.1 predictive analytics using semi-supervised BN model: what
amounts should be used in the component attributes in the mix if we wish to achieve high concrete
compressive strength?

The results of the predictive analysis (see Figure 18) are presented as follows.Educ. Sci. 2019, 9, x FOR PEER REVIEW 25 of 42 
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Figure 18. Prediction of conditions that would contribute to csMPa > 48.79 MPa (high-level of concrete
compressive strength).

To simulate the conditions for achieving high concrete compressive strength, we set hard evidence
by setting the counterfactual value of 100% on high compressive strength (>48.79 MPa) in the node
csMPa, by double-clicking on it in Bayesialab. The corresponding counterfactual results of the
conditions needed to achieve high concrete compressive strength are as follows:

• For the attribute cement, the probability of achieving high concrete compressive strength would
be 13.39% if the low-level amount of concrete was used in the mixture (<=239.6 kg in a meter-cube
mixture); the probability of achieving high concrete compressive strength would be 38.84% if used
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the mid-level amount of concrete was used in the mix (>239.6 but <=362.6 kg in a meter-cube
mixture); and the probability of achieving high concrete compressive strength would be 47.77%
if the high-level amount of concrete in the mix was used in the mix (>362.6 kg in a meter-cube
mixture). This was the same as the counterfactual results for concrete presented in hypothetical
scenario 6.3.1 (see Figure 9).

• For the attribute superplasticizer, the probability of achieving high concrete compressive strength
would be 36.81% if low-level amount of superplasticizer was used in the mixture (<=4.6 kg in a
meter-cube mixture); the probability of achieving high concrete compressive strength would be
49.45% if the mid-level amount of superplasticizer was used in the mixture (>4.6 but <=14.3 kg
in a meter-cube mixture); and the probability of achieving high concrete compressive strength
would be 13.74% if the high-level amount of superplasticizer was used in the mixture (>14.3 kg
in a meter-cube mixture). This was slightly different compared to the counterfactual results for
superplasticizer presented in hypothetical scenario 6.3.1 (see Figure 9), as there were more possible
relations between the mix components in this semi-supervised machine learning model.

• For the attribute slag, the probability of achieving high concrete compressive strength would be
42.86% if the low-level amount of slag was used in the mixture (<=54.6 kg in a meter-cube mixture);
the probability of achieving high concrete compressive strength would be 32.59% if the mid-level
amount of slag was used in the mixture (>54.6 but <=167 kg in a meter-cube mixture); and the
probability of achieving high concrete compressive strength would be 24.55% if the high-level
amount of slag was used in the mixture (>167 kg in a meter-cube mixture). This was the same as
the counterfactual results for slag presented in hypothetical scenario 6.3.1 (see Figure 9).

• For the attribute flyash, the probability of achieving high concrete compressive strength would
be 73.70% if the low-level amount of flyash was used in the mixture (<=24.5 kg in a meter-cube
mixture); the probability of achieving high concrete compressive strength would be 21.93% if
the mid-level amount of flyash was used in the mixture (>24.5 but <=134 kg in a meter-cube
mixture); and the probability of achieving high concrete compressive strength would be 4.38% if
the high-level amount of flyash was used in the mixture (>134 kg in a meter-cube mixture). This
was slightly different compared to the counterfactual results for flyash presented in hypothetical
scenario 6.3.1 (see Figure 9), as there were more possible relations between the mix components in
this semi-supervised machine learning model.

• For the attribute coarseaggregate, the probability of achieving high concrete compressive strength
would be 26.14% if the low-level amount of coarseaggregate was used in the mixture (<=910 kg in
a meter-cube mixture); the probability of achieving high concrete compressive strength would be
50.84% if the mid-level amount of coarseaggregate was used in the mixture (>910 but <=1014.3 kg
in a meter-cube mixture); and the probability of achieving high concrete compressive strength
would be 23.02% if the high-level amount of coarseaggregate was used in the mixture (>1014.3 kg
in a meter-cube mixture). This was slightly different compared to the counterfactual results for
coarseaggregate presented in hypothetical scenario 6.3.1 (see Figure 9), as there were more possible
relations between the mix components in this semi-supervised machine learning model.

• For the attribute age, the probability of achieving high concrete compressive strength would be
61.17% if the low-level amount of age had been utilized in the mixture (<=56 days); the probability
of achieving high concrete compressive strength would be 29.45% if the mid-level amount of age
had been utilised in the mix (>56 but <=180 days); and the probability of achieving high concrete
compressive strength would be 9.38% if the high-level amount of age had been utilised in the mix
(>180 days). This was slightly different compared to the counterfactual results for age presented
in hypothetical scenario 6.3.1 (see Figure 9), as there were more possible relations between the mix
components in this semi-supervised machine learning model.

• For the attribute fineaggregate, the probability of achieving high concrete compressive strength
would be 28.39% if the low-level amount of fineaggregate was used in the mix (<=717.8 kg in
a meter-cube mixture); the probability of achieving high concrete compressive strength would
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be 48.36% if the mid-level amount of fineaggregate was used in the mix (>717.8 but <=825.5 kg
in a meter-cube mixture); and the probability of achieving high concrete compressive strength
would be 23.25% if the high-level amount of fineaggregate was used in the mix (>825.6 kg in
a meter-cube mixture). This was slightly different compared to the counterfactual results for
fineaggregate presented in hypothetical scenario 6.3.1 (see Figure 9), as there were more possible
relations between the mix components in this semi-supervised machine learning model.

• For the attribute water, the probability of achieving high concrete compressive strength would be
57.28% if the low-level amount of water was used in the mix (<=173.5 kg in a meter-cube mixture);
the probability of achieving high concrete compressive strength would be 29.73% if the mid-level
amount of water was used in the mix (>173.5 but <=206 kg in a meter-cube mixture); and the
probability of achieving high concrete compressive strength would be 12.99% if the high-level
amount of water was used in the mix (>206 kg in a meter-cube mixture). This was slightly
different compared to the counterfactual results for water presented in hypothetical scenario
6.3.1 (see Figure 9), as there were more possible relations between the mix components in this
semi-supervised machine learning model.

Hypothetical Scenario 7.4.2 predictive analytics using semi-supervised BN model: what would
happen to the concrete compressive strength if a low-level of the amount of water was used, with the
rest of the components held constant?

The results of the predictive analysis (see Figure 19) are presented as follows.
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Figure 19. Prediction of the outcome in concrete compressive strength (target node: csMPa) if the
low-level of water was applied, with the rest of the mix held constant.

If the low-level of the amount of water was applied in the computational model, with the rest of the
components in the mixture held constant in accordance with the original dataset, there would be 26.78%
probability of achieving low concrete compressive strength (<=28.02 MPa); there would be 34.63%
probability of achieving mid concrete compressive strength (>28.02 MPa but <=48.79 MPa); there
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would be 38.59% probability of achieving high concrete compressive strength (>48.79 MPa). This was
different compared to the counterfactual results previously presented in hypothetical scenario 6.3.3 (see
Figure 11), as there were more possible relations between the mix components in this semi-supervised
machine learning model.

Hypothetical Scenario 7.4.3 predictive analytics using semi-supervised BN model: what would
happen to the concrete compressive strength if a low-level of the amount of cement was used, with the
rest of the components held constant?

The results of the predictive analysis (see Figure 20) are presented as follows.Educ. Sci. 2019, 9, x FOR PEER REVIEW 28 of 42 

 

 
Figure 20. Prediction of the outcome in concrete compressive strength (target node: csMPa) if the low-
level of cement was applied. 

If the low-level of the amount of cement was used, with the rest of the components held constant 
in accordance with the original dataset, there would be 49.51% probability of achieving low concrete 
compressive strength (<=28.02 MPa); there would be 41.62% probability of achieving mid concrete 
compressive strength (>28.02 MPa but <=48.79 MPa); there would be 8.87% probability of achieving 
high concrete compressive strength (>48.79 MPa). This was different compared to the counterfactual 
results previously presented in hypothetical scenario 6.3.4 (see Figure 12), as there were more possible 
relations between the mix components in this semi-supervised machine learning model. 

Hypothetical Scenario 7.4.4 predictive analytics using semi-supervised BN model: what would 
happen to the concrete compressive strength if a low-level of the amount of cement and water were 
used, with the rest of the components held constant? 

The results of the predictive analysis (see Figure 21) are presented as follows. 

Figure 20. Prediction of the outcome in concrete compressive strength (target node: csMPa) if the
low-level of cement was applied.

If the low-level of the amount of cement was used, with the rest of the components held constant
in accordance with the original dataset, there would be 49.51% probability of achieving low concrete
compressive strength (<=28.02 MPa); there would be 41.62% probability of achieving mid concrete
compressive strength (>28.02 MPa but <=48.79 MPa); there would be 8.87% probability of achieving
high concrete compressive strength (>48.79 MPa). This was different compared to the counterfactual
results previously presented in hypothetical scenario 6.3.4 (see Figure 12), as there were more possible
relations between the mix components in this semi-supervised machine learning model.

Hypothetical Scenario 7.4.4 predictive analytics using semi-supervised BN model: what would
happen to the concrete compressive strength if a low-level of the amount of cement and water were
used, with the rest of the components held constant?

The results of the predictive analysis (see Figure 21) are presented as follows.
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Figure 21. Prediction of the outcome in concrete compressive strength (target node: csMPa) if the
low-level of cement, as well as the low-level of cement were applied.

If the low-levels of the amount of cement and water were used, with the rest of the components
held constant in accordance with the original dataset, there would be 41.52% probability of achieving
low concrete compressive strength (<=28.02 MPa); there would be 37.02% probability of achieving
mid concrete compressive strength (>28.02 MPa but <=48.79 MPa); there would be 21.46% probability
of achieving high concrete compressive strength (>48.79 MPa). This was different compared to the
counterfactual results previously presented in hypothetical scenario 6.3.5 (see Figure 13), as there were
more possible relations between the mix components in this semi-supervised machine learning model.

7.5. Analysis of How Concrete Compressive Strength Is Sensitive to Changes in the Variables of the Mixture

In this section, sensitivity analysis could reveal the factors (the attributes in the mixture) in which
uncertainty might drive the most impact, so that the engineer could focus on the most important ones
(the longer horizontal bars require attention; shorter ones do not).

A tornado chart (see Figure 22) was generated by the software Bayesialab to visualize the factors
which might drive the largest impact (either positively or negatively) toward the concrete compressive
strength (csMPa). The red bars represent the sensitivity of the mixture variables which contribute
to low compressive strength (<=28.02 MPa); the green bars represent the sensitivity of the mixture
variables which contribute to mid-level compressive strength (>28.02 but <=48.79 MPa); the blue
bars represent the sensitivity of the mixture variables which contribute to high compressive strength
(>48.79 MPa).
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Figure 22. Tornado diagram of posterior probabilities analysis of the mix attributes on the target:
Concrete Compressive Strength (csMPa).

To make it easier for the engineer to see which factors in which uncertainty might contribute to
the largest impact to high concrete compressive strength, the focus could be turned to only the blue
bars (see Figure 23). In order of importance, the top five factors (represented as long blue bars) would
be first: cement, second: age, third: superplasticizer, fourth: water, and fifth: flyash.
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Figure 23. Sensitivity analysis of the mix attributes on the target: Concrete Compressive Strength
(csMPa > 48.79).

To make it easier for the engineer to see which factors in which uncertainty might contribute to
the largest impact to low concrete compressive strength, the focus could be turned to only the red bars
(see Figure 24). In order of importance, the top five factors (represented as long red bars) would be
first: age, second: cement, third: water, fourth: flyash, and fifth: superplasticizer.
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Figure 24. Sensitivity analysis of the mix attributes on the target: Concrete Compressive Strength
(csMPa <= 28.02).

7.6. Descriptive Analytics: Curves Analysis

Another way to visualize the data is by using the curves analysis tool in Baysialab via these steps
on the menu bar: Bayesialab (validation mode) > analysis > visual > target > target’s posterior >

curves > total effects.
As observed in Figure 25, the plots of the total effects of the various input variables in the concrete

mixture on the target node (the outcome of the concrete compressive strengths) suggest that their
relationships are not all linear. Some of them could also be curvilinear. Here is where BN excels
in calculating the probabilities of how the linear or curvilinear data from the input variables might
influence the outcome of the concrete compressive strengths (as already shown earlier in the exemplar
data analyses using BN), because the concept of the Markov blanket [45], in conjunction with the
response surface methodology (RSM) [46–49] are utilized for examining the optimization of relations
between variables in the computational model.
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8. Evaluation of the Predictive Performance of the Bayesian Network model

The predictive performance of a model can be evaluated using measurement tools such as the
gains curve, the lift curve, and the receiver operating characteristic (ROC) curve, cross-validation
by K-fold, and statistical bootstrapping. In Bayesialab, these tools can be accessed in the “network
performance” menu.

8.1. Evaluation of the Predictive Performance Using the Gains Curve, Lift Curve and ROC Curve

In the gains curve (see Figure 26), around 22% of the attributes were predicted to be the most
impactful towards high concrete compressive strength (>48.79 MPa). The blue diagonal line represented
the gains curve of a pure random policy, which was a prediction without this predictive model. The red
lines represented the gains curve using this predictive model. The Gini index of 59.26% and relative
Gini index of 75.73% suggested that the gains of using this predictive model vis-à-vis not using it,
was acceptable.
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Figure 26. Gains Curve.

The lift curve (see Figure 27) corresponded to the gains curve. The value of the best lift around
22%, was interpreted as the ratio between 100% and 4.6% (optimal policy divided by random policy).
The lift decreased when more than 4.6% of the participants were considered and was equal to 1 when
all the participants were considered. The lift index of 2.0751 and relative lift index of 82.22% suggested
that the performance of this predictive model was acceptably good.
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The predictive performance of the Bayesian network model was evaluated by using a ROC curve
(see Figure 28), which was a plot of the true positive rate (Y-axis) against the false positive rate (X-axis).
The ROC index indicated that 87.86% of the cases were predicted correctly with this predictive model.
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Together, the gains curve, the lift curve, and the ROC curve indicated that the predictive
performance of the Bayesian network model in the current paper was good.

8.2. Target Evaluation Cross-Validation by K-Fold

Besides the gains curve, the lift curve, and the ROC curve, another way to evaluate the predictive
model would be to use the Bayesialab software to perform target evaluation cross-validation by K-fold
(see Figure 29). This can be done in Bayesialab via these steps on the menu bar: Bayesialab (in
validation mode) using tools > resampling > target evaluation > K-fold.
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As observed in the results (see Figure 30) generated by Bayesialab after performing bootstrapping
target evaluation cross-validation by K-folds on the data distribution of each node in the BN by using
the semi-supervised algorithm, the overall precision was 60.6796%; the mean precision was 60.8946%;
the overall reliability was 60.4768%; the mean reliability was 60.3151%; the mean Gini index was
-21.7476%; the mean relative Gini index was -∞%; the mean lift index was 0.2175; the mean relative lift
index was 21.7476%; the mean ROC index was 0.0000%; the mean calibration index was 100%; the mean
binary log-loss was 0.3755; the correlation coefficient R was 0.6823; the coefficient of determination R2
was 0.4655; the root mean square error (RMSE) was 12.3644; and the normalized root mean square
error (NRSME) was 15.4035%.
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Figure 30. Output by Bayesialab after performing target evaluation cross-validation by K-fold.

A confusion matrix (for cross-validating the data by K-fold in every node) was presented in
the middle portion of Figure 30. The confusion matrix provided additional information about the
computational model’s predictive performance. The leftmost column in the matrix contained the
predicted values, while the actual values in the data were presented in the top row. Three confusion
matrix views would be available by clicking on the corresponding tabs. The occurrences matrix (see
Figure 30) would indicate the number of cases for each combination of predicted versus actual values.
The diagonal shows the number of true positives.

The reliability matrix (see Figure 31) would indicate the probability of the reliability of the
prediction of a state in each cell. Reliability measures the overall consistency of a prediction. A
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prediction could be considered as highly reliable if the computational model produces similar results
under consistent conditions.
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performance of the BN model was acceptable (or not).  
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Figure 31. Confusion matrix output of reliability after performing target evaluation cross-validation
by K-fold.

The precision matrix (see Figure 32) would indicate the probability of the precision of the prediction
of a state in each cell. Precision is the measure of the overall accuracy which the computational model
can predict correctly.
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Here, another opportunity presents itself to educe AI-Thinking in the students. These results
could potentially be used by a teacher to encourage STEAM learners to discuss whether the predictive
performance of the BN model was acceptable (or not).

8.3. Statistical Bootstrapping to 100,000 Times for the Data in Each Node of the BN

Besides the gains curve, the lift curve, and the ROC curve, another way to evaluate the predictive
model would be to perform bootstrapping (see Figure 33) where the Bayesialab software randomly
draws on the data distribution of each node 100,000 times to simulate parametric data. This can be
done in Bayesialab via these steps on the menu bar: Bayesialab (in validation mode) using tools >

resampling > target evaluation > bootstrap.
As observed in the results (see Figure 34) generated by Bayesialab after performing bootstrapping

100,000 times on the data distribution of each node in the BN by using the parameter estimation
algorithm, the overall precision was 62.9407%; the mean precision was 61.9033%; the overall reliability
was 62.8935%; the mean reliability was 63.3774%; the mean Gini index was 56.8998%; the mean relative
Gini index was 72.7365%; the mean lift index was 2.0574; the mean relative lift index was 81.5085%; the
mean ROC index was 86.3685%; the mean calibration index was 50.9224%; the mean binary log-loss
was 0.3573; the correlation coefficient R was 0.6953; the coefficient of determination R2 was 0.4835; the
RMSE was 12.1456; and the NRSME was 15.1310%.
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Figure 33. Evaluation of predictive performance of BN on the target state (concrete compressive strength).

A confusion matrix (for bootstrapping the data 100,000 times in every node) was presented in
the middle portion of Figure 34. The confusion matrix provided additional information about the
computational model’s predictive performance. The leftmost column in the matrix contained the
predicted values, while the actual values in the data were presented in the top row. Three confusion
matrix views would be available by clicking on the corresponding tabs. The occurrence matrix (see
Figure 34) would indicate the number of cases for each combination of predicted versus actual values.
The diagonal shows the number of true positives.

The reliability matrix (see Figure 35) would indicate the probability of the reliability of the
prediction of a state in each cell. Reliability measures the overall consistency of a prediction. A
prediction could be considered highly reliable if the computational model produces similar results
under consistent conditions.
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Here, another opportunity presents itself to educe AI-Thinking in the STEAM learners. These
results could potentially be used by a teacher to encourage the students to discuss whether the
predictive performance of the BN model using the bootstrapping technique was acceptable or not.

8.4. Limitations of the Study

The exploratory nature of predictive analytics in this study using BN analysis render the simulated
counterfactual results suggestive, rather than conclusive. Only one supervised machine learning,
and one semi-supervised machining learning approach were used for illustration purposes in the
current paper. Further, it was only applicable to the BN models that were generated from the current
dataset. Therefore, caution must be exercised when interpreting the potential relationships between
the variables (nodes) in the BN model. As in any study which involves simulations, the results are
dependent on the dataset that generated the computational model. However, after gaining better AI
literacy, STEAM educators and learners should be willing to consider alternative models which could
better describe the dataset.

In the previous sections, the tools in Bayesialab which could be used for the evaluation of the
predictive performance of the BN, and the limitations of the study were described. In the next section,
the discussion and concluding remarks will be presented.

9. Discussion and Concluding Remarks

Priorities in education have shifted in response to the need of educating students for AI-infused
industries. In conjunction with this shift, the implications of AI-Thinking for education need to be
delved into by more STEAM education researchers in future studies. In current practice, STEAM
educators are in favor of preparing students to join the workforce by equipping them with the tools
to become adaptive on-the-job learners, instead of solely requiring them to acquire a rigid body of
knowledge [64]. Schools have been developing STEAM curricula that encourage students to apply their
knowledge, collaborate with others, and practice self-regulated learning skills, so that they can agilely
respond to the dynamic nature of job requirements and the authentic problems which they might
encounter [65]. As a consequence, educators have been incorporating more authentic problems [66]
which might not have fixed “correct” answers, as they are complex.

However, when working with complex authentic problems, STEAM educators might have wished
that they could show their students how to utilize predictive analysis and simulations of alternative
combinations of variables to model in-silico what could not be easily accomplished in the real-world.
Through the AI-based Bayesian network machine learning approach proffered in the current paper,
the eduction of AI-Thinking for problem-solving using STEAM could be scaffolded in the lessons via
myriad scenarios to see the conditions for the best and worst outcomes.

Silapachote and Srisuphab [67] observed that through the widened and deepened use of conceptual
abstraction, heuristics in problem-solving, and data analysis, the students’ learning processes can
be enhanced by AI-Thinking. Further, they offer that AI-Thinking goes beyond computational
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thinking [68] which primarily focuses on the decomposition of problems into procedural logic and
algorithm-based perspectives for the computer.

To overcome these constraints, the exemplars in the current paper contribute to the literature by
offering an intuitive AI-based Bayesian approach using a user-friendly Bayesian networks analysis
software so that teachers and students in STEAM-related lessons, not just computer scientists, may
also utilize machine learning to analyze and create predictive models from data. Using this Bayesian
approach, controlled experiments could be carried out in computational models, where individual
parameters of the problem could be held constant, while others could be changed to simulate different
hypothetical scenarios, which enabled the simulations of “what-if” scenarios to predict the conditions for
optimizing the concrete compressive strength, as well as to predict “at-risk” conditions for preventing
the output from yielding low concrete compressive strength.

Specific hypothetical scenarios were used to illustrate and suggest how these simulations could
be used by STEAM instructors to educe AI-Thinking in their students, perhaps via group discussions,
and subsequently, inviting each group to share aspects of their AI-assisted human-centric reasoning
with the teacher and the rest of the class. In this way, the rest of the class might also vicariously apply
AI-Thinking, thereby improving their literacy about AI technologies, and in turn, using their improved
AI literacy to ask better human-centric questions to collaboratively solve STEAM-related problems.

Together with the usage of user-friendly software such as Bayesialab [69] suggested in this
paper, or other BN software such as GeNie by BayesFusion [70], or Netica by Norsys [71], or Bayes
Server [72], STEAM educators would be able to adapt these exemplars using their own data for their
STEAM lessons.
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